Competing methods: Performance Statistics: Table 1: Performance statistics of 2D segmentation using F1 measure (%), Precision (%), Recall (%), Specificity (%) and MCC. Visual Results: Figure 1: Exemplar results on segmenting 2D retinal and neuronal images. (a): Input images; (b): Ground-truth; (c): Probability maps of our approach (SF + context distance variant); (d & e) Error images of our approach (SF + context distance & SF only); (f) Error images of Kernel Boost; (f) Error images of SE. Here green denotes false alarm and the magenta denotes the missing error.
Competing methods: Results using F1 measure (%):
Visual Results: Figure 2: Exemplar 3D neuronal segmentation results on Gold166 dataset. (a & f): Input images with ground-truth in blue; (b & g): Results of our SF + context distance variant; (c & h) Results of Adaptive Enhancement; (d & i) Results of GWDT; (e & j) Results of Regression Tubularity. Video Illustration: (b) SF + context distance (c) Adaptive Enhancement (d) GWDT (e) Regression Tubularity (g) SF + context distance (h) Adaptive Enhancement (i) GWDT (j) Regression Tubularity Exemplar segmentation results on 3D neuronal images from the BigNeuron Dataset.
[2] M. Law and A. Chung. Three dimensional curvilinear structure detection using optimally oriented flux. In ECCV, 2008. [3] P. Bankhead, C. Scholfield, J. McGeown, and T. Curtis. Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS ONE, 2012. [4] A. Frangi, W. Niessen, K. Vincken, and M. Viergever. Multiscale vessel enhancement filtering. In MICCAI, 1998. [5] S. Basu, A. Aksel, B. Condron, and S. Acton. Tree2Tree: Neuron segmentation for generation of neuronal morphology. In ISBI, 2010. [6] P. Dollar and C. L. Zitnick. Fast edge detection using structured forests. In IEEE TPAMI, vol 37, no. 8, pp. 1558--1570, 2015. [7] G. Azzopardi, N. Strisciuglio, M. Vento, N. Petkov. Trainable COSFIRE filters for vessel delineation with application to retinal images. In Medical Image Analysis, vol 19, no. 1, pp. 46--57, 2015. [8] L. Gu and L. Cheng. Learning to boost filamentary structure segmentation. In ICCV, 2015. [9] Z. Zhou, S. Sorensen, H. Zeng, M. Hawrylycz, and H. Peng, Adaptive image enhancement for tracing 3D morphologies of neurons and brain vasculatures, Neuroinformatics, vol. 13, no. 2, pp. 153–166, 2015. [10] H. Xiao and H. Peng, APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree, Bioinformatics, vol. 29, no. 11, pp. 1448–54, 2013. [11] A. Sironi, E. Turetken, V. Lepetit, and P. Fua, Multiscale centerline detection, In IEEE TPAMI, 2016. |