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BIOINFORMATICS

Unique folding of precursor microRNAs: Quantitative

evidence and implications for de novo identification

STANLEY NG KWANG LOONG1,2 and SANTOSH K. MISHRA1,2

1Bioinformatics Institute, Matrix, Singapore 138671
2NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore 117456

ABSTRACT

MicroRNAs (miRNAs) participate in diverse cellular and physiological processes through the post-transcriptional gene
regulatory pathway. Hairpin is a crucial structural feature for the computational identification of precursor miRNAs (pre-miRs),
as its formation is critically associated with the early stages of the mature miRNA biogenesis. Our incomplete knowledge about
the number of miRNAs present in the genomes of vertebrates, worms, plants, and even viruses necessitates thorough
understanding of their sequence motifs, hairpin structural characteristics, and topological descriptors. In this in-depth study,
we investigate a comprehensive and heterogeneous collection of 2241 published (nonredundant) pre-miRs across 41 species
(miRBase 8.2), 8494 pseudohairpins extracted from the human RefSeq genes, 12,387 (nonredundant) ncRNAs spanning 457
types (Rfam 7.0), 31 full-length mRNAs randomly selected from GenBank, and four sets of synthetically generated genomic
background corresponding to each of the native RNA sequence. Our large-scale characterization analysis reveals that pre-miRs
are significantly different from other types of ncRNAs, pseudohairpins, mRNAs, and genomic background according to the
nonparametric Kruskal–Wallis ANOVA (p < 0.001). We examine the intrinsic and global features at the sequence, structural,
and topological levels including %G+C content, normalized base-pairing propensity P(S), normalized minimum free energy of
folding MFE(s), normalized Shannon entropy Q(s), normalized base-pair distance D(s), and degree of compactness F(S), as well
as their corresponding Z scores of P(S), MFE(s), Q(s), D(s), and F(S). The findings will promote more accurate guidelines and
distinctive criteria for the prediction of novel pre-miRs with improved performance.
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INTRODUCTION

MicroRNAs (miRNAs) constitute an abundant class of
endogenous and small (z21–23-nucleotides [nt]) regula-
tory ncRNA molecules that mediate post-transcriptionally
the production of intracellular proteins in most eukaryotes
(Ambros 2001; Bartel 2004; Mallory and Vaucheret 2004).
The pioneers lin-4 and let-7miRNAs were first discovered in
1993 and 2000 as key post-transcriptional modulators for
the developmental transitions in early larval Caenorhabditis
elegans (Banerjee and Slack 2002). Thereafter, an emerging
body of experimental evidence substantiated that miRNAs
are potential key regulators for diverse developmental and
physiological processes such as C. elegans lsy-6 determining

the left–right asymmetry of chemo-receptor expression
(Johnston and Hobert 2003); Drosophila melanogaster
miR-14 miRNA being involved in apoptosis, stress resis-
tance, and fat metabolism (Xu et al. 2003); D. melanogaster
bantam repressing the gene hid associated with apoptosis
and proliferation (Brennecke et al. 2003); Mus musculus
miR-181a modulating hematopoietic differentiation (Chen
et al. 2004); M. musculus miR-196 inducing directed
cleaving of Hox-B8 transcripts (Yekta et al. 2004); Arabi-
dopsis thaliana miRNAs regulating the expression of tran-
scription factor genes (Li and Zhang 2005); and viral-
encoded miRNAs hijacking the host immune defense to
sustain their viral replication and pathogenesis (Grey et al.
2005; Pfeffer et al. 2004, 2005; Samols et al. 2005). This
dynamic range of biological findings underscores the
functional importance of miRNAs and the need for
expanding our limited knowledge concerning them.

The emerging model of miRNA maturation involves six
(five) compartmentalized steps in vertebrates (plants)
(Anthony and Peter 2005; Kim 2005). Briefly, (1) the
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majority of the primary miRNAs (pri-miRs) are transcribed
by RNA polymerase II (Pol-II) into long primary tran-
scripts from the polycistronic genes residing in the interge-
nic regions that overlap with the introns of protein-coding
genes (Lee et al. 2002) or from the exons of the pseudo-
ncRNA genes (Rodriguez et al. 2004). (2) These capped and
polyadenylated pri-miRs are processed in the nucleus by an
endonuclease RNase III Drosha/Pasha complex yielding
z60–120-nt intermediate precursor transcripts (pre-miRs)
in vertebrates. Conversely, Dicer-like 1 enzyme (DCL1; a
plant ortholog of Drosha) performs two cleavage steps in
the nucleus: plant pri-miRs ! z80–200-nt pre-miRs !
miR:miR* (Anthony and Peter 2005). (3) Vertebrate and
plant pre-miRs possessing characteristic imperfect and
extended hairpin structures are exported into the cyto-
plasm by the Exportin-5 in a Ran-GTP-dependent manner
or by HASTY, the ortholog of Exportin-5 (Zhang et al.
2006a). (4) Cytoplasmic RNase III-type endonuclease Dicer
excises the vertebrate pre-miR into z22–23-nt asymmetric
mature miRNA duplex miR:miR*. Plant miR:miR* contains
more base-pairings and has tighter length distribution
centering on 21 nt (Anthony and Peter 2005). (5) The
strand miR with the less thermostable 59 termini is
favorably incorporated into a ribonucleoprotein to form
an RNA-induced silencing complex (RISC) (Cullen 2004;
Tijsterman and Plasterk 2004; Tang 2005). (6) The RISC
represses post-transcriptionally the expression of the tar-
geted gene by translational arrest of protein synthesis via
imperfect complementarity at the 39-untranslated regions
(Moss et al. 1997; Reinhart et al. 2000; Doench and Sharp
2004) or mRNA cleavage degradation with near-perfect
complementarity of #3 mismatches at the protein-coding
regions of mRNAs (Yekta et al. 2004) primarily in verte-
brates and plants, respectively (Anthony and Peter 2005).

Existing approaches for identifying pre-miRs
or miRNA genes

Two broad strategies for identifying systematically novel
miRNAs exist, in vivo and in silico screening (Ambros et al.
2003; Berezikov et al. 2006). The former, based on expres-
sion screening, commences with the isolation of distinct
z22-nt RNA transcripts. This is followed by intensive
direct cloning and sequencing efforts of cDNA libraries
derived from the size-fractionated small RNAs (Lagos-
Quintana et al. 2001, 2002; Lau et al. 2001; Lee and Ambros
2001). Such experimental routes are neither exhaustive nor
straightforward in discovering all the known miRNAs.
Notably, not all miRNAs are well expressed in tissues, cell
types, and developmental stages that have been sampled
(Lagos-Quintana et al. 2001). Existing cloning methods are
highly biased toward abundantly and/or ubiquitously
expressed miRNAs that usually dominate the cloned pro-
ducts, rendering the isolation of novel miRNAs difficult
(Lagos-Quintana et al. 2001, 2002; Lau et al. 2001; Lee and

Ambros 2001). Novel miRNAs tend to be elusive, as they
are expressed constitutively in low abundance or they have
preferentially restrictive/specific temporal (cell-phase) and
spatial (tissue-/cell-type) expression patterns. To express
them sufficiently for cloning efforts under controlled
cellular conditions and nonabundant cell types is techni-
cally involved. In principle, this issue can be overcome by
running high-throughput deep-sequencing technology like
massively parallel signature sequencing (MPSS) (Brenner
et al. 2000) on appropriately pooled biological samples.

Computational strategies have been applied to C. elegans
(Grad et al. 2003; Lim et al. 2003b), D. melanogaster (Lai
et al. 2003), A. thaliana, Oryza sativa (Bonnet et al. 2004a;
Jones-Rhoades and Bartel 2004; Wang et al. 2004; Adai
et al. 2005), Homo sapiens (Berezikov et al. 2005, 2006; Lim
et al. 2003a), and viruses (Pfeffer et al. 2004, 2005; Grey et al.
2005; Samols et al. 2005) for identifying candidate miRNAs.
In part, they were extensively developed to overcome
technical hurdles faced experimentally (Berezikov et al.
2006; Zhang et al. 2006a). Particularly, breakdown products
of mRNA transcripts in the background and endogenous
ncRNAs (e.g., tRNAs and rRNAs) as well as exogenous
siRNAs are dominant players coexisting in the small RNA
samples isolated from the cytoplasmic total RNA extracts.
To thwart designating these fragments erroneously as novel
miRNAs, cloned small RNAs are assessed computationally
to identify their genomic location (Lai et al. 2003; Lim et al.
2003a,b; Adai et al. 2005; Fu et al. 2005; Cummins et al.
2006; Wheeler et al. 2006). A critical and necessary feature
for mature miRNAs biogenesis is that they reside primarily
on one arm of the pre-miRs that form characteristic imper-
fect hairpin structures. This criterion indicates that only
those small RNA sequences occupying the z20-nt matched
regions on one arm of the hairpin precursors should be
curated as novel miRNAs after experimentally validating
them. The short sequence length of miRNAs, however,
confers relatively low specificity whereby matching regions
are readily encoded in an overwhelming number of un-
wanted genomic segments that can potentially fold into
hairpin structures. Genome-wide screening for novel
pre-miRs is technically complicated, considering that the
hairpin structures are not unique to miRNAs exclusively.
These dysfunctional inverted repeats (or pseudohairpins)
are genomically prevalent in H. sapiens (1.1 3 107)
(Bentwich et al. 2005) and C. elegans (4.43 104) (Pervouchine
et al. 2003) genomes; only 462 and 114 bona fide pre-miRs,
respectively, have been discovered according to miRBase
8.2 (Griffiths-Jones et al. 2006).

The majority of the pseudohairpins can be removed by
comparative genomic techniques like MiRscan (Lim et al.
2003a,b), MIRcheck (Jones-Rhoades and Bartel 2004),
miRFinder (Bonnet et al. 2004a), miRseeker (Lai et al.
2003), findMiRNA (Adai et al. 2005), PalGrade (Bentwich
et al. 2005), and MiRAlign (Wang et al. 2005). Typically,
conserved regions are first identified by aligning the entire
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genome of phylogentically related species and masking out
those regions most unlikely to be occupied by miRNAs
(e.g., tRNAs and rRNAs). Sliding windows of the unmasked
regions are folded at both strands by Mfold (Zuker 2003) or
RNAfold (Hofacker 2003), two commonly used RNA sec-
ondary structure predictors. The folds are scored according
to their minimum free energy of folding (MFE), length of
the symmetric/asymmetric regions, and size of the terminal
loop. The composite scores are thresholded, and those
high-ranking ones deemed similar to pre-miRs published
in miRBase (Griffiths-Jones et al. 2006) are then reserved
for further experimental validation. Evidently, extensive
genomics data sets for computationally intensive multiple
genome alignments are involved, rendering identification
of miRNAs impossible, especially for organisms whose
closest relatives have partial or yet-to-start sequenced
genomes. Furthermore, species-specific pre-miRs encoded
in pathogenic viruses such as the Kaposi sarcoma-associated
herpesvirus, Mouse gammaherpesvirus 68, and Human
cytomegalovirus are likely to remain elusive to compara-
tive-based detection, as they share little or no sequence
homologies among themselves or with the host pre-miRs
(Grey et al. 2005; Pfeffer et al. 2004, 2005; Samols et al.
2005).

Several (quasi) de novo state-of-the-art predictors have
been extensively developed to aid the discovery of non-
conserved pre-miRs and to surmount the technical draw-
backs of comparative approaches. Typically, they first
decompose the individual pre-miR into modularized RNA
substructures comprising dangling termini, asymmetric or
symmetric stem, and terminal loop. Derived from these
specific regions is a complex array of sequences (e.g., nucle-
otide composition) and structural characteristics (e.g.,
thermodynamic stability). This is fashioned analogously to
the protein-coding gene identification techniques that scan
the genomic regions for signature signals of protein-coding
genes without relying on external transcripts or genomic
sequences. A supervised machine-learning classification algo-
rithm, e.g., support vector machine (SVM), is trained on a
binary-labeled positive set of genuine pre-miRs and a negative
set of pseudohairpins. Through this inductive learning on
their feature vectors, a classifier model and a set of decision
rules are devised to discriminate between them.

An inaugural and definitive work (Pfeffer et al. 2005;
Sewer et al. 2005) compiled 40 distinctive sequence and
structural features from the hairpins without relying on
comparative genomics information—stem length, length of
the longest symmetrical region, number of complementary
base pairs (bp) in the ‘‘relaxed symmetry’’ region, MFE,
number of nucleotides in symmetrical and asymmetrical
loops in the ‘‘relaxed symmetry’’ region, and the average
size of the asymmetrical loops. The SVM classifier model
trained with the experimental domain knowledge recovered
71.00% of the positive pre-miRs with a remarkably low
false-positive rate of z3.00%. The accuracy was improved

to z90.00% in human and up to 90.00% for other species
by another de novo classifier, Triplet-SVM (Xue et al.
2005). It encoded the local contiguous structure-sequence
features of known pre-miRs as a set of 32 triplet elements—a
nucleotide type and three continuous substructures, e.g.,
‘‘A(((’’ and ‘‘G(..’’. Despite its methodological simplicity,
promising performances, and independence of comparative
genomics information, Triplet-SVM was largely limited
to classifying RNA secondary structures not containing
multiple loops. Another SVM-based approach, RNAmicro
(Hertel and Stadler 2006), incorporating sequence and
structural information as part of its feature vector,
reported incredibly promising efficiencies of 91.16% and
99.47% for sensitivity and specificity, respectively. Still, its
classification pipeline required computationally expensive
multiple sequence alignments for inputs. ProMiR (Nam
et al. 2005) took advantage of a probabilistic co-learning
model, the hidden Markov model (HMM), to classify
miRNA genes based on their pair-wise aligned sequences.
It minimized the false-positive rate to as low as 4.00%,
but compromised for a poorer performing sensitivity of
only 73.00%. A relatively recent work, BayesMIRfinder
(Yousef et al. 2006), adopted naive Bayesian induction
(NBI) as its underlying classifier model. Notwithstanding
its technical novelty, BayesMIRfinder relied on the com-
parative analysis of conserved genomics regions for post-
processing to yield a considerably higher sensitivity of
97.00% and comparable specificity of 91.00% in mouse to
existing algorithms.

Motivation and overview of study

Generally, the efficiency and reliability of classifiers for
distinguishing species-specific and evolutionary well-
conserved pre-miRs from genomic pseudohairpins and
most types of ncRNAs depend largely on the size and
selection of both the specific features and the relevant data
samples. Existing (quasi) de novo attempts are still limited
to and have far from satisfactory predictive performances,
hampered largely by the difficulties of deriving and select-
ing appropriate features from pre-miRs. Proper feature
selection should facilitate a more controllable generaliza-
tion and scalability to new testing samples as well as
provide more robust predictive ability to the underlying
machine-learning algorithms.

To develop a true de novo predictor that can achieve
highly accurate identification and classification of promis-
ing precursor transcripts as putative pre-miRs within a single
genome, wholly independent of phylogenetic conservation,
still entails numerous unforeseeable technical issues.
Most notable of these is the previous lack of data and
inconclusive findings from existing literature on the fea-
tures that distinctively distinguish pre-miRs from pseudo-
hairpins and other types of ncRNAs. Motivated by this
incomplete knowledge and the many miRNAs present in
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the genomes of vertebrates, worms, plants, and even viruses
not yet discovered, we conduct a large-scale characteriza-
tion study. It comprehensively comprises a heterogeneous
collection of 2241 published and nonredundant pre-miRs
across 41 species (miRBase 8.2), 8494 pseudohairpins
extracted from the human RefSeq genes, 12,387 nonredun-
dant ncRNAs spanning 457 types (Rfam 7.0), 31 full-length
mRNAs randomly selected from GenBank, and four sets of
synthetically generated genomic background corresponding
to each of the native RNA sequence. Hairpin is a crucial
structural prerequisite for the computational identification
of pre-miR, as its formation is critically associated with
the early stages of the mature miRNA biogenesis. To
elucidate the unique hairpin folding of an entire pre-miR,
our in-depth statistical study focuses solely on their
intrinsic and global features at the sequence, structural,
and topological levels. The combinatoric features include
%G+C content, normalized base-pairing propensity P(S),
normalized minimum free energy of folding MFE(s),
normalized Shannon entropy Q(s), normalized base-pair
distance D(s), and degree of compactness F(S), as well
as their corresponding Z scores of P(S), MFE(s), Q(s),
D(s), and F(S). The findings will facilitate and promote
more accurate guidelines and distinctive criteria for
the prediction of authentic pre-miRs with improved
performances.

RESULTS AND DICUSSION

Among the arthropoda, nematoda, vertebrata, viridiplan-
tae, and viruses available from miRBase 8.2 (Griffiths-Jones
et al. 2006), no orthologous miRNA gene shared by verte-
brates and plants has ever been reported (Anthony and
Peter 2005). Pathogenic viral-encoded pre-miRs present in
K. sarcoma-associated virus, M. g-herpesvirus 68, and
H. cytomegalovirus should be treated as exceptions, although
they have also been demonstrated to share significant
sequence homology neither with known host pre-miRs
nor among themselves (Grey et al. 2005; Pfeffer et al.
2005; Samols et al. 2005). Viral-encoded pre-miRs do not
possess genes homologous to host miRNA processing
proteins, e.g., Drosha, Dicer, and RISC, but are likely to
hijack these proteins to facilitate their viral replication after
infecting the host cells (Sarnow et al. 2006). Despite the
apparent similarities of miRNA biogenesis between verte-
brates and plants, their evolutionarily ancient processing
pathways ($400 million years ago) were not operating in a
common ancestor and could have evolved independently
from a more ancient system (Anthony and Peter 2005). We
will focus on vertebrate and plant pre-miRs for discussion,
as they are likely to exhibit distinct folding features that
warrant careful structural analysis. Data are available to
deduce conclusions about arthropoda, nematoda, and virus
pre-miRs. (Supplemental Materials can be found at http://
web.bii.a-star.edu.sg/zstanley/Publications.)

Vertebrate and plant pre-miRs have significantly
distinct MFEI2, MFEI1, %G+C, P(S), MFE(s), Q(s),
D(s), and F(S) from ncRNAs and mRNAs
Foremost, the sequence length (in nucleotides) differs con-
siderably between and among pre-miRs (vertebrate, 90.45226
0.4164 and plants, 137.9175 6 2.0309), ncRNAs (frame-
shift, 53.2599 6 0.2543 to IRES, 276.0841 6 2.4342), and
mRNA (332.3226 6 16.3064) (Fig. 1A, Figure 3A, top heat
map, see below; Supplemental Table S1). The sequence
lengths of ncRNAs and mRNAs are strongly and positively
correlated with their MFEs, as previously demonstrated
(Seffens and Digby 1999; Bonnet et al. 2004b; Zhang et al.
2006b). Longer sequence length results in a greater degree
of freedom such that the native RNA sequences can fold
into complex secondary structures with corresponding
higher thermostability or lower MFEs. By normalizing the
MFE with the sequence length, the normalized MFE,
MFE(s), ensures that it serves as a comparable measure
without unduly penalizing the shorter pre-miRs or favoring
the longer mRNAs (Seffens and Digby 1999; Freyhult et al.
2005; Zhang et al. 2006b). In agreement with earlier
findings (Freyhult et al. 2005; Zhang et al. 2006b), verte-
brate and plant pre-miRs possess statistically distinct
MFE(s) of �0.4308 6 0.0025 and �0.4456 6 0.0038 (p <
0.001) and are the lowest except frameshift (�0.4814 6

0.0023). Interestingly, a single criterion based on a variant
of MFE(s) greater than a threshold value e = 0.68 has
been applied to genome-wide detection of C. elegans pre-
miRs (Pervouchine et al. 2003). This yielded z4.4 3 104

stable hairpins localized to z4.00% of the genome,
covering 64.29% (36/56) of the published ones (Lau et al.
2001).

Vertebrate and plant pre-miRs possess the significantly
highest normalized base-pairing propensity P(S) of 0.35186
0.0009 and 0.3545 6 0.0013 (p < 0.001), accounting for
z70.36–70.9% of their nucleotides forming complementary
base pairings within their highly thermostable hairpin
structures. A similar >72.00% for P(S) has also been repor-
ted, corroborating our findings, albeit a smaller data set of
513 plant pre-miRs across seven species was analyzed (Zhang
et al. 2006b). The presence of more hydrogen bonds and
base-pairings in the plant pre-miRs might benefit their
recognition, processing, and nucleus-cytoplasm transport
(Zhang et al. 2006b). Emerging experimental evidence also
points to the hairpin motif of vertebrate pre-miRs as a critical
feature for miRNA maturation (Zeng and Cullen 2004).
Human pre-miR-30 binding by Exportin-5 involved recog-
nition of almost the entire hairpin, except the terminal loop
(Zeng and Cullen 2004). A hairpin structure >16 bp was
required for detectable binding and >18 bp for high-affinity
binding such that the stacking of contiguous paired nucleo-
tides tended to reduce the MFE of the overall folded
structure for greater thermostability. Contrary to the com-
mon belief that the unpaired regions tended to disrupt the
RNA structure with greater MFE, deleting the 2-nt bulge of

Loong and Mishra

4 RNA, Vol. 13, No. 2

JOBNAME: RNA 13#2 2007 PAGE: 4 OUTPUT: Friday December 22 11:50:04 2006

csh/RNA/127816/rna2238

 on January 14, 2007 www.rnajournal.orgDownloaded from 

http://www.rnajournal.org


pre-miR-30 left the binding unaffected or reduced binding
modestly, unless the stem length was suboptimal. There was
negligible or no significant effect on the correct recognition

for varying sizes of the terminal loop, until it was shortened
from the normal 15–4 nt. Besides nuclear export of pre-miR,
the binding of Exportin-5 served to stabilize the pre-miR in

FIGURE 1. Continued on next page.
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FIGURE 1. Distribution profiles for the 2241 nonredundant pre-miRs (Griffiths-Jones et al. 2006), 12,387 nonredundant ncRNAs (Griffiths-
Jones et al. 2005), and 31 mRNAs (Freyhult et al. 2005). (A) Nine metrics are Length, MFEI2, MFEI1, %G+C, P(S), MFE(s), Q(s), D(s), and F(S).
(B) zG, zQ, zD, zP, and zF, i.e., normalized forms of MFE(s), Q(s), D(s), P(S), and F(S) using the four sequence randomization algorithms. The
horizontal dashed line indicates the Z score at zero. For A and B, box lines indicate the lower quartile, median, mean (statistical values are
provided in Supplemental Tables S1 and S2), and upper quartile; whisker lines extend to the most extreme data value or at most 1.5 times the box
height; outliers beyond the fifth and 95th percentiles are not shown.
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the nucleus and during export by inhibiting the in vitro
exonucleolytic cleavage (Zeng and Cullen 2004).

Vertebrate and plant pre-miRs encode higher %A+U
content than %G+C content of 48.3079 6 0.2504 and
46.6719 6 0.3513; similarly observed (Zhang et al. 2006b).
The higher %A+U content in the plant pre-miRs (likewise
for vertebrate pre-miRs) might possibly serve as a bio-
chemical signal for miRNA biogenesis by the RISC (Zhang
et al. 2006b). We also report that the %G+C contents for
vertebrate and plant pre-miRs are not considerably different
from mRNAs (50.4626 6 1.4654) and common families of
ncRNAs like cis-regulator (48.9672 6 0.1188), frameshift
(46.4785 6 0.1477), riboswitch (50.5054 6 0.3381), ther-
moregulator (42.6490 6 3.2009), HACA-box snoRNA
(46.3048 6 0.3160), splicing RNA (47.6933 6 0.3731),
sRNA (46.3963 6 0.3513), tRNA (48.2725 6 0.3541), and
intron (44.7871 6 0.8350). Unlike the %G+C content, the
MFEI1 [divides MFE(s) by %G+C content, a newly pro-
posed folding energy score to analyze plant pre-miRs; Zhang
et al. 2006b] for vertebrate and plant pre-miRs of �0.00916
0.0001 and �0.0096 6 0.0001 are statistically highest (p <
0.001) except anti-sense (�0.0083 6 0.0001) and frame-
shift (�0.0104 6 0.0000). Our finding and another (Zhang
et al. 2006b) point to the MFEI1 as a potential discrimina-
tive criterion to distinguish pre-miRs from mRNAs and
ncRNAs, which a recent comparative classifier RNAmicro
has included into its feature set (Hertel and Stadler 2006).

Notably, vertebrate pre-miRs possess statistically higher
normalized Shannon entropy Q(s) and normalized base-
pair distance D(s) of 0.1161 6 0.0025 and 0.0431 6 0.0009
than plant pre-miRs of 0.1424 6 0.0036 and 0.0502 6

0.0011 (p < 0.001). Generally, RNA sequences having
relatively high values of both advanced folding measures
are either unstructured or long in length, which fold with
the assistance of accessory proteins or have a repertoire of
alternative (pseudoknot) structures (Freyhult et al. 2005).
This suggests that vertebrate pre-miRs will likely fold into
well-defined hairpins restricted to relatively fewer alterna-
tive conformations, possibly due to shorter sequence length
(90.4522 6 0.4164 nt) compared to plants (137.9175 6

2.0309 nt). The different ‘‘structureness’’ of vertebrate and
plant pre-miRs causes the former to display the significantly
lowest and distinct Q(s) and D(s) (p < 0.001) except
anti-sense (0.1336 6 0.0061 and 0.0468 6 0.0020). The
latter is not significantly unique from cis-regulator (0.21246
0.0021 and 0.0689 6 0.0006), frameshift (0.1396 6 0.0024
and 0.0552 6 0.0009), anti-sense (0.1336 6 0.0061 and
0.0468 6 .0020), snRNA (0.2305 6 0.0260 and 0.0741 6

0.0074), and intron (0.1802 6 0.0089 and 0.06206 0.0026).
Maturation o the plant miR:miR* duplex is performed
exclusively by Dicer-like 1 enzyme (DCL1) via two cleavage
steps, pri-miR ! pre-miR ! miR:miR*, within the nucleus.
In contrast to vertebrates (Anthony and Peter 2005; Zhang
et al. 2006a), the two reactions are compartmentalized and
directed separately by the nuclear Drosha (pri-miR ! pre-

miR) and cytoplasmic Dicer (pre-miR ! miR:miR*). More-
over, plant pre-miRs are less conserved (conservation of plant
mature miRNAs is well preserved) than those in vertebrates
(Anthony and Peter 2005; Zhang et al. 2006a). Our structural
analysis substantiates both experimental findings, pointing to
the plant pre-miRs as very transient molecules (Zhang et al.
2006a) that possess less ‘‘structureness’’ indicative of lower
Q(s) and D(s) compared to their vertebrate counterparts.

Finally, we analyzed two newly proposed topological
measures, i.e., degree of compactness F(S) and MFEI2
[divides MFE(s) by number of stems S]. Vertebrate pre-
miRs have a significantly higher F(S) of 0.2197 6 0.0042
than plant pre-miRs of 0.1251 6 0.0033 (p < 0.001).
Generally, RNAs possessing lower F(S) have less structured
folds (Barash 2003, 2004) like mRNAs (0.0391 6 0.0059).
Both vertebrate and plant pre-miRs fold into topologically
distinct structures with F(S) being statistically different (p <
0.001) but not the extreme among mRNAs (0.0391 6

0.0059) and common families of ncRNAs like frameshift
(0.8865 6 0.0079), IRES (0.0442 6 0.0013), anti-sense
(0.3734 6 0.0133), rRNA (0.0933 6 0.0020), snRNA
(0.5372 6 0.0415), and tRNA (0.5333 6 0.0093). The
other folding measure, MFEI2, was inspired by the forma-
tion of the critical hairpin structure in the early stages of
miRNA maturation. Reasonably, MFE should be largely
localized to the stem(s) within the hairpin such that the
higher MFEI2 corresponds to greater thermostability per
stem. The MFEI2 for vertebrate and plant pre-miRs of
�0.0761 6 0.0013 and �0.0539 6 0.0010 are significantly
different (p < 0.001) except anti-sense (�0.0811 6 0.0030),
snRNA (�0.0764 6 0.0088), and tRNA (�0.0676 6

0.0007), cis-regulator (�0.0793 6 0.0017), snRNA
(�0.0764 6 0.0088), and intron (�0.0604 6 0.0029).

In summary, the 1203 vertebrate and 606 plant pre-miRs
are statistically distinct from 12,387 ncRNAs and 31 mRNAs
according to the measures MFEI2, MFEI1, %G+C, P(S),
MFE(s), Q(s), D(s), and F(S). Except two recent published
works investigating 513 plant pre-miRs (Zhang et al. 2006b)
and 135 pre-miRs from different species (Freyhult et al.
2005), we are unaware of any larger-scale and in-depth
statistical analysis highlighting these results on the folding
characteristics of published pre-miRs.

Vertebrate and plant pre-miRs have significantly
distinct Z scores of MFE(s), Q(s), D(s), P(S), and F(S)
compared to the ncRNAs and mRNAs

Evolutionarily conserved vertebrate and plant pre-miRs pos-
sess the considerably lowest zG (p < 0.001) except frameshift
and anti-sense, regardless of the sequence randomization
algorithms (Fig. 1B, Figure 3A, bottom heat map, see below;
Supplemental Table S2). Our finding and another (Freyhult
et al. 2005) affirm the hypothesis that pre-miRs fold into
highly thermostable secondary structures with significantly
lower MFEs relative to their synthetically generated sequence
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randomized controls (Workman and Krogh 1999; Bonnet
et al. 2004b). Therefore this unique structural characteristic of
vertebrate and plant pre-miRs is not expected to occur by
chance; it is indispensable for correct recognition and
processing by Dicer-like enzymes (Bonnet et al. 2004b).
Earlier works (Workman and Krogh 1999; Bonnet et al.
2004b) were inconclusive, as their dinucleotide shuffling
algorithms were heuristically based, and the resulting shuffled
RNAs might not guarantee preserving the exact dinucleotide
frequencies as the native RNAs (Clote et al. 2005). Instead, we
used a considerably larger data set of pre-miRs and ncRNAs as
well as the exact ‘‘Altschul–Erickson algorithm’’ (Altschul and
Erickson 1985) for synthesizing 104 dinucleotide-shuffled
RNAs. Two computational studies (Washietl and Hofacker
2004; Clote et al. 2005) also demonstrated that structural
ncRNAs displayed lower MFEs than dinucleotide-shuffled
RNAs, but pre-miRs were not analyzed.

Both zQ and zD of vertebrate and plant pre-miRs are
statistically different (p < 0.001) and are the lowest except
anti-sense, irrespective of the sequence randomization algo-
rithms. A recent computational study reported that pre-miRs
and ncRNAs (like hammerhead ribozyme type III and
tRNAs) possessed significantly fewer k-locally optimal struc-
tures (potential kinetic traps) than their dinucleotide-shuf-
fled RNAs (Clote 2005). Both findings suggest pre-miRs are
likely to undergo evolutionary pressure in adopting relatively
fewer alternative folds of significantly lower MFEs than the
random background, in order to function properly in the
post-transcriptional gene regulatory pathway.

Vertebrate and plant pre-miRs report the significantly
highest zP (p < 0.001); i.e., more complementary base-
pairings are present in their RNA secondary structures than
the genomic background, irrespective of the sequence
randomization methods. They also have statistically distinct
zF (p < 0.001) except common families of ncRNAs like
cis-regulator, IRES, thermoregulator, CD-box snoRNA, and
HACA-box snoRNA, as well as mRNAs.

In summary, the 1203 vertebrate and 606 plant pre-miRs
are significantly different from the 12,387 ncRNAs and 31
mRNAs, after examining their zG, zQ, zD, zP, and zF based
on four sequence randomization algorithms and 104 ran-
dom sequences corresponding to each native RNA sequence.
This statistical finding confirms that to reliably identify
pre-miRs from the genomic background requires more than
their possessing characteristic and well-defined secondary
structures of statistically significant MFEs (Rivas and Eddy
2000; Washietl and Hofacker 2004).

Comparison with previous studies on structural
folding analysis of ncRNAs and mRNAs

For completeness of this large-scale study, we outline three
notable points to revisit previous works investigating
whether ncRNAs and mRNAs fold into statistically signif-
icant and thermodynamically stable secondary structures

(Fig. 1B, Figure 3A, bottom heat map, see below; Supple-
mental Table S2). First, 51 mRNAs had significantly lower
MFEs than their corresponding sets of 10 mononucleotide-
shuffled RNAs (Seffens and Digby 1999) and a subset of
46 mRNAs did not display any statistically lower MFEs than
their corresponding sets of 10 dinucleotide-shuffled RNAs
(Workman and Krogh 1999). Our study (mononucleotide
shuffling, �0.7223 6 0.2089 and dinucleotide shuffling,
0.1021 6 0.1625) and another using dinucleotide shuffling
(Freyhult et al. 2005) support both previous conclusions
(Seffens and Digby 1999; Workman and Krogh 1999).
Unique to this work, we observe that the mRNAs have
considerably lower MFEs than the genomic background
for the zero-order Markov model (�0.4770 6 0.1098), but
not for the first-order Markov model (�0.0830 6 0.0845).

Second, our investigated 1114 tRNAs possess significantly
lower MFEs than the genomic background for the four
sequence randomization methods. This finding agrees with
earlier results (Washietl and Hofacker 2004; Clote et al. 2005;
Freyhult et al. 2005) that relied on dinucleotide-shuffled RNAs,
but differs from another work (Workman and Krogh 1999) in
which the dinucleotide-shuffling algorithm was heuristically
based, as previously explained (Clote et al. 2005). We report
similar findings for hammerhead ribozyme type III (Washietl
and Hofacker 2004; Clote et al. 2005), spliceosomal RNAs
(Washietl and Hofacker 2004; Clote et al. 2005), riboswitches
(Clote et al. 2005), and introns (Washietl and Hofacker
2004) that have considerably lower MFEs than correspond-
ing sets of dinucleotide-shuffled RNA sequences.

Third, previously discussed (Workman and Krogh 1999;
Bonnet et al. 2004b; Clote et al. 2005), the controls serving as
the genomic background would give erroneous conclusions if
they destroyed certain nonrandom compositions of the native
sequence. Our results highlight that detectable systematic
biases of zG distribution profiles exist among the four
sequence randomization algorithms. Generally, the mean zG
for pre-miRs, ncRNAs, and mRNAs are ordered from the
lowest mononucleotide shuffling, marginally below those of
dinucleotide shuffling, followed by the zero- and first-order
Markov model. This result agrees with earlier works (Work-
man and Krogh 1999; Bonnet et al. 2004b; Clote et al. 2005) in
which disrupting the naturally occurring biases in the inherent
dinucleotide frequencies of the sequences base composition
should be avoided for determining the significance of second-
ary structure. Preserving the dinucleotide frequencies of the
native sequences is critical so as not to affect the critical energy
contributions of stacked base pairs and the corresponding
accuracy of the RNA structural predictions (Workman and
Krogh 1999; Bonnet et al. 2004b; Clote et al. 2005).

Vertebrate and plant pre-miRs are significantly
different from pseudohairpins

To elucidate the unique folding of pre-miRs present in
vertebrates and plants, we repeat the preceding two
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statistical experiments by evaluating them against 8494
pseudohairpins instead of ncRNAs and mRNAs. Pseudohair-
pins are genomic inverted repeats extracted from the protein-

coding regions of human RefSeq genes with no known
alternative splicing (AS) events. They were first introduced
as negative samples in Triplet-SVM (Xue et al. 2005), a de

FIGURE 2. Distribution profiles for the 2241 nonredundant pre-miRs (Griffiths-Jones et al. 2006) and 8494 pseudohairpins (Xue et al. 2005). (A)
Nine metrics are Length, MFEI2, MFEI1, %G+C, P(S), MFE(s), Q(s), D(s), and F(S). (B) zG, zQ, zD, zP, and zF, i.e., normalized forms of MFE(s),
Q(s), D(s), P(S), and F(S) using the four sequence randomization algorithms. The horizontal dashed line indicates Z-score at zero. For A and B,
box lines indicate the lower quartile, median, mean (statistical values are provided in Supplemental Tables S1 and S2), and upper quartile; whisker
lines extend to the most extreme data value or at most 1.5 times the box height; outliers beyond the fifth and 95th percentiles are not shown.
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novo classifier based on triplet-encoding features, e.g.,
‘‘A(((’’ and ‘‘G(..’’. However, no structural analysis or com-
parison to published pre-miRs has been reported about them.

Generally, the vertebrate and plant pre-miRs have signif-
icantly higher P(S) and F(S) as well as lower MFEI2, MFEI1,
%G+C, MFE(s), Q(s), and D(s) than pseudohairpins

FIGURE 3. (A) Heat map of 1203 vertebrate and 606 plants pre-miRs versus 12,387 nonredundant ncRNAs (Griffiths-Jones et al. 2005) and 31 mRNAs
(Freyhult et al. 2005). (B) Heat map of 2241 nonredundant pre-miRs (Griffiths-Jones et al. 2006) versus 8494 pseudohairpins (Xue et al. 2005). For A and
B, e.g., zGM/D/Z/F denotes zG with respect to mono- and d-nucleotide shuffling, zero- and first-order Markov model; green represents statistically different
median, red for no statistical difference, gray for ties, according to the nonparametric Kruskal–Wallis one-way ANOVA and Dunn’s method of multiple
comparisons tests at p < 0.001 and p < 0.01. (C) Correlation between Q(s), D(s), zQ, and zD for 2241 nonredundant pre-miRs; zQ, and zD correspond to
dinucleotide shuffling; r indicates Pearson correlation coefficients Cp. The Pearson Cp, Spearman rank Cs (ranks based), and Kendall’s Ck (relative ranks
based) correlation coefficients for all the metrics and sequence randomization methods studied in this work are provided in Supplemental Table S3.
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TABLE 1. Biologically relevant data sets and annotation information

Data sets Counts Annotation information Source

Precursor miRNAs
(pre-miRs)a

2241 Arthropoda (4/171): Anopheles gambiae, Apis mellifera,
Drosophila melanogaster, Drosophila pseudoobscura

miRBase 8.2
(Griffiths-Jones
et al. 2006)Nematoda (2/189): Caenorhabditis briggsae, Caenorhabditis elegans

Vertebrata (19/1203): Xenopus laevis, Xenopus tropicalis, Gallus gallus,
Canis familiaris, Ateles geoffroyi, Lagothrix lagotricha, Saguinus labiatus,
Macaca mulatta, Homo sapiens, Pan troglodytes, Lemur catta, Mus musculus,
Rattus norvegicus, Bos taurus, Ovis aries, Sus scrofa, Danio rerio, Fugu rubripes, Tetraodon nigroviridis
Viridiplantae (9/606): Arabidopsis thaliana, Glycine max, Medicago truncatula, Oryza sativa,
Physcomitrella patens, Populus trichocarpa, Saccharum officinarum, Sorghum bicolor, Zea mays
Viruses (7/72): Epstein Barr virus, Herpes Simplex Virus 1, Human cytomegalovirus, Kaposi
sarcoma-associated herpesvirus Mouse gammaherpesvirus 68, Rhesus lymphocryptovirus, Simian virus 40

Noncoding RNAs
(ncRNAs)b

12387 Cis-reg (77/4002): X031, X032, X036, X037, X040, X041, X048, X109, X114, X140,
X161, X164, X165, X171, X172, X175, X176, X179, X180, X182, X183, X184, X185,
X192, X193, X194, X196, X197, X207, X214, X215, X220, X227, X230, X232, X233,
X243, X250, X252, X259, X260, X290, X362, X374, X375, X376, X384, X385, X386,
X389, X390, X391, X434, X436, X437, X453, X454, X459, X460, X463, X465, X467,
X468, X469, X470, X481, X485, X490, X491, X496, X497, X498, X499, X500,
X501, X502, X506

Rfam 7.0
(Griffiths-Jones
et al. 2005)

Cis-reg|frameshift (5/808): X381, X382, X383, X480, X507
Cis-reg|IRES (24/1201): X061, X209, X210, X216, X222, X223, X224, X225, X226,
X228, X229, X261, X387, X447, X448, X449, X457, X458, X461, X462, X483,
X484, X487, X495
Cis-reg|riboswitch (12/917): X050, X059, X080, X162, X167, X168, X174,
X234, X379, X380, X442, X504
Cis-reg|thermoregulator (4/21): X038, X433, X435, X466
Gene (24/480): X006, X013, X017, X019, X023, X024, X025, X044, X058, X060,
X062, X063, X064, X100, X102, X107, X169, X170, X198, X199, X235, X240, X262, X503
Gene|anti-sense (10/147): X033, X039, X042, X043, X106, X236, X238, X242, X388, X489
Gene|ribozyme (9/561): X008, X009, X010, X011, X030, X094, X163, X173, X373
Gene|rRNA (3/1010): X001, X002, X177
Gene|snRNA (1/28): X066
Gene|snRNA|guide|C/D-box (165/1050): X012, X016, X046, X049, X054, X055,
X065, X067, X068, X069, X070, X071, X085, X086, X087, X088, X089, X093,
X095, X096, X097, X099, X105, X108, X132, X133, X134, X135, X136, X137, X138,
X141, X142, X145, X146, X147, X149, X150, X151, X152, X153, X154, X157,
X158, X159, X160, X181, X186, X187, X188, X189, X200, X201, X202, X203,
X204, X205, X206, X208, X211, X212, X213, X217, X218, X219, X221, X266,
X267, X268, X270, X271, X273, X274, X275, X276, X277, X278, X279, X280,
X281, X282, X283, X284, X285, X287, X288, X289, X292, X294, X295, X296,
X297, X299, X300, X301, X304, X305, X306, X308, X309, X310, X311, X312,
X313, X314, X315, X316, X317, X318, X320, X321, X323, X324, X325, X326,
X327, X328, X329, X330, X331, X332, X333, X335, X336, X337, X338, X339,
X341, X342, X343, X344, X345, X346, X347, X348, X349, X350, X351, X352,
X353, X355, X356, X357, X358, X359, X360, X361, X377, X439, X440, X441,
X450, X471, X472, X473, X474, X475, X476, X477, X478, X479, X492,
X493, X494, X509
Gene|snRNA|guide|H/ACA-box (71/419): X045, X056, X072, X090, X091, X092,
X098, X139, X155, X156, X190, X191, X231, X263, X264, X265, X272, X286, X291,
X293, X302, X303, X307, X319, X322, X334, X340, X392, X393, X394, X395, X396,
X397, X398, X399, X400, X401, X402, X403, X404, X405, X406, X407, X408, X409,
X410, X411, X412, X413, X414, X415, X416, X417, X418, X419, X420, X421,
X422, X423, X424, X425, X426, X427, X428, X429, X430, X431, X432, X438, X443, X482
Gene|snRNA|splicing (7/250): X003, X004, X007, X015, X020, X026, X488
Gene|sRNA (42/233): X014, X018, X021, X022, X034, X035, X057, X077, X078,
X079, X081, X082, X083, X084, X101, X110, X111, X112, X113, X115, X116,
X117, X118, X119, X120, X121, X122, X124, X125, X126, X127, X128, X166,
X195, X368, X369, X370, X371, X372, X378, X444, X505
Gene|tRNA (1/1114): X005
Intron (2/146): X028, X029

(continued)
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(p < 0.001) (Fig. 2A; Fig. 3B, top heat map; Supplemental
Table S1). The distribution profiles of vertebrate and plant
pre-miRs for zG, zQ, zD, and zP differ distinctively from
pseudohairpins (p < 0.001), irrespective of the sequence
randomization algorithms (Fig. 2B; Fig. 3B, bottom heat
map; Supplemental Table S2). Unlike pseudohairpins, pre-
miRs tend to fold into secondary structures with significantly
higher thermodynamic structural stability (lower zG), fewer
alternative folds (lower zQ and zD), and more base-pairings
(higher zP). Except plants, vertebrate pre-miRs clearly have
significantly higher zF (more compactness) than pseudo-
hairpins (p < 0.001).

In summary, both findings invalidate conclusively the
hypothesis that pseudohairpins share a comparable degree
of structural folding characteristics with known vertebrate
and plant pre-miRs. Our statistical results clearly point to
the MFEI2, MFEI1, %G+C, P(S), MFE(s), Q(s), D(s), and
F(S) as well as zG, zQ, zD, zP, and zF as potential
discriminative descriptors. They effectively expand the
triplet-encoding features in Triplet-SVM (Xue et al. 2005)
to classify more accurately the genuine pre-miRs from
pseudohairpins in genome-wide screens.

Correlation between folding measures

We conducted correlation tests on 2241 nonredundant
known pre-miRs according to the following metrics:
Length, MFEI2, MFEI1, %G+C, P(S), MFE(s), Q(s), D(s),
and F(S) as well as the zG, zQ, zD, zP, and zF [normalized
forms of MFE(s), Q(s), D(s), P(S), and F(S) using the four
sequence randomization algorithms] (Fig. 3C; Supplemental
Table S3). The Pearson correlation coefficients Cp are
also validated against Spearman rank Cs (ranks based)
and Kendall’s Ck (relative ranks based) correlation coef-
ficients, as Cs and Ck are extremely robust to non-normal
distribution.

Generally, all of the metrics are weakly (|Cp| < 0.4) and
moderately (0.4 < |Cp| < 0.9) correlated except Q(s), D(s),
zQ, and zD, regardless of the sequence randomization
algorithms. Both Q(s) and D(s) are computed from the
McCaskill base-pair probability pij (Freyhult et al. 2005),
explaining the strong quasilinear relationship (Cp $ 0.9)
for the two pairs Q(s) and D(s) as well as their correspond-
ing normalized form zQ and zD. There exist moderate
Pearson correlations within the three pairs MFE(s) and zG,
P(S), and zP, as well as F(S) and zF for the four sequence
randomization algorithms. We initially expected Q(s) and
zQ as well as D(s) and zD to behave similarly. Interestingly
and currently unclear is why a strong association is obser-
ved within them. As a guide for future studies, especially
where computational resources are limited, only Q(s)
instead of D(s) should be included (Freyhult et al. 2005),
while zQ and zD are extremely time consuming to compute
beyond 103 random RNA sequences.

CONCLUSIONS

In this large-scale investigation characterizing the entire
hairpin structure of known precursor miRNAs (pre-miRs),
we have demonstrated that they (notably, vertebrate and
plant pre-miRs) possess a set of 13 statistically significant
global features. Our in silico findings have greatly advanced
our understanding of miRNA functions and biogenesis in
relation to their structural features and distinct folding
patterns. A definitive criterion for identifying and classify-
ing accurately promising precursor transcripts as bona fide
pre-miRs while discriminating against abundant pseudo-
hairpins within a single genome has not yet been discovered.
Moreover, discriminative features used in existing (quasi)
de novo classifiers have achieved far from satisfactory
specificity and sensitivity, especially when cross-species
conservation is unavailable. Our investigated features

TABLE 1. Continued

Data sets Counts Annotation information Source

mRNAsc 31 NM_001005151.1, NM_001003967.1, NM_177233.4, AY675236.1,
NM_001004202.1, NM_178539.2, AB164385.1, AY555511.1, AB189435.1,
NM_178307.2, NM_001003966.1, NM_205498.1, NM_013564.3, Z81556.1,
NM_131070.2, X56279.1, AK045412.1, AF452886.1, BC049701.1, BC050086.1,
NM_172343.1, AY182163.1, BC072691.1, CV127341.1, NC_004671.1, X00910.1,
AY226143.1, AJ621386, CV122154.1, X68284, and CV199185.1

GenBank
(Benson et al. 2005)

Pseudohairpins 8494 UCSC Browser
(Karolchik et al. 2003)
RefSeq (Pruitt and
Maglott 2001)

(Counts) Number of sequences being investigated: aFor example, phylum Arthropoda (4/171) has four species of pre-miRs containing 171
sequences. bFor example, family Cis-reg (77/4002) has 77 types of ncRNAs containing 4002 sequences; miRBase accession X005 abbreviates
RF00005. cGenBank accession numbers. (Source) miRBase Registry Database release 8.2, http://microrna.sanger.ac.uk/sequences; Rfam
Database release 7.0, http://www.sanger.ac.uk/Software/Rfam; GenBank DNA Database, http://www.ncbi.nlm.nih.gov/Genbank; UCSC
Browser, http://genome.ucsc.edu; RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq.
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relating to the intrinsic folding and topological characteristics
of pre-miRs can potentially serve as discriminative measures
in improving the designs and performances of current de
novo predictors. We have incorporated the 13 features into
the development of a new and better performing de novo
classifier for identifying species-specific and nonconserved
pre-miRs, wholly independent of phylogenetic conservation.

MATERIALS AND METHODS

Biologically relevant data sets

Precursor miRNA sequences

We retrieved 4028 curated pre-miRs spanning 45 species from
miRBase Registry Database version 8.2 (Griffiths-Jones et al. 2006)
as of July 2006. As strong sequence homologies exist among
pre-miRs both within a single and between different species, the
original data set was filtered to 90% identity using a greedy
incremental clustering algorithm (Li and Godzik 2006). Briefly, all
the sequences were first sorted in order of decreasing length,
where the longest one became the representative of the first
cluster. Each remaining sequence was compared with the existing
representatives and grouped into their cluster if the similarity with
any representative was above a given threshold (i.e., 0.9); other-
wise, that sequence became the representative of a new cluster.
Consequently, we analyzed 2241 nonredundant pre-miRs spanning
41 species categorized into arthropoda, nematoda, vertebrata,
viridiplantae, and viruses (Table 1); none belonging to Gorilla
gorilla, Macaca nemestrina, Pan paniscus, and Pongo pygmaeus
were retained.

Functional noncoding RNA sequences

We retrieved all available seed ncRNA sequences from Rfam
Database version 7.0 (Griffiths-Jones et al. 2005) as of March
2005. After removing 46 types of pre-miRs, we analyzed 12,387
curated seed ncRNAs spanning 457 types categorized into 16
families (Table 1). These prokaryotic and eukaryotic ncRNAs have
a length distribution similar to the known pre-miRs, and can fold
with hairpins or stem–loops (Eddy 2001; Storz 2002; Svoboda and
Cara 2006). Briefly, cis-regulatory elements are a well-conserved
untranslated mRNA leader region capable of adopting alternate
structural conformations that result in transcription termination
or transcription elongation into the downstream region. For
example, the T-box leader regulates transcription of many bacterial
aminoacyl-tRNA synthetases, amino acid biosynthesis, and amino
acid transport genes using uncharged tRNA as the effector
(Winkler et al. 2001). The internal ribosome entry site (IRES) is a
nucleotide sequence that allows for translation initiation in the
middle of an mRNA. It mimics the 59-cap structure, critical for the
assembly of the initiation complex. Riboswitches are highly con-
served RNA regulatory elements, embedded within the 59-untrans-
lated region (UTR) of biosynthesis genes or operons, and cis
modulate their expressions upon binding to metabolite (e.g.,
guanine and thiamine pyrophosphate), without involving protein
cofactors (Hesselberth and Ellington 2002; Lai 2003; Stormo 2003;
Winkler and Breaker 2003; Mandal and Breaker 2004; Nudler and
Mironov 2004; Soukup and Soukup 2004; Vitreschak et al. 2004).

Thermoregulators are cis-regulatory elements commonly found in
the 59 UTR of mRNAs, whose secondary structure is regulated by
temperature. For example, the structural motif of PrfA thermo-
regulator represses translation at 30°C by masking the Shine–
Dalgarno sequence, but conformational change frees it for
ribosome binding to allow maximal translation when the tem-
perature rises to 37°C (Johansson et al. 2002). Anti-senses are
characterized by a long hairpin structure interrupted by several
unpaired residues or bulged loops, involved in negative regula-
tion. For instance, the micF gene is a Escherichia coli stress
response gene encoding an untranslated 93-nt anti-sense that
binds to its target ompF mRNA (of the outer membrane porin
gene) (Delihas and Forst 2001). It regulates ompF expression post-
transcriptionally by causing translational repression. Ribozymes
(e.g., the Hepatitis d-virus ribozyme and Hammerhead ribozyme)
possess endonuclease function and catalyze a range of reactions
such as self-cleavage of hepatitis d-virus transcript (Puerta-
Fernandez et al. 2003). Small nucleolar RNAs (snoRNAs) can be
functionally divided into C/D snoRNAs or H/ACA snoRNAs
acting as guides for site-specific 29-O-ribose methylation or as
guides for pseudouridylation in the post-transcriptional process-
ing of rRNAs (Weinstein and Steitz 1999). Spliceosomal RNAs
(splicing RNAs), e.g., U1–2 and U4–6 (Storz et al. 2005), are small
nuclear RNAs constituting the spliceosome that process pre-
mRNA into mRNA by excising the intronic regions. Transfer
RNAs (tRNAs) exist as z54–93-nt hydrogen-bonded cloverleaf
structures, involved in transporting amino acids to the site of
protein synthesis during translation (Sprinzl and Vassilenko
2005). Group I/II intron RNAs are large self-splicing ribozymes
catalyzing their own excision from mRNA, tRNA, and rRNA
precursors (Cech 1990; Bonen and Vogel 2001).

mRNA sequences

We investigated 31 mRNA sequences that tend to fold into
complex RNA structures with extremely negative MFEs (Table 1;
Freyhult et al. 2005). They were randomly selected from the
GenBank DNA database (Benson et al. 2005), as previously
reported (Freyhult et al. 2005).

Pseudohairpin sequences

We analyzed 8494 pseudohairpins from the protein-coding
regions (CDSs) according to the UCSC refGene annotation tables
(Karolchik et al. 2003) and human RefSeq genes (Pruitt and
Maglott 2001) without any known experimentally validated
alternative splicing (AS) events, as described earlier (Xue et al.
2005). These genomic inverted repeats are analogous to but do
not encode genuine human pre-miRs, by displaying similar
distribution in terms of their length, hairpin structures, and
MFEs. They possess $18 bp, including the GU wobble pairs,
MFE #�15 kcal/mol, and fold without multiple loops in their
RNA structures.

Random sequences

Four sets of R = 104 shuffled or randomized RNAs, rn = r1r2. . .rL,
serving as the genomic background, are synthesized from each nth
native RNA sequence sn = s1s2. . .sL, using four sequence random-
ization algorithms. L is the length of sequence in nucleotides
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and si2+ = (A, C, G, U) is the biochemical nucleotide at the
ith position.

Mononucleotide shuffling. We implemented the ‘‘Fisher–Yates
shuffle algorithm’’ that sequentially swaps the mononucleotides at
all positions of sn with another at a randomly selected position. It
consumes Q(LlogL) bits and runs in linear time. The order of the
shuffled nucleotides is truly random, preserving the mono- but
not the dinucleotide frequencies.

1. Vars: sn ) rn.
2. For i ) L: 1, do
3. j ) uniform(1, i).
4. If i 6¼ j, then swap(ri, rj).

Dinucleotide shuffling. Previous algorithms (Workman and
Krogh 1999; Bonnet et al. 2004b) were heuristically based, and
the shuffled RNA sequences might not guarantee to preserve
correctly the exact mono- and dinucleotide frequencies as the
native RNA. We implemented the exact ‘‘Altschul–Erickson
algorithm’’ (Altschul and Erickson 1985) such that it shuffles
sn while preserving exactly both the mono- and dinucleotide
frequencies. The native and shuffled sequences always share the
same first and last nucleotides (Coward 1999). The order of the
shuffled nucleotides is ‘‘less random’’ due to fewer possible
dinucleotide preserving permutations.

1. For each r 2 rn, do
2. create an edge-list Lr of edge-pairs (r, x) with nucleotides

r and x occurring as a dinucleotide rx in sn.
3. For each r 6¼ rL 2 rn, do
4. E(sn) ) select randomly an edge-pair from Lr. E(sn)

contains at most three edge-pairs.
5. G ) (V, E) is the last-edge graph such that (r, x) 2 V and

(r, x) 2 E(sn). If any vertex in G is not connected to rL, then go
to (3). Else, go to (6) as all vertices are connected in G to rL.

6. For each r 2 rn, do
7. permute the remaining edge-pairs in Lb � E(sn), Lr ) Lr

[ E(sn).
8. Vars: r1 ) s1.
9. For i ) 1: L � 1, do
10. generate ri+1 such that (ri, ri+1) 2 Lr.

Zero-order Markov model. A new random sequence rn is
formed by iteratively adding nucleotide ri sampled with expected
mononucleotide frequencies F(+, sn). The sequence rn is ‘‘truly’’
random, and its mononucleotide frequencies fluctuate about the
native ones.

1. Compute F(+, sn) from sn.
2. For i ) 1: L, do
3. ri ) sampling with F(+, sn).

First-order Markov model. A new random sequence rn is formed
by first choosing a nucleotide r1 sampled with expected mono-
nucleotide frequencies F(+, sn). Iteratively add the next nucleotide
ri+1 sampled with conditional probabilities P(ri+1|ri); i.e., the
probability of occurrence of a nucleotide at a particular position
depends only on the previous nucleotide. The sequence is ‘‘truly’’

random, and its dinucleotide frequencies fluctuate around the
native ones.

1. Compute F(+, sn) and G(+1, +2, sn) from sn.
2. r1 ) sampling with F(+, sn).
3. For i ) 2: L, do
4. ri ) sampling with P(+2|+1) = G(+1, +2, sn)/F(+1, sn).

RNA folding measures

Normalized base-pairing propensity, P(S), measures the total
number of base pairs present in the RNA secondary structure S
normalized to the sequence length L (Schultes et al. 1999). P(S)
removes the bias that a long sequence tends to have more base
pairs. It ranges [0.0, 0.5], 0.0 for no base-pair interactions and
0.5 for a maximum of L/2 base pairs.

Normalized minimum free energy of folding

MFE(s), for sequence s is the lowest MFE for the most favorable
conformation from a vast population of predicted RNA secondary
structures, normalized to the sequence length L (Seffens and
Digby 1999; Freyhult et al. 2005). MFE(s) removes the bias that a
long sequence tends to have lower MFE. Alternatively, adjusted
MFE (AMFE) refers to MFE(s)3100 nt (Zhang et al. 2006b).

MFE Index 1

MFEI1, is the ratio of MFE(s) and %G+C content (Zhang et al.
2006b).

Normalized Shannon entropy

Q(s) in Equation (1), characterizes the base-pairing probability
distribution (BPPD) per base in a sequence s as a chaotic
dynamical system (Huynen et al. 1997; Schultes et al. 1999;
Freyhult et al. 2005). The local dominance of a single structure
within the Boltzmann distribution of alternative secondary struc-
tures is strongly correlated with the reliability of the MFE structure.
Low values of Q(s) correspond to the BPPD that are dominated by
a single or a few base-pairing probabilities. These bases are better
predicted than those having multiple alternative states.

QðsÞ =� 1

L
+
i< j

pij log2 ðpijÞ:

pij = +Sa2SðsÞPðSaÞd
a
ij ; PðSaÞ =

e�Ea =RT
@ ; @ = +Sa2SðsÞ

e�Ea

RT : ð1Þ

Here, the McCaskill base-pair probability pij is the probability
of base-pairing between bases i and j. daij = 1 if xi pairs with xj,
0 otherwise. RNAs exist in vivo as an ensemble of secondary
structures Sa2S(s) following the Boltzmann distribution proba-
bility PðSaÞ (Mathews 2004).

Normalized base-pair distance

D(s) in Equation (2), is the base-pair distance for all pairs of
structures Sa and Sb on s (Moulton et al. 2000; Freyhult et al.
2005).
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DðsÞ= 1

2L
+

Sa;Sb2SðxÞ
½PðSaÞPðSbÞdBPðSa; SbÞ�

=
1

L
+
i< j

pijð1� pijÞ: ð2Þ

Here, the number of base pairs not shared by them is given by

dBP(Sa, Sb) = |Sa[Sb||Sa\Sb| = +
i<j

ðda
ij
+ db

ij
� 2da

ij
db
ij
Þ. The number

of base pairs in Sa is |Sa| = +
i<jdaij

. Definitions of pij and daij follow

those of Q(s) in Equation (1).

Second (or the Fiedler) eigenvalue

F(S) in Equation (3) measures the compactness of a tree-graph
G = (V, E) (Fera et al. 2004; Gan et al. 2004). At the coarsest scale,
each vertex v 2 V represents a bulge loop, hairpin loop, internal
loop, the 59 and 39 unpaired termini, or the multibranch loop;
each edge e 2 E denotes an RNA stem. F(S) is computed from the
Laplacian matrix L(G), which is a mathematical representation of
the tree-graph G. F(S) can be used as a similarity measure among
a collection of RNA secondary structures.

LðGÞX = lX5FðSÞ = FidlerEigen½LðGÞ� : ð3Þ

MFE Index 2

MFEI2, is the ratio of MFE(s) and the number of stems S, which
are structural motifs containing more than three contiguous
base pairs.

Z score of RNA folding measure

The Z score of the RNA folding measure is described in Equation
(4). The Z score Z(sn) for the structural biases observed in a native
RNA is computed via a Monte Carlo randomization approach
(Workman and Krogh 1999; Bonnet et al. 2004b; Clote et al.
2005). It normalizes the feature S(sn) of nth native RNA sequence
sn in terms of the units of standard deviations by which S(sn)
differs from the mean of inferred R = 104 randomized RNA
sequences rn. The corresponding Z scores of MFE(s), Q(s), D(s),
P(S), and F(S) are denoted as zG, zQ, zD, zP, and zF.

ZðsnÞ =
SðsnÞ � mn

sn
;s2

n =
1

R� 1
+R

i=1 SiðrnÞ � mn½ �2: ð4Þ

Here Si(rn) is the computed feature for the ith random RNA
sequence of rn; mn and sn are the sample mean and the standard
deviation of the feature S(sn) for R random RNA sequences rn.

Statistical analysis

Computing the RNA folding measures and Z scores

The most favorable RNA secondary structure for a given sequence
and its normalized minimum free energy of folding MFE(s) are
determined via RNAfold included in Vienna RNA Package 1.4
(Hofacker 2003), an implementation of Zuker’s free energy
minimization algorithm (Zuker and Stiegler 1981; Zuker 2003)

with Turner energy parameters (Mathews et al. 1999). From the
predicted structure, the intrinsic folding quantitative measures
P(S), Q(s), and D(s) are computed by the perl script genRNAS-
tats.pl interfaced to the module RNAlib of Vienna RNA Package
1.4 (Hofacker 2003). The topological descriptors S and F(S) are
determined using an algorithm RNAspectral (see Supplemental
materials for details). The normalized variants zP, zG, zQ, zD, and
zF are computed in a similar manner using genRNARandom-
Stats.pl, after generating the four sets of random RNA sequences
with genRandomRNA.pl. All intensive computations are per-
formed on three clusters of 192 dual-core computational nodes.

Statistical analysis measuring the differences inherent within
pre-miRs’ global structural and intrinsic stability features

To compare the data sets and compute the probability that the
samples are drawn from the same distribution, we conduct either
nonparametric Kruskal–Wallis one-way analysis of variance
(ANOVA) or nonparametric Mann–Whitney–Wilcoxon (Wilcoxon
rank-sum). The former tests for statistically significant differences
in the median values (p < 0.001) among the experimental groups
against the control are greater than would be expected by chance.
To isolate the groups that differ from the control, Dunn’s method
of multiple comparisons test is conducted at p < 0.01. It does not
include an adjustment for ties but allows the sample sizes of the
experimental groups to be different. The latter method tests for
statistically significant differences in the median values between
two experimental groups (p < 0.001). Unlike parametric statistical
tests like Student’s t-test, both ANOVA and Wilcoxon rank-sum
compare the ranks of the data values instead of the actual data
values. Thus, they are robust to samples drawn from populations
with non-normal distribution or which have unequal variances
(Systat SigmaPlot 9.0 and SigmaStat 3.11).

Correlation of quantitative metrics

To quantify the correlation between measures for native pre-miRs,
the Pearson correlation coefficients Cp(f, g) in Equation (5) are
computed, statistically significant at p < 0.001. We are aware that
Cp is not robust to outliers and to non-Gaussian distributions, as
it assumes a pseudo-Gaussian distribution of the data set. Thus,
we also validate the results of Cp against those of nonparametric
Spearman-rank Cs (ranks based) and Kendall’s Ck (relative ranks
based) correlation metrics. Both Cs and Ck are robust to samples
containing outliers or drawn from populations with unequal
variances, non-normality distribution, and nonlinearity (Math-
works Matlab 7.1).

Cpðf ,gÞ =
ðf � f Þ � ðg � gÞ
f � f

�
�

�
�
�
�g � g

�
�
: ð5Þ

SUPPLEMENTAL DATA

The Supplemental details on RNAspectral and Tables S1–3,
as well as the data sets (Fasta format files), raw statistical
results (tab-delimited format and Excel files), and source
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codes are publicly available at http://web.bii.a-star.edu.sg/
zstanley/Publications. Use of source codes is free purely
for nonprofit or academic purpose adhering to the GNU
General Public License (GPL) at http://www.gnu.org/copy
left/gpl.html.
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