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Abstract

The challenging problem of filamentary structure seg-
mentation has a broad range of applications in biological
and medical fields. A critical yet challenging issue remains
on how to detect and restore the small filamentary frag-
ments from backgrounds: The small fragments are of di-
verse shapes and appearances, meanwhile the backgrounds
could be cluttered and ambiguous. Focusing on this issue,
this paper proposes an iterative two-step learning-based
approach to boost the performance based on a base seg-
menter arbitrarily chosen from a number of existing seg-
menters: We start with an initial partial segmentation where
the filamentary structure obtained is of high confidence
based on this existing segmenter. We also define a scan-
ning horizon as epsilon balls centred around the partial
segmentation result. Step one of our approach centers on
a data-driven latent classification tree model to detect the
filamentary fragments. This model is learned via a train-
ing process, where a large number of distinct local fig-
ure/background separation scenarios are established and
geometrically organized into a tree structure. Step two spa-
tially restores the isolated fragments back to the current
partial segmentation, which is accomplished by means of
completion fields and matting. Both steps are then alter-
nated with the growth of partial segmentation result, until
the input image space is entirely explored. Our approach is
rather generic and can be easily augmented to a wide range
of existing supervised/unsupervised segmenters to produce
an improved result. This has been empirically verified on
specific filamentary structure segmentation tasks: retinal
blood vessel segmentation as well as neuronal segmenta-
tions, where noticeable improvement has been shown over
the original state-of-the-arts.

1. Introduction
This work aims to address the problem of image-based

filamentary structure segmentation. In particular, we focus
on the challenging issue of preserving weak foreground sig-
nals, i.e., small and thin filaments from ambiguous back-

grounds. This problem is fundamental in a rather broad
range of applications such as neuronal tracing from micro-
scopic images [17], retinal blood vessel tracing in retinal
scans [9], as well as reconstruction of human vasculature
such as 2D digital subtraction angiography and 3D mag-
netic resonance angiography [10]. Difficulties of this prob-
lem lie in the high variability of filament shape, texture and
thickness, which is further complicated by the often noisy
and cluttered background that at times could even confuse a
trained eye [1].

Existing methods can be roughly categorized into three
types: Hessian-based, model-based and learning-based.
Hessian-based models make use of the second order deriva-
tives either to guide the development of snake [27], to detect
filament edges [2], or to combine with the eigenvalues [10]
for segmenting filamentary structures. They however of-
ten lack the flexibility to tackle irregular filamentary struc-
tures. Model-based methods instead emphasize on fitting
filaments with known geometric shapes. Zhao et al. [29]
regard individual fibres of neurons as connected tubular
shapes which are assembled to form neuronal tree struc-
tures. One widely used unsupervised method, optimally
oriented flux (OOF) [13], is based on the assumption of
circular filament cross-sections, which is further extended
in Turetken et al. [26] to segment filamentary structures
through a set of regularly spaced anchor points. Learning-
based methods [22, 21, 25, 6], on the other hand, advocate
the automation of the feature learning process. For example,
the method of [6] employs a gradient boosting framework
to optimize filters and often produces the state-of-the-art
performance. Existing filamentary structure segmentation
methods usually work very well when the filamentary struc-
tured foregrounds are of high contrast or with clear bound-
ary from the backgrounds. Their performance nevertheless
deteriorates dramatically when dealing with small and thin
filaments. This is often further complicated with cluttered
and ambiguous backgrounds, which are not uncommon in
real-world images.

In addition to the basic segmentation result, many of
the aforementioned methods also produce a pixelwise confi-
dence map, despite the heterogeneous nature of these meth-
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Figure 1: Exemplar results of our approach on two applications: (first row) retinal and (second row) neuronal images. For each application, the results of
the base segmenter [6] and results of our boosted are displayed. Note the blue channel in the neuronal image indicate the DAPI-tagged nuclei which can be
ignored in our context. In each of the results, Black pixels refer to true positive, magenta pixels are for false negative (miss), while lime pixels are for false
positive (false alarm).
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Figure 2: An illustration of the pipeline of our approach on a retinal image. From top-left to bottom-right: (a) Input image; (b) The confidence map from
a base segmenter. Here pixels with lower intensity values correspond to higher confidence scores. (c) Initial partial segmentation obtained by applying a
sufficiently high threshold in the confidence map. (d-f) Intermediate results of iterations 1-3, where the result of step 1 is shown for each iteration. (g) The
final reconstructed filamentary structure, in comparison with (h) the ground truth.

ods. A confidence map is a spatial mapping with each im-
age pixel assigned a non-negative score, which is larger if
this pixel more likely belongs to the filamentary structure
foreground, or lower if the other way around. This concept
has in fact been adopted by existing methods under different
names, such as vesselness [10] and tubularly score [26, 25].
It has been observed that when placing a sufficiently high
threshold on the confidence map, many such methods are

able to output solely true positive foregrounds which pro-
duces a partial segmentation that usually contains the main
trunk (i.e. the long and thick filaments). Similarly, when
placing a sufficiently low threshold, many of these meth-
ods are able to produce only true negative backgrounds.
The observations inspires us to propose a data-driven learn-
ing approach aiming at boosting the performance of these
existing segmentation methods. Our approach specifically



focuses on detecting and restoring small foreground fila-
ments from ambiguous backgrounds, a bottleneck issue of
many state-of-the-art methods. To achieve this, an itera-
tive two-step pipeline is proposed. As shown in Figs. 1,
empirically our approach is demonstrated to boost the per-
formance of a wide spectrum of exemplar existing methods
such as [2, 13, 6], which contains supervised and unsuper-
vised methods, as well as Hessian-based, model-based, and
learning-based methods.

2. Our Approach

Based on one of the existing filamentary structure
segmentation methods that meet the above quantifications
(which we will refer to as a base segmenter), our approach
can be regarded as a value-added process to improve
its segmentation performance. As illustrated in Fig.2,
provided with an input image and the confidence map
output by the base segmenter, the pipeline of our approach
consists of the following steps:
Preprocessing: Obtain the partial segmentation (black-
colored main trunk in Fig.2(c)) by placing a sufficiently
high threshold on the confidence map. Define a scanning
horizon as epsilon balls centered around current partial
segmentation in the image space.
Step One: In the remaining low confidence regions, detect
the filamentary fragments (red components in Fig.2(c)) via
a latent classification tree model. The latent classification
tree (LCT) model is learned based on a large number
of distinct local figure/background separation scenarios,
which are geometrically organized into a tree structure.
The detected filamentary fragments are on the other hand
usually isolated from the main trunk due to missing edges.
Step Two: Grow current filamentary structure by restoring
the detected filamentary fragments, i.e., connecting them
back to the main trunk. This is achieved by making novel
usage of the matting technique guided with the completion
fields of these filamentary fragments.
Progress Check: Update the scanning horizon. Go back to
step one if the image space has not been entirely explored,
otherwise terminate.

Filamentary fragments(a) (b) Background fragments

Figure 3: (a) and (b) present exemplar filamentary fragments vs. back-
ground fragments encountered during step one, respectively where the first
row shows the input image patch and the second row shows the fragments.

2.1. Preprocessing

For an input image, its confidence map is obtained by
applying a base segmenter. By placing a threshold τh, we
obtain an initial partial segmentation that comprises a set
of pixels with confidence values exceeding τh. Note τh is
sufficiently high to ensure that only filamentary foreground
pixels are selected. In a similar manner, we can also define
another threshold τl to be sufficiently low for pure back-
grounds. At this moment, a partial foreground segmentation
is obtained, while the rest pixels remain undecided. We also
define a scanning horizon as an epsilon ball B around the
current partial segmentation with a searching radius ε.

2.2. Step One: Detect Filamentary Fragments via
latent classification tree (LCT) Model

As displayed in Fig.2(c), the long and thick filaments
(i.e. main trunk) are usually successfully detected as the
initial partial segmentation, while the bottleneck issue be-
comes that of identifying and reclaiming the small and thin
fragments. Given a base segmenter, starting from an initial
partial segmentation, the aim of step one is to detect fila-
mentary fragments from backgrounds in those pixels with
weak confidence values in the range of (τl, τh) within hori-
zon B. This is a rather challenging problem, mainly due to
significant variability of local geometrical shapes and tex-
tures upon which we rely to identify and reclaim filament
foregrounds from the ambiguous backgrounds. Simply
placing a global threshold in this range will inevitably re-
sult in the detection of fragment candidates which are a mix-
ture of filamentary fragments (coloured red) and ambiguous
background fragments (coloured blue) as illustrated in e.g.
Fig.2(d-f). To address this problem, we instead propose a
data-driven strategy to learn distinct local shape and texture
scenarios of filamentary fragments, with the underlying as-
sumption that for any test instance, similar scenarios would
usually exist in training data. This naturally corresponds
to a large number of distinct local figure/background sep-
aration scenarios, which are established and geometrically
organized into a tree structure, a latent tree model. This
divide-and-conquer strategy becomes beneficial in several
aspects: It helps to reduce the complexity of the original
problem to something that can be managed case by case; It
also facilitates the introduction of specific completion fields
that each dedicates to a group of filament fragments pos-
sessing similar orientations, shapes and textures.

2.2.1 Identify Distinct Local Filament Shapes and Tex-
tures by Filament Tokens

Following the idea of sketch tokens [14], we will identify
distinct local filamentary fragments that are referred to as
filament tokens. It works by grouping similar filamentary
fragments in terms of their shapes, textures, and orientations
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Figure 4: An illustration of the latent classification tree (LCT) model in step one: A latent split node which comprises a subset of similar tokens and is
split into multi-branches according to a multi-class classifier; A leaf node corresponds to a local foreground/background separation problem, with the set of
foreground filaments precisely corresponding to a unique token type, as displayed in the second row. For each token type, its completion field is presented
in the third row. In the legend: a split node contains a multi-class classifier, while a leaf node has its local forgeround/background separation problem.

in image patches centered on the centerline of filaments ob-
tained from the set of labeled training images. A wide spec-
trum of features could be applicable in our context, while
the histogram of gradient (HOG) feature is employed as
being relatively insensitive to slight spatial offsets. Note
the HOG feature is directly operated on the ground-truth
segmentation to extract local shapes of various filamentary
fragments. This is followed by k-means clustering to parti-
tion these filamentary fragment examples into T token types
based on their HOG features. Each token type corresponds
to a specific group of filamentary fragments with similar ge-
ometry pattern. In this paper, the patch size for images are
fixed to 31× 31. T is set to 180.

2.2.2 Detect Filamentary Fragments by LCT Model

When the filament tokens are prepared, the remaining prob-
lem of step one becomes that of solving a large number
of token type dependant figure/background separation sce-
narios. A straightforward approach would be that of em-
ploying a multi-class classifier such as support vector ma-
chine or random forest with respect to token types. This
approach nevertheless treats each token type as indepen-
dent one, which ends up tackling an unnecessarily hard
classification problem with large number of token types.
In fact, these token types inherently possess hierarchical
structures that characterize their non-uniform pairwise dis-
tances. Thus it would be advantageous to exploit the topol-

ogy structure within the token types. This inspires us to
consider the latent tree models [8, 19], which in our con-
text is a tree-structured probabilistic organization of these
local figure/background separation scenarios as being the
leaf nodes of Fig. 4, where the foregrounds of each scenario
come from one unique token type, and the backgrounds are
formed by nearby background fragments. The tree struc-
ture is obtained by the Chow-Liu neighbor joining (CLNJ)
method [8]: A Chow-Liu tree is constructed over all the to-
ken types to provide guidance on the groups of token types
that tend to be topologically close to each other. Provided
with the Chow-Liu tree and started from each of the individ-
ual token types as a leaf node, a neighbor joining strategy is
thus recursively employed to build sub-trees in a bottom-up
manner by connecting a group of several closest neighbors
at a time, until an entire tree is formed in the end. In this pa-
per, the distance between a pair of token types is determined
by the Euclidean distance of the aforementioned HOG fea-
tures describing the two token types.

Fig.4 illustrates an exemplar CLNJ tree, where each split
node possesses an internal multi-class classifier to assign a
fragment candidate to the corresponding sub-tree it belongs
to. At test run, a fragment candidate starts at the root node
of the LTM, and descends to one of the sub-trees following
decision made by invoking the current split node’s classi-
fier. This process is repeated until the candidate reaches a
leaf node. Each leaf node also maintains a binary classifier
with the purpose of retrieving true filament fragments from



backgrounds under its local context. if it passes this veri-
fication process, the token type of the leaf node will be as-
signed to the fragment candidate. Note that these classifiers
could employ an arbitrary multi-class classification method.
After empirical evaluation we settle down with the random
forest, which gives the best performance in our context.

In what follows, we would specify the set of features
engaged by these classifiers used in our LCT model.

Figure 5: An example of completion fields of detected filamentary frag-
ments.

Confidence map Completion fields
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Figure 6: An example of restoring the missing connections between
the detected filamentary fragments and main trunk using the matting tech-
nique.

2.2.3 Features for the LCT Model

Once the tree structure of the LCT model is settled, we are
left to decide the classifiers utilized in our LCT model. Two
types of features are considered by these classifiers, namely
the filamentary-structure features and the low-level features,
as below.

Denote s a fragment candidate, for any pixel in the frag-
ment x ∈ s, let c(x) be its confidence score. As displayed
in Fig.2(c), shapes of the filamentary fragments often pre-
serve the filamentary structures as being thin and elongated,
while the background fragments could be of arbitrary shape.

This motivates us to consider the following features that
capture such shape discriminations: Given a fragment can-
didate s, we first approximate a typical filament fragment by
an ellipse, and denote as two features the major and minor
axes of the surrogate ellipse, f1(s) and f2(s). Second, the
size of the 2D area as well as the accumulative confidence
score of the fragment are calculated, as f3(s) =

∑
x∈s 1,

f4(s) =
∑

x∈s c(x). Third, ideally a true filament fragment
would connect naturally with the main branch (i.e. partial
segmentation) by a smooth curvilinear inter-connecter. This
inspires us to consider using the Dijkstra’s algorithm to find
a path Ss,b, a sequence of connected pixels along the possi-
ble path, with each denoted as x′, that attaches the fragment
candidate s back to current main branch b by minimizing
the objective function of

∑
x′∈Ss,b − log(c(x′)). Intuitively

this amounts to encouraging a short path along high confi-
dence pixels. For the obtained optimal path, its objective
value becomes f5(s) and its average curvature is f6(s).

In addition to above filamentary-structure features, we
also consider the low-level raw features. For images, the
Kernel Boost Features [6] are utilized as follows. The Ker-
nel Boost method is firstly trained on the set of filamentary
structured training images to yield discriminative convolu-
tional filters. The obtained filters are then applied on a 2D
image patch centered on the specific fragment candidate s,
which gives the kernel boost features as the filtered output.
Similar to the filament token parameters discussed previ-
ously, the patch size for 2D images are fixed to 31× 31.

2.3. Step Two: Restoring the Filamentary Frag-
ments

Given the filamentary fragments detected from step one,
in step two, we elaborate on connecting these isolated frag-
ments back to the main trunk. The leading difficulty here
lies in the fact that in the confidence map, the detected fil-
ament fragments and current partial segmentation are spa-
tially separated by an uninformative zone of weak confi-
dence values. We thus consider the incorporation of com-
pletion fields in the augmented confidence map that pro-
vides prior information on how to join the fragments back
to the main trunk. This is followed by a novel utilization
of the matting technique to connect fragments back to the
main trunk.

2.3.1 Augmented Confidence Map by the Completion
Fields

The concept of completion fields is inspired by the work
of [28] and others on contour completion, and is used in our
context to provide prior information to guide the joining of
the detected fragments back to the main trunk. The fila-
ment tokens not only group similar filamentary fragments
into distinct token types according to their shapes and tex-



tures, they also provide a good opportunity to establish the
completion fields as follows. Each token type corresponds
to a group of similar filamentary fragments from the train-
ing dataset, while each fragment is associated with an im-
age patch and its corresponding ground-truth label patch,
where background and foreground pixels are labeled as 0
and 1, respectively. Now, for each token type, its comple-
tion field is obtained by taking the average of these label
patches. As a result, each detected filamentary fragment
from test run has its completion field as illustrated in Fig. 5.
Moreover, a global completion field is obtained by sum-
ming up all the local completion fields from individual fil-
amentary fragments. In other words, if a pixel is contained
in the completion fields of multiple fragments, its score in
the global completion field is obtained by simply adding
up all the individual scores. In this manner, when there
are a sequence of nearby but broken fragments presented
along a missing filament, the influence of their completion
fields can be considered altogether, as illustrated in Fig. 6.
The augmented confidence map c̄(·) is therefore realized by
adding up the confidence map and the global completion
field scores for each pixel, where both the confidence map
and the global completion field are normalized separately
to within the range of [0, 1]. For any pixel x, its augmented
confidence score is c̄(x).

2.3.2 Restoring the Filamentary Fragments by Mat-
ting

Denote the known background and foreground pixels as 0
and 1, respectively, and the rest as unknown. At this mo-
ment, many of the foreground pixels are known, includ-
ing the detected filamentary fragments and the main trunk
as discussed previously. A number of background pixels
can also be obtained by those with sufficiently low con-
fidence scores (below τl). It remains to decide on the
rest unknown pixels. Interestingly our current situation re-
sembles that of the seemingly unrelated matting problem,
which aims at finding the α values of the unknown pixels
as a composition of foreground and background layers, i.e.
I(x) = α(x)F (x) + (1 − α

(
x)
)
B(x), where x indexes

a particular pixel location, α(x) ∈ [0, 1] is its alpha matte
value, F (·) andB(·) denote the foreground and background
layers, respectively. The filamentary fragments can then be
connected back to the main trunk by imposing a threshold
δ to categorize into foreground and background pixels as
those with α values ≥ δ and < δ, respectively.

While a wide range of image matting techniques can
be applied, in this paper we adopt the KNN matting
of [7], where the α values are computed as α = (Lc +
λM)−1(λv). Let n denote the number of pixels in an im-
age. HereM is a n×n diagonal matrix, withM(i, i) = 1 if
pixel i is a foreground or a background pixel, andM(i, i) =

0 otherwise. v is a binary vector of pixels corresponding to
the known foregrounds and backgrounds. The clustering
Laplacian Lc = (D − K)T (D − K), where K = [kij ] a
n × n affinity matrix with each entry kij being the affin-
ity value between pixels i and j, D = [dij ] is the diago-
nal degree matrix of K, dii =

∑
j kij . λ > 0 is a scalar

constant. With a slight abuse of notation, the affinity ma-
trix in our context is defined as kij = c̄(i) + c̄(j), where
i and j index two pixel locations that are within the com-
pletion fields and with their augmented confidence scores
above τm ∈ (τl, τh), a scalar threshold.
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Figure 7: Performance on retinal datasets of DRIVE and STARE
datasets. The first two columns correspond to DRIVE and the last two
correspond to STARE. For each dataset, first column shows the full image
while the second column presents a detailed zoom-in view of a cropped
region. From top-down, rows are in the following order: (1) Input im-
age. (2) Ground-truth annotation. (3) our method based on [6]. (4) Kernel
Boost [6]. (5) OOF [13]. (6) IUWT [2]. True positive is denoted in black,
false positive in cyan, and false negative in green.



Table 1: Performance on the two retinal testbed STARE with different
base methods. The modified F1 measure (%) is used. Ours-nCnM refers
to the simplified variant of our approach without using completion fields
and matting, while Ours-CnM instead refers to with completion field but
without matting. Ours is the full version of our approach. The last row
shows the performance increments of our full approach comparing with
various base methods.

Kernel Boost [6] OOF [13] IUWT [2]
Base 78.77 72.86 72.20
Ours-nCnM 79.61 73.01 73.99
Ours-CnM 79.96 73.10 74.17
Ours 80.92 73.25 74.28
% gain 2.15 0.39 2.08

Table 2: Accuracy comparison of methods on retinal testbeds.

DRIVE STARE
Prec Recall Acc Prec Recall Acc

Ours based on [6] 79.57 79.47 97.32 83.59 73.72 97.72
Kernel Boost [6] 80.31 77.58 97.19 84.54 72.29 97.64
N4-fields [11] 81.57 78.39 96.59 - - -
OOF [13] 73.12 65.43 95.84 73.03 68.09 94.68
Soares [22] 69.43 74.25 94.42 75.68 74.40 94.80
Bankhead [2] 70.27 71.77 93.71 67.46 78.97 94.59
Ricci [20] - - 95.63 - - 95.84
Marin [15] - 70.67 94.52 - 69.44 95.26
Mendonca [18] - 73.44 94.52 - 69.96 94.40
Martinez-Perez [16] - 72.46 93.44 - 75.06 94.10

3. Empirical Experiments

The performance of our approach is evaluated on two
types of filamentary structured segmentation applications,
namely retinal blood vessel segmentation and neuronal seg-
mentation, which contain datasets as follows.

3.1. Datasets

The following sets of datasets are employed throughout
our experiments on tracing with neuronal and retinal im-
ages.

Two Retinal Vessel Datasets: DRIVE and STARE For
retinal blood vessel tracing, the publicly available testbeds
of DRIVE [23] and STARE [12] datasets are used. The
DRIVE and STARE datasets contain 40 and 20 color retinal
fundus images, respectively. Both datasets have their own
fixed partitions of train and testing subsets, each contains
20 and 10 images, respectively.

Our In-house Datasets of Neuronal Microscopic Im-
ages To facilitate the analysis of neuronal segmentation sys-
tems, we make available our annotated neuronal dataset,
wishing this can provide an option for researchers in the
field to compare performance on the same ground. It con-
tains 112 images of mouse embryonic neural stem cells with
annotated ground-truths, where one third of the images are
reserved for training. Meanwhile, the rest two third images
containing in total 675 neurons are retained for test evalua-
tion purpose.

3.2. Evaluation Details and Analysis

Base Segmenters The following six segmentation meth-
ods are considered as the base segmenters in this paper:
(1) Kernel Boost [6] which learn discriminative convolu-
tional filters based on the Gradient Boosting framework.
(2) Optimally Oriented Flux (OOF) [13], an unsupervised
method with manually designed filter, widely used for de-
lineating tubular structures. (3) IUWT [2], an unsupervised
method based on isotropic undecimated wavelet transform.
(4) Eigen [10], a multiscale Hessian-based method. (5)
T2T [3], a supervised method based on pixel classification,
medial sub-tree generation, and global tree linking compo-
nents. (6) LEFD [4] which is an unsupervised model-based
method. Due to the capacity of individual methods, most
existing methods work only for one of the possible applica-
tion scenarios, with the notably exception of OOF [13]. On
the other hand, unfortunately OOF is usually not the best
performer.

Parameters and Performance Evaluation Criteria
The internal parameters in our approach are set to the fol-
lowing values in this paper. thresholds τh = 0.9, τm = 0.7,
τl = 0.3, ε = 5, δ = 0.8, trade-off value λ = 1000, and the
token types T = 180. Typically, our method ends within 5
iterations. For fair comparison, the internal parameters of
the comparison methods are fixed to values that have been
tuned to give the best overall results.

The standard evaluation metric is accuracy, evaluated in
term of the sum of all true positive and true negative counts
divided by the total number of instances (i.e. pixels). This
metric however will be severely biased when the number
of filamentary foreground pixels are far less than the back-
ground pixels, which is often the case in our context. Be-
sides, even manual “ground-truth” annotation might contain
errors especially at foreground boundaries. These inspire us
to adopt a modified F1 measure to allow minor location off-
sets similar to [5, 24], as follows: When a segmented object
is not exactly matched to the ground-truth annotation, it will
give a miss as well as a false alarm. In light of this, we as-
sign each miss pixel the distance of its nearest false alarm
pixel. If there is a nearest false alarm within deviation range
r, the miss pixel is still regarded as a true positive. The pre-
cision is thus computed as tp

t where tp is the number of
true positive pixels and the t is the total number of posi-
tive pixel. In our experiments, the deviation range is set to
r = 1.5. Following [24], the recall is computed based on
the centreline of the true positive and ground-truth image.
The modified F1 measure is then defined as the harmonic
mean of the precision and recall. In all the experiments, the
best such F1 score is reported.

3.3. Retinal Blood Vessels Segmentation

Table 1 summarizes the quantitative evaluations of our
approach when starting with various base segmenters on the



STARE retinal testbed, where the evaluation criterion is in
term of the modified F1 score. Overall our approach is able
to consistently improve the performance of various existing
methods. This is in fact quite noticeable, given the huge
amount of existing research efforts on these two datasets.
As shown in Table 1, the simplified variant of our approach,
Ours-nCnM, skip the completion fields & matting in step
two by simply connecting each of the fragments back to
main trunk as a straight lines. The other variant, Ours-CnM,
is obtained with completion fields but without matting, i.e.
by utilizing the Dijkstra method instead of matting. Ours
refers to the full version that comes with both completion
fields and matting. It is observed that (1) Ours outperforms
Ours-CnM, which outperforms Ours-nCnM, which in turn
outperforms the base method. (2) Empirically the mostly
simplified variant accounts for 40% -80% of the perfor-
mance gain, while the completion field and matting pro-
cesses collectively leads to the rest gain. Moreover, Ta-
ble 2 presents a direct comparison with a number of ad-
ditional state-of-the-art retinal segmentation methods. Here
the boosted results of our approach based on [6] is regarded
as our results, as it produces the best results among all base
segmenters during Table 1. Note the performance evalua-
tion criteria in Table 2 is switched to the standard accuracy
metric, with the aim of best utilizing existing results as re-
ported in literature. Here our results give the best accuracy
over both datasets and all comparison methods. Our results
also maintain a nice balance of precision and recall, while
others are less well-balanced. For example, Bankhead [2]
gives best recall on STARE with however a very poor pre-
cision. A possible question one may raise is that the per-
formance gain is much smaller here. This is in fact to be
expected. As explained previously, one major drawback of
this accuracy metric lies on its heavy bias toward the ma-
jority class when the class-dependent population becomes
very unbalanced: As we have a lot more background pix-
els than filamentary foreground pixels, the number of false
negative (missing) or even false positive (false alarm) in-
stances actually do not matter much as long as we have
sufficient true negative instances. This also explains whey
almost all methods can easily reach beyond 90% accuracy
(as most background pixels can be classified relatively eas-
ily), while it is on the other hand so difficult to improve
further when the accuracy goes over e.g. 97%. As can be
seen in Fig. 7, overall our approach is able to recover more
challenging filamentary fragments that are ignored by other
methods including the base method of [6]. We also evaluate
the robustness of our approach. As presented in Figure 8,
our approach is quite insensitive w.r.t. varying the internal
parameters K and T.
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Figure 8: performance deviation with varying K and T values on the
retinal testbed of STARE. The modified F1 measure (%) is used.

Table 3: Performance on 2D Neuronal dataset with different base meth-
ods using modified F1 measure.

Kernel Boost [6] OOF [13] Eigen [10] T2T [3]
Base 84.74 63.50 63.94 66.49
Ours 86.80 66.03 66.85 66.91
% gain 2.06 2.53 2.91 0.42

3.4. Neuronal Segmentation

Table 3 shows that on average our approach produces
around 2% performance gain in term of the modified F1
measure. Similar to the retinal datasets, our approach is
able to boost the performance over different base methods
ranging from unsupervised [13, 10] to supervised such as [6,
3]. Visually our result is often noticeably better than that of
existing methods, as exemplified in Fig. 9.

(a) (b) (c)

(d) (e) (f) (g)

Figure 9: Performance of 2D neuronal dataset. (a) Input image where
the contrast has been increased for visual presentation. (b) Ground-truth
annotation. (c) Our method based on [6]. (d) Kernel Boost [6], (e)
OOF [13], (f) Eigen [10]. (g) T2T [3]. True positive is denoted in black,
false positive in cyan and false negative in green.

4. Conclusion and Outlook
To address the problem of image-based filamentary

structure segmentation, we propose a value-added approach
to improve over a broad set of existing segmenters, with an
emphasis on addressing the challenging aspect of preserv-
ing small and thin filaments from ambiguous backgrounds.
This is achieve by a learning based iterative pipeline that
start from an initial partial segmentation, to detect filamen-
tary fragments with a novel LCT model and to restore them
back to the current partial segmentation and repeat until
there is no change in the segmentation result. Our approach



is empirically demonstrated to be capable of improving over
a number of existing methods on very different applications.
For future work, we plan to evaluate on new biomedical ap-
plications such as digital subtraction angiography and mag-
netic resonance angiography.
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