BIOINFORMATICS Original Paper

Structural Bioinformatics

De Novo SVM Classification of Precursor MicroRNAs from Genomic Pseudo Hairpins Using Global and Intrinsic Folding Measures

Stanley NG Kwang Loong^{†,‡,*}, Santosh K. MISHRA^{†,‡}

[†] Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671

[‡]NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456

Associate Editor: Charlie Hodgman

ABSTRACT

Motivation: MicroRNAs (miRNAs) are small ncRNAs participating in diverse cellular and physiological processes through the post-transcriptional gene regulatory pathway. Critically associated with the miRNAs biogenesis, the hairpin structure is a necessary feature for the computational classification of novel precursor miRNAs (*pre-miRs*). Though many of the abundant genomic inverted repeats (pseudo hairpins) can be filtered computationally, novel specie-specific *pre-miRs* are likely to remain elusive.

Results: miPred is a de novo Support Vector Machine (SVM) classifier for identifying pre-miRs without relying on phylogenetic conservation. To achieve significantly higher sensitivity and specificity than existing (quasi) de novo predictors, it employs a Gaussian Radial Basis Function kernel (RBF) as a similarity measure for 29 global and intrinsic hairpin folding attributes. They characterize a pre-miR at the dinucleotide sequence, hairpin folding, non-linear statistical thermodynamics, and topological levels. Trained on 200 human pre-miRs and 400 pseudo hairpins, miPred achieves 93.50% (five-fold cross-validation accuracy) and 0.9833 (area under the ROC). Tested on the remaining 123 human pre-miRs and 246 pseudo hairpins, it reports 84.55% (sensitivity), 97.97% (specificity), and 93.50% (accuracy). Validated onto 1,918 pre-miRs across 40 non-human species and 3,836 pseudo hairpins, it yields 87.65% (92.08%), 97.75% (97.42%), and 94.38% (95.64%) for the mean (overall) sensitivity, specificity, and accuracy. Notably, A. mellifera, A. Geoffroyi, C. familiaris, E. Barr, H. Simplex virus, H. cytomegalovirus, O. aries, P. patens, R. lymphocryptovirus, Simian virus, and Z. mays are unambiguously classified with 100.00% (sensitivity) and >93.75% (specificity).

Availability: Datasets, raw statistical results, and source codes are available at http://web.bii.a-star.edu.sg/~stanley/Publications

Contact: stanley@bii.a-star.edu.sg*; santosh@bii.a-star.edu.sg

Supplementary information: Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

MicroRNAs (miRNAs) constitute an abundant class of small (~21–23nts), endogenous, and evolutionarily conserved ncRNA molecules that mediate post-transcriptionally the production of intra-cellular proteins in most eukaryotes via sequence-specific target mechanisms (Bartel 2004). The founding members *lin-4* and *let-7* miRNAs discovered respectively in 1993 and 2000, are key heterochronic regulators directing temporal aspects of development timing in early larval *C. elegans* (Lee *et al.*, 1993; Reinhart *et al.*, 2000). Subsequently, thousands of novel miRNA genes have been unraveled across plants, worms, flies, vertebrates, and even viruses; >4000 miRNAs spanning 45 species are listed in miRBase 8.2 (Griffiths-Jones *et al.*, 2006). Biologically pivotal and more prevalent genomically than presumed, miRNAs perform key regulatory roles in diverse cellular and physiological events such as apoptosis, proliferation, and fat metabolism in the *D. melanogaster* (Brennecke *et al.*, 2003; Xu *et al.*, 2003); patterning and developmental specification in plants (Chen 2004; Palatnik *et al.*, 2003); genetic diseases including oncogenesis (Calin and Croce 2006; Lu *et al.*, 2005).

Previously, novel miRNA genes were identified almost exclusively by directional cloning of endogenous small RNAs and high-throughput sequencing of large numbers of cDNA clones (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros 2001). Conventional forward genetic screening is highly biased towards abundantly and/or ubiquitously expressed miRNAs that usually dominate the cloned products (Lagos-Quintana et al., 2003). Evidently, miRNAs expressed constitutively at low levels or in highly constrained tissue- and time-specific patterns are intricate to detect experimentally. Computational prediction techniques have been employed extensively to overcome this technical hurdle (Berezikov et al., 2006). The underlying principle revolves around two tenets. First, precursor miRNAs (pre-miRs) should possess statistically significant and evolutionarily conserved (a)symmetric RNA hairpin, a structural prerequisite functionally critical for the early stages of the mature miRNA biogenesis (Bartel 2004; Kim 2005); see supplementary "Biogenesis of Mature MicroRNAs" for details. Second, the hairpin feature of pre-miRs should be distinct from those of random inverted repeats (termed as pseudo hairpins) that can potentially fold into dysfunctional candidate hairpins e.g., $1.1E^7$ in human (Bentwich et al., 2005) and 4.4E⁴ in C. elegans (Pervouchine et al., 2003). Removing these overwhelming and irrelevant genomic pool of false-positives without sacrificing excessively putative pre-miRs is most technically challenging, as they are relatively short in length (~60-80-nts in animal and ~100-400-nts in plants) and have highly diverse base compositions (Zhang et al., 2006b). Unlike protein-coding genes, they frequently exhibit seemingly weak or lack detectable statistically significant primary-sequence signals such as the open reading frames (ORFs), promoter motifs, and codon signatures (Berezikov et al., 2006).

Earlier attempts in circumventing these difficulties relied on identifying close homologs of published *pre-miRs* e.g., *let-7* (Pasquinelli *et al.*, 2000). This can be as straightforward as aligning sequences through NCBI BlastN (McGinnis and Madden 2004) while allowing several mismatches and gaps depending on their inter-phylogenetic distance. False-positives not residing in the orthologous locations are deemed not conserved phylogentically between closely related species, and are consequently masked (Floyd and Bowman 2004; Pasquinelli *et al.*, 2000). The candidate orthologues of evolutionary conserved miRNAs genes are then assessed for their capability to potentially fold into hairpin structures with the lowest minimum free energy of folding (MFE), have ≥ 16 -bps involving the first 22-nts of the mature miRNA embedded within one arm of the fold-back precursor, and in the absence of

^{*}To whom correspondence should be addressed.

[©] The Author (2007). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 1

large internal loops or bulges especially large asymmetric ones (Ambros *et al.*, 2003). Apparently, mere application of simple alignment queries and positive-selection rules is likely to overlook novel families lacking clear homologues to published mature miRNAs.

Advanced comparative approaches like MiRscan (Lim et al., 2003b; Lim et al., 2003a), MIRcheck (Jones-Rhoades and Bartel 2004), miR-Finder (Bonnet et al., 2004a), miRseeker (Lai et al., 2003), findMiRNA (Adai et al., 2005), PalGrade (Bentwich et al., 2005), and MiRAlign (Wang et al., 2005) have systematically exploit the greater availability of sequenced genomes for eliminating the over-represented falsepositives. Cross-species sequence conservation based on computationally intensive multiple genome alignments is a powerful approach for genome-wide screening of phylogentically well conserved pre-miRs between closely related species. However, it suffers lower sensitivity in divergent evolutionary distance (Berezikov et al., 2005; Boffelli et al., 2003). Identifying *pre-miRs* that differ significantly or evolve rapidly at the sequence level while retaining their characteristic evolutionary conserved hairpin structures may also be an issue. Another significant drawback is that non-conserved pre-miRs with genus-specific patterns are likely to evade detection. Pathogenic viral-encoded pre-miRs have been uncovered in E. Barr virus, K. sarcoma-associated herpesvirus, M. y-herpesvirus 68, H. Cytomegalovirus, and Simian virus 40 that neither share significant sequence homology with known host pre-miRs nor among themselves (Cullen 2006; Sarnow et al., 2006).

(Table 1) To surmount the technical shortfalls of comparative works for distinguishing species-specific and non-conserved *pre-miRs*, several state-of-the-art *de novo* (or *ab initio*) predictive approaches have been extensively developed. The inaugural and definitive work by Sewer *et al.* (2005) compiled 40 distinctive sequence and structural "markers"

from the hairpins that obviates the use of comparative genomics information. The SVM classifier model trained with the experimental domain knowledge and binary-labeled feature vectors, recovered 71% of the positive pre-miRs with a remarkably low false-positive rate of ~3%. It also predicted ~50 to 100 novel pre-miRs for several species; ~30% of these were previously experimentally validated. The validation rate among the predicted cases that were conserved in ≥ 1 other species was higher at ~60%; many had not been detected by comparative genomics approaches. The 3SVM (Xue et al., 2005) improved the performances to ~90.00% for human and up to 90.00% in other species. Albeit its methodological simplicity, promising performances, and independence of comparative genomics information, 3SVM was largely limited to classifying RNA sequences that fold into secondary structures without multiple loops. RNAmicro (Hertel and Stadler 2006) incorporating sequence and structural information as part of its feature vector, reported an incredibly promising efficiency of 91.16% (sensitivity) and 99.47% (specificity). Still, its classification pipeline required computationally expensive multiple sequence alignments for inputs.

ProMiR (Nam *et al.*, 2005) took advantage of a probabilistic colearning model HMM to classify miRNA genes based on their pairwise aligned sequences. ProMiR minimized the false-positive rate to as low as 4.00%, but compromised for a less performing sensitivity of 73.00%. A relatively recent work BayesMIRfinder (Yousef *et al.*, 2006) adopted an alternative discriminative machine learning algorithm NBI as its underlying classifier model. Notwithstanding its technical novelty, BayesMIRfinder relied on the comparative analysis of conserved genomics regions for post-processing to yield a considerably higher sensitivity of 97.00% and comparable specificity of 91.00% in mouse to existing algorithms.

Table 1. Existing (quasi) de novo classifiers, in chronological order, for distinguishing novel pre-miRs from genomic pseudo hairpins.

Works	Classifiers	Num	Description of Features	Datasets	Р	Ν	SE	SP
Sewer <i>et al.</i> (2005)	SVM	40	16 statistics computed from the entire hairpin structure, 10 from the longest symmet- rical region of the stem, 11 from the longest relaxed symmetry region, and 3 from the candidate stem-loop.	Н	178	5,395	71.00	97.00
ProMiR (Nam et al., 2005)	HMM	-	A hairpin structure is represented as a pairwise sequence. Each position of the pairwise sequence has two states, structural and hidden.	Н	136	1,000	73.00	96.00
<i>3SVM</i> (Xue <i>et al.</i> , 2005)	SVM	32	Each hairpin is encoded as a set of 32 triplet elements: a nucleotide type and three lo- cal continuous sub-structure-sequence attributes e.g., "A(((" and "G(".	H H	30 39	1,000 2,444	93.30 92.30	88.10 89.00
BayesMIRfinder (Yousef et al., 2006)	NBI	84	62 secondary structural features derived from the foot, mature, and head of a hairpin- loop; 12 sequence features extracted from the candidate sequence.	C.E M	11 22	150 150	83.00 97.00	96.00 91.00
RNAmicro (Hertel and Stadler 2006	SVM	12	2 lengths of stem and hairpin loop regions; 1 G+C sequence composition; 4 sequence conservation; 4 thermodynamic stability; and 1 structural conservation.	Animal	136	394	91.16	99.47

(Classifiers) SVM (Support Vector Machine), NBI (Naïve Bayesian Induction), and HMM (Hidden Markov Model). (Nun) Number of features. (Datasets) H (H. sapiens), C.E (C. elegans), and M (M. muscu lus). P (real pre-miRs), N (pseudo hairpins), SE (Sensitivity), and SP (Specificity).

2 MATERIALS AND METHODS

2.1 Biologically relevant datasets

Training, testing, and independent datasets. They are pooled separately from four independent sources (see supplementary "Materials and Methods" for details). To improve the quality of this comprehensive collection, sequences with non-ACG[TU] nucleotides are filtered and no sequence is reused. Entire set of 2,241 *pre-miRs* is obtained from miRBase 8.2 (Griffiths-Jones *et al.*, 2006); 8,494 pseudo hairpins from human RefSeq genes (Pruitt and Maglott 2001) without undergoing any known experimentally validated alternative splicing (AS) events. For hyperparameter estimation and training the decision function of *miPred*, binary-class labeled samples consisting of 200 human *pre-miRs* (positives) and 400 pseudo hairpins (negatives) are randomly selected without replacement to avoid the classifier being skewed towards specifically screened training samples. The remaining 123 human *pre-miRs* (positives) and 246 randomly selected pseudo hairpins (negatives) are used for testing. They are denoted as TR-H and TE-H. The comparable ratio of 1:2 ensures that the selected negatives contribute more significantly to the specificity of a classifier than positives, while avoiding the problem of overtraining. Typically, the decision function of SVM converges to a solution where all samples belonging to the smaller class are classified as that of the larger class if the class sizes differ significantly. The performance of *miPred* is evaluated against three datasets IE-NH, IE-NC, and IE-M. They represent the remaining 1,918 *pre-miRs* spanning 40 nonhuman species (positives) and 3,836 randomly selected pseudo hairpins (negatives); 12,387 functional ncRNAs (negatives) from Rfam 7.0 (Griffiths-Jones *et al.*, 2005); and 31 mRNAs (negatives) from GenBank DNA database (Benson *et al.*, 2005), respectively.

Four complete viral genomes. They are downloaded from GenBank DNA database (Benson *et al.*, 2005), namely *E. Barr virus* (EBV; 171,823-bps; DNA circular; AJ507799.2), *K. sarcoma-associated herpesvirus* (KSHV; 137,508-bps; DNA linear; U75698.1), *M. y-herpesvirus* 68 strain WUMS (MGHV68; 119,451-bps; DNA linear; U97553.2), and *H. cytomegalovirus strain AD169* (HCMV; 229,354-bps; DNA linear; X17403.1).

2.2 Computational pipeline of *miPred*

Background of SVM. Integral to *miPred* is the Support Vector Machine (SVM), a supervised classification technique derived from the statistical learning theory of structural risk minimization principle (Burges 1998). Given its simplicity to deal easily with multi-dimensional datasets that can be noisy or redundant (non-informative or highly correlated), SVM has been adopted extensively as an invaluable machine learning tool to address diverse bioinformatics problems (Dror *et al.*, 2005; Han *et al.*, 2004; Liu *et al.*, 2006).

Briefly, the primary objective of SVM is to explicitly construct a multidimensional hyperplane separating a set of complex feature vectors \mathbf{x}_i into binary labeled classes $y_i \in (1 \text{ or } -1)$ with the distance between the hyperplane and the closest support vectors (the margin) maximized. In non-linear separable cases, the maximum-margin hyperplane is constructed after transforming uniquely the input variables into a high-dimensional feature space via the Gaussian Radial Basis Function kernel (RBF) $K(\mathbf{x}, \mathbf{x}_i)$ in Eq. (1). Typically, SVM is conducted using three straightforward steps: feature extraction, training the decision function on a set of selected binary-labeled training vectors, and classifying a given test sample \mathbf{x}_i into either positive or negative classes (Burges 1998).

$$K(\mathbf{x}, \mathbf{x}_{i}) = exp(-g \|\mathbf{x} - \mathbf{x}_{i}\|^{2}), \quad g = 1/2s^{2}.$$
 (1)

Extraction of miPred's features. Without relying on phylogenetic conservation, miPred undertakes a novel approach that posits the entire hairpin structure of each RNA sequence can be characterized solely into a feature vector \mathbf{x}_i containing 29 RNA global and intrinsic folding measures; see supplementary "Materials and Methods" for details. 17 sequence composition variables: 16 dinucleotide frequencies $\%XY(X, Y \in \Sigma = [A, C, G, U])$ and 1 aggregate dinucleotide frequency %G+C ratio. Dinucleotide is the preferred predicting descriptor to mononucleotide or higher-order frequencies, as it strikes a compromise between the resolution and computation tractability. 6 folding measures: adjusted base pairing propensity dP (Schultes et al., 1999), adjusted Minimum Free Energy of folding dG (Freyhult et al., 2005; Seffens and Digby 1999), Minimum Free Energy of folding index 1 MFEI1 (Zhang et al., 2006a), adjusted base pair distance dD (Freyhult et al., 2005; Moulton et al., 2000), adjusted shannon entropy dQ (Freyhult et al., 2005), and Minimum Free Energy of folding index 2 MFEI₂. 1 topological descriptor: degree of compactness dF (Fera et al., 2004; Gan et al., 2004). 5 normalized variants of dP, dG, dQ, dD, and dF i.e., zP, zG, zQ, zD, and zF derived from dinucleotide shuffling. We compute the 17 sequence composition variables as well as the folding measures dQ and dD by a custom perl script interfaced to the module RNAlib of Vienna RNA Package 1.4 (Hofacker 2003); dG by RNAfold program (Hofacker 2003) that predicts the most favorable RNA secondary structure and the corresponding MFE; the topological descriptors S and dF by a custom program RNAspectral. After synthesizing the set of random RNA sequences, the normalized variants zP, zG, zQ, zD, and zF are computed.

Parameter estimation, training, and evaluation of miPred. The libSVM version 2.82 (http://www.csie.ntu.edu.tw/~cjlin/libsvm), a free SVM implementation is used for training and testing miPred's binary classification. Samples are randomly selected without replacement via a custom python script. Foremost, the 29 attributes of *miPred* are rescaled linearly by the *svm-scale* program to the interval [-1.0, 1.0] or [0.0, 1.0] to guard against asymptomatic biasness in the numeric ranges for all the datasets; larger variance may dominate the classification e.g., [6.0, 50.0] vs. [-0.5, -0.2]. All miPred classifier models are generated with "svm-train -b 1 -c 2^{C} -g γ "; default RBF kernel; "-b 1" option computes the SVM probability estimates (*P*-values) for classification thresholding. As both the penalty parameter C (determines the trade-off between training error minimization and margin maximization) and the RBF kernel parameter γ (defines the nonlinear mapping from input space to some high-dimensional feature space) are critical for the performance of SVM (Duan et al., 2003), they are optimally calibrated by an exhaustive grid-search strategy. Briefly, at each hyperparameter pair (C, γ) selected from the search space $\log_2 C \in [-10, -9, ..., 15]$ and $\log_2 \gamma \in [-10, -9, ..., 15]$ 15, -14, ..., 10], we perform a five-fold cross validation. The training dataset is randomly partitioned into approximately five distinct equal-sized subsets. Repeating the validation process five times for each subset i.e., retaining a set for testing and the remaining four sets for training, the average accuracy of the five models gives the five-fold leave-one-out cross-validation (LOOCV) accuracy rate (Duan *et al.*, 2003). To avoid over-fitting the generalization, the best combination of hyperparameters (C, γ) maximizing the five-fold LOOCV accuracy rate serve as the default setting for training *miPred*. Finally, the classification is conducted on the testing and independent evaluation datasets with "*svm-predict* -b 1". See supplementary "Materials and Methods" for details on statistical tests and performance evaluation metrics.

3 RESULTS AND DISCUSSION

3.1 Training and classifying human pre-miRs

We calibrate *miPred* using TR-H, the optimal hyperparameter pair (C, γ) is (16.0, 0.03125) that maximizes the five-fold cross-validation accuracy rate of 93.50%. A classification score ranging [0.0, 1.0] is assigned by *miPred* to each hairpin, which is designated as a candidate *pre-miR* if its score is beyond a specified threshold. Across the entire spectrum of thresholds, a trade-off generally exists between specificity (greater value at higher threshold) and sensitivity (value increases at lower threshold) (Dror *et al.*, 2005; Liu *et al.*, 2006). The ROC analysis of *miPred*'s classification model (*figure not shown*) reported that the AUC is approximately unity i.e., 0.9833.

(Figure 1A and Table S1) With the default *miPred*'s threshold predefined at 0.5, the SE (Sensitivity), SP (Specificity), and ACC (Accuracy) reported for TR-H are 88.00%, 97.50%, and 94.33%, respectively. Here, SP > SE is more desirable in screening for novel *pre-miRs* from the entire genomic sequences or cloned small RNAs as abundant dysfunctional hairpins are encoded in the human (Bentwich *et al.*, 2005) and *C. elegans* (Pervouchine *et al.*, 2003) genomes. An implication of a slightly lower SP than SE will reduce the signal (genuine *pre-miRs*) to background (pseudo hairpins) ratio, inflating significantly the effort and resources demanded in experimental validation of the putative precursor transcripts as biologically functional *pre-miRs*.

(Figure 1B and Table S1) Next, conducting miPred onto TE-H obtains comparable performances of 84.55% (SE), 97.97% (SP), and 93.50% (ACC). In all, miPred can classify correctly 86.69% (280/323) human pre-miRs as positives and 97.68% (631/646) pseudo hairpins as negatives. Three of the human pre-miRs designated as negatives receive very low classification scores from miPred: hsa-mir-565 (0.454), hsa-mir-566 (0.012), and hsa-mir-594 (0.187). Coincidently, they have been suspected to be falsely annotated as precursor transcripts encoding mature miRNAs on two grounds (Berezikov et al., 2006). First, both hsa-mir-565 and hsa-mir-594 overlap with tRNA annotations; hsa-mir-566 overlaps with Alu repeats. Second, none was represented by >1 clone or differentially expressed in a Dicer-deficient cell-line (Cummins et al., 2006). Nevertheless, we believe that neither criterion is sufficient to eliminate a candidate as repeat- (Smalheiser and Torvik 2005) and pseudogene-derived miRNAs (Devor 2006) have been discovered, and miRNAs expressed at low levels may be elusive to detection in a Dicer-disrupted mutant (Berezikov et al., 2006).

(Table S1) In contrast, *3SVM* based on triplet-encoding scheme (Xue *et al.*, 2005) yields slightly poorer results: 86.00%, 97.00%, and 93.33% for TR-H; 73.15%, 95.37%, and 87.96% for TE-H; or 81.49% (251/308) of human *pre-miRs* as positives and 96.43% (594/616) of pseudo hairpins as negatives. The evaluation demonstrates the outstanding and consistent classification performance of *miPred* in partitioning specifically human *pre-miRs* from pseudo hairpins. The improved distinct separation by *miPred* is likely due to its excellent capability in recognizing the specific intrinsic and global features of human *pre-miRs* against those of pseudo hairpins.

3.2 Improved classification of non-human pre-miRs

(Figure 1C and Table S1) We next extend the validation of miPred to

IE-NH and quantify its mean (overall) SE, SP, and ACC. Here, mean denotes the average performance for all species within IE-NH; overall performance is derived from the entire IE-NH independent of species. In this setting, *miPred* yields excellent and comparable classification performances to those of TR-H and TE-H, with respective SE, SP, and ACC of 87.65% (92.08%; 1,766/1,918 non-human *pre-miRs* as positives), 97.75% (97.42%; 3,737/3,836 pseudo hairpins as negatives), and 94.38% (95.64%). (Table S1) In contrast, *3SVM* reports 80.10%

(86.15%; 1,443/1,675 non-human *pre-miRs* as positives), 96.81% (96.27%; 3,225/3,350 pseudo hairpins as negatives), and 91.24% (92.90%). Apparently, these results point to *miPred* as a more credible and consistent classifier distinguishing reliably specie-specific and evolutionary well-conserved *pre-miRs* across diverse organisms covering plants, worms, flies, vertebrates, and viruses listed in miRBase 8.2 (Griffiths-Jones *et al.*, 2006).

Fig. 1. A–B) Distribution of TR-H (200 human *pre-miRs* and 400 pseudo hairpins) and TE-H (remaining 123 human *pre-miRs* and 246 pseudo hairpins) by *miPred* scores. Default *miPred* decision boundary (vertical dash line at 0.5). C) Distribution of IE-NH (1,918 *pre-miRs* across 40 non-human species and 3,836 pseudo hairpins) by specificity and sensitivity; details at Table S1. Dash lines denote overall performances. For clarity, only specie names are assigned in left-bottom quarter. D) Performance comparison with existing (quasi) *de novo* classifiers (Table 1). H (*H. sapiens*), C.E (*C. elegans*), and M (*M. musculus*). E) Distribution of IE-NC (12,387 ncRNAs) and IE-M (31 mRNAs) by specificity; details at Table S3. Dash line denotes overall specificity. F) F1 and F2 scores for features of *miPred* and *35VM*; details at Table S5. For clarity, only top 12 ranking attributes of *miPred* are shown. G) Effects of feature selection on *miPred*'s accuracy; details at Table S6. Dash lines denote accuracies of original *miPred*.

Notably, those *pre-miRs* present in the genomes of *A. mellifera*, *A. Geoffroyi*, *C. familiaris*, *E. Barr*, *H. Simplex virus*, *H. cytomegalovirus*, *O. aries*, *P. patens*, *R. lymphocryptovirus*, *Simian virus*, and *Z. mays* are unambiguously identified by *miPred* with 100.00% (SE) and >93.75% (SP). Moreover, *pre-miRs* encoded in *C. briggsae* and *C. elegans* are excellently classified with SE of 94.74% and 84.96%, as well as SP of 99.34% and 96.90%; the remaining two pathogenic viruses *M.*

y-herpesvirus and *K. sarcoma-associated herpesvirus* have SE of 88.89% and 91.67%, as well as SP of 94.44% and 100.00%. Since *mi-Pred* was not trained initially on any specie-specific *pre-miRs* and especially viral-encoded ones, this supporting evidence reinforces the premise that its selected descriptors have successfully captured the intrinsic and global properties characterizing the biologically functional *pre-miRs* spanning across different species including viruses.

(Table S2) An obvious question is how viral-encoded *pre-miRs* can be distinguished by *miPred* so outstandingly, especially when they are known to lack homologs in other viruses or in the host (Cullen 2006; Sarnow *et al.*, 2006). As there are few experimental studies elucidating their biological activities and biogenesis (Sullivan *et al.*, 2005), we speculate pathogenic viruses do not possess homologous genes that can express functionally similar host miRNA processing proteins e.g., Drosha, Dicer, and RISC. After infecting the human immune cells, they hijack these critical host proteins to regulate viral and host gene expression (Cullen 2006; Sarnow *et al.*, 2006). This will facilitate their viral replication and pathogenesis by blocking the innate or adaptive host immune responses or by interfering with the appropriate regulation of apoptosis, cell growth, or DNA replication. Consequently, viralencoded *pre-miRs* are likely to be recognized and processed identically to the host (i.e., human) *pre-miRs* that *miPred* was trained on.

3.3 Performance comparison with existing predictors

(Figure 1D) By evaluating the published results of existing (quasi) *de novo* classifiers (Table 1), both RNAmicro (Hertel and Stadler 2006) and *miPred* are the highest-scoring predictors in identifying putative *pre-miRs* from a genomic pool of candidate hairpins. RNAmicro displays comparable %*Fm* (F-measure) and %*MCC* (Matthew's Correlation Coefficient) of 98.90% and 92.97% *vs. miPred* of 95.29% and 85.47% (human *pre-miR* datasets; 95.34% and 90.14% for non-human *pre-miR* datasets). The remaining classifiers range 20.85–91.87% (%*Fm*) and 30.80–79.51% (%*MCC*).

Notably, *miPred* benefits two key areas of technical advancements. First, its 29 features are extracted from a single RNA sequence for classifying novel pre-miRs against pseudo hairpins in an unequivocal de novo manner. This is the primary advantage that miPred has over RNAmicro by avoiding costly and occasionally unreliable multiple sequences alignments due to large phylogenetic distant or rapidly evolving pre-miRs. RNAmicro relies on computationally expensive comparative genomic alignments for predicting the consensus secondary structures and computing its feature vector (Hertel and Stadler 2006). Moreover, ProMiR (Nam et al., 2005) and BayesMIRfinder (Yousef et al., 2006) depend on similar phylogenetic/conservation information for not incurring any significant loss of performances. Due to the sequence homologous nature of the genomics datasets being generated, their predictive accuracy may suffer when the cross-species evolutionary distance (e.g., verterbrates vs. nematode/urochordate) is too exceptionally diverged in rendering reliable multi-genomes alignment technically difficult or impossible. Second, distinct from classifiers by Sewer et al. (2005) and 3SVM (Xue et al., 2005), the 29 attributes from miPred represent the global and intrinsic properties of any RNA structure, and not specific regions of it. Besides avoiding the pars pro toto fallacy in mistaking part for the entire, miPred can handle both hairpin structures as well as RNA sequences that fold with multiple loops.

3.4 Classification of functional ncRNAs and mRNAs

The original intent of *miPred* is to distinguish *pre-miRs* spanning diverse species from genomic pseudo hairpins, according to the classifier model trained solely on human datasets. Since ncRNAs and mRNAs were not included in the initial training, it will be very instructive to assess how well *miPred* can discriminate them as non *pre-miRs* without relying on their specific dinucleotide sequence, structural, and topological characteristics. Moreover, such assessment was lacking or not available from existing (quasi) *de novo* predictors (Table 1). (Figure 1E and Table S3) Evaluating *miPred* and *3SVM* (Xue *et al.*, 2005) onto IE-NC and IE-M, the former reports mean (overall) SP of 76.15%

(68.68%; 8507/12387 ncRNAs) and 87.10% (27/31 mRNAs). Here, mean or average SP is computed from all ncRNA types within IE-NC; overall SP corresponds to the entire IE-NC independent of ncRNA types. In contrast, *3SVM* yields 90.30% (78.37%; 1,884/2,404 ncRNAs across 155 types) and 0.00% (0/31 mRNAs) for SP (*figure not shown*). Upon scrutiny, its "better" performances are attained at the expense of excluding 9,983 ncRNAs spanning 302 types (IE-NC) and 31 mRNAs (IE-M) that fold into complex structures containing multiple loops. This structural exclusion is a major limitation experienced commonly by most of the existing (quasi) *de novo* classifiers (Table 1) that extract modularized features from predefined RNA sub-structures. The comparison with *3SVM* clearly demonstrates that *miPred* trained solely on human *pre-miRs* and pseudo hairpins, can provide reasonable generalization in identifying unambiguously at least two-thirds of all the samples in IE-NC and IE-M as *bona fide* negatives.

Among the ncRNA samples in IE-NC, tRNAs (Sprinzl and Vassilenko 2005) and snoRNAs (Weinstein and Steitz 1999) are two of the largest classes of small ncRNAs present in the eukaryotic genomes. They are frequently misclassified as pre-miRs in most experimental settings, due to the absence of statistical signatures like codon structure and open reading frame (ORF) encoded by protein-coding genes (Sprinzl and Vassilenko 2005; Weinstein and Steitz 1999). The snoR-NAs can be divided into C/D snoRNAs or H/ACA snoRNAs acting as guides for site-specific 2'-O-ribose methylation or for pseudouridylation in the post-transcriptional processing of rRNAs (Weinstein and Steitz 1999). (Figure 1E and Table S4) 94.61% C/D snoRNAs, 60.97% H/ACA snoRNAs, and 85.55% tRNAs are identified by miPred as genuine non pre-miRs. To enhance the quality of miPred's identification, specialized algorithmic tools like snoseeker (Yang et al., 2006) and tRNAscan-SE (Lowe and Eddy 1997) can serve as rapid and preprocessing filters in excluding these abundant ncRNAs, except C/D snoRNAs. They have reported SE of 90.00%, 75.00%, and 99.5% for detecting C/D snoRNAs, H/ACA snoRNAs and tRNAs, respectively.

(Figure 1E and Table S4) *miPred* is capable of discriminating correctly 75.75% frameshift, 85.47% IRES, 75.00% thermoregulator, 70.66% rRNA, and 85.71% snRNA as authentic non *pre-miRs*. Interestingly, a novel and abundant class of ncRNAs known as riboswitches (Winkler and Breaker 2003) are correctly classified by *miPred* as non *pre-miRs* with comparable SP of 82.28%. These riboswitches found only in prokaryotes to date, can *cis*-modulate their expressions upon binding to metabolite (e.g., guanine and thiamine pyrophosphate) without involving accessory protein cofactors. Our SVM classifier *mi-Pred* will likely to become an invaluable pre-experimental predictor in the event eukaryotic riboswitches(-like) molecules are identified.

(Figure 1E and Table S4) Several classes of ncRNA are poorly classified by *miPred* as potential *pre-miRs* with SP \leq 60.00%: Antisense, Ribozymes, Spliceosomes like U1–2 and U4–6, and Group I/II intron RNAs. Careful inspection into their sequence, structural, and topological properties reveals no general noticeable trends to explain the evasive detection. This finding prompts us to speculate that the feature vector used by *miPred* may lack specific discriminative components against these elusive classes of functional ncRNAs, or in part that they may possibly be exceedingly mobile or rapidly evolving. To identify and eliminate such ncRNAs will definitely require specialized tools built on the domain knowledge of their characteristic properties.

3.5 Contribution of individual features

We next investigate the essential attributes of *miPred* that contribute substantially to the class distinctions between *pre-miRs* and pseudo hairpins, or whether exclusion of selected feature(s) can further enhance/degrade *miPred*'s performances. Elucidating the "contributory quality" of individual attribute within a feature vector reaps the potential benefits of enhancing the predictive performance and computational tractability of the classifier, and gaining deeper insights into the domain problem (Isabelle and Andre 2003). Despite the importance, only *3SVM* (Xue *et al.*, 2005) among the existing (quasi) *de novo* classifiers (Table 1) has conducted an analysis (less detailed than ours) on its feature selection.

(Figure 1F and Table S5) We evaluate the F-scores F1 and F2 (see supplementary "Materials and Methods" for definitions) on the classconditional distributions, which measure the discriminative power of the miPred's 29 attributes. They are strongly and positively correlated, reporting pearson correlation coefficient r = 0.977 and $p = 1.272E^{-19}$. As expected, structural features possess the strongest discriminative importance/powers by dominating the 12 highest scoring attributes (ranked according to descending F1 scores): MFEI1, zG, dP, zP, zQ, dG, dQ, zD, dD, $MFEI_2$, %AU, and %G+C. They overlap to some degree with RNAmicro's features (Hertel and Stadler 2006) i.e., % G+C, MFEI₁, dG (RNAmicro uses mean MFE of the aligned sequences and MFE of the consensus structure), and zG (RNAmicro computes via a regression model). Since the majority of the pre-miRs are well-defined and thermodynamically stable stem-loop structures critical for the biogenesis of mature miRNAs (Bonnet et al., 2004b), these common features and miPred's top-ranking ones are most probable to be conserved across all species from human to viruses. We believe they are likely to be indispensable for rendering more robustness to the multi-feature capability of miPred against erroneous classifications of novel pre-miRs.

Generally, the efficiency and reliability of classifiers depend on the size and selection of both the relevant data samples and specific attributes (Isabelle and Andre 2003). We next repeat previous experiments using 10 variants of miPred i.e., they contain smaller collection of features and trained in the exact manner as miPred with identical samples in TR-H, and their performances are assessed against the remaining datasets (TE-H, IE-NH, IE-NC, and IE-M). miPred₃ contains a subset of 26 features from *miPred* that excludes dQ, dD, and zD. When evaluated statistically onto the 2,241 non-redundant pre-miRs, three pairs of attributes are strongly and positively correlated (figure not shown) with *r* ranging 0.9221–0.9846 and p < 0.001: *dQ* vs. *dD*, *dQ* vs. *zQ*, and *zQ* vs. zD. zQ is selected due to its higher discriminative power (as indicated by both its F1 and F2 scores) than dQ, dD, and zD (Figure 1F). Derived from *miPred*₃, the remaining nine variants represented by *mi*-Pred_{3/5}, miPred_{3/10}, ..., miPred_{3/24}, and miPred_{3/25} include only the top ranking 21, 16, 11, 6, 5, 4, 3, 2, and 1 feature(s), respectively.

(Figure 1G and Table S6) As expected, miPred and miPred3 demonstrate consistent and comparable classification accuracies spanning the five datasets. The former containing near perfect correlated features dQ, dD, and zD as part of its larger feature vector is highly resilient to redundancy, since it also relies on SVM. SVM incorporates regularization techniques and is based on the theory of risk minimization, which can provide robust generalization control in accommodating redundant (i.e., strongly correlated) variables (Burges 1998). Removing 5 to 15 low-scoring features, miPred_{3/5} - miPred_{3/15} yield negligible performance differences compared to miPred₃ when applied to pre-miR datasets; better improvements reported by miPred_{3/5} for ncRNAs and mRNAs datasets. This result suggests that the removed features are likely to contribute in a smaller degree to *miPred* as non-informative attributes and they generally do not degrade the performance of the discriminant method by overfitting the training data. With fewer than seven top-ranking features contained in $miPred_{3/20} - miPred_{3/25}$, their overall classification accuracies degrade slightly for pre-miR datasets; generally have better performances for ncRNAs and mRNAs datasets.

Both findings indicate that these six highest-scoring attributes $MFEI_I$, zG, dP, zP, zQ, and dG are likely to be predominantly functioning, in order to contribute significantly to the prediction accuracies of *miPred*.

(Figure 1G and Table S6) Features with weak discriminative power (like those sequence attributes in miPred possessing low F-scores) are viewed largely as redundant (i.e., non-informative), as no additional performance is gained by including them (Isabelle and Andre 2003). To affirm this premise, we evaluate another three variants of miPred: $miPred_I$ (17 features: 16 dinucleotides frequencies and %G+C), mi-Pred_{II} (12 features; MFEI₁, MFEI₂, dP, dG, dQ, dD, dF, zP, zG, zQ, zD, and zF), and miPred_{III} (9 features; a subset of miPred_{II} that excludes dQ, dD, and zD). Apparently, miPred₁ performs the worst when identifying pre-miRs and degrades moderately for IE-NC, but reports better than expected classification when applying to IE-M. In contrast, the absence of sequence information (i.e., 16 dinucleotide frequencies and %G+C) shows no noticeable effect on the performances of mi-Pred_{II} and miPred_{III} for human pre-miRs in comparison to miPred and miPred3; both classifiers fare slightly inferior to miPred1 for IE-NH and much worst for IE-NC and IE-M. As indicated by both findings, the sequence information do not contribute (significantly or at all) towards discriminating pre-miRs from pseudo hairpins. Nevertheless, they are probable to perform a critical or compensatory role in the classification of ncRNAs and mRNAs as non pre-miRs.

3.6 Screening viral-encoded miRNA genes

A recent rna22-based census suggested that the previous numbers for pre-miRs present in several species were gross underestimation, and are likely to range in the tens of thousands (Miranda et al., 2006): C. elegans (359), D. melanogaster (654), M. musculus (>25,000) and H. sapiens (>25,000). As an illustrative application of miPred, we randomly select four complete viral genomes for screening novel premiRs via a similar methodology (Miranda et al., 2006): E. Barr virus (EBV), K. sarcoma-associated herpesvirus (KSHV), M. y-herpesvirus 68 strain WUMS (MGHV68), and H. cytomegalovirus strain AD169 (HCMV). To date, miRBase 8.2 (Griffiths-Jones et al., 2006) have annotated 23 (EBV; 23 + strands), 13 (KSHV; 12 - and 1 unknown strand), 9 (MGHV68; 9 + strands), and 11 (HCMV; 6 +, 4 -, and 1 unknown strands) viral-encoded pre-miRs. The four viral genomic sequences are oriented to the corresponding +/- strands along which the published pre-miRs are located, and then scanned with a predefined sliding window (size of 95-nts in 1-nt steps) for potential viral-encoded hairpins. Those genomic regions satisfying the maximum length (≤ 95 nts), minimum size of terminal loop (\geq 3-nts), and MFEs (\leq -25 kcal/mol) are reserved for classification via miPred. The three thresholds were empirically determined from available genuine pre-miRs encoded in the four pathogenic viruses. The computational approach was described previously by Grad et al. (2003) with differences in the parameter settings as mentioned earlier. Briefly, it uses a BLAST-like algorithm to search for short complementary words (stem-like structure) within a specified distance and dynamic programming to determine the complete alignment. MFEs are predicted by the RNAfold program (Hofacker 2003) with default parameters.

(Figure 2A) Roughly, 30.15% (EBV; 60/199), 16.51% (KSHV; 36/218), 10.87% (MGHV68; 20/184), and 27.71% (HCMV; 133/480) of the hairpins are classified as putative *pre-miRs* (positives) at the default *miPred* score cut-off \geq 0.5; remaining ones are regarded as negatives. (Table S7) The viral-encoded hairpins are manually mapped to the published *pre-miRs*, 25 true-positives (and 1 false-negative) match 25 published viral-encoded *pre-miRs* (red region) and their mature miRNAs (underlined region): 12 (1) EBV, 6 (0) KSHV, 3 (0) MGHV68, and 4 (0) HCMV. Except [‡]kshv-mir-K12-9 and ^Δkshv-mir-

K12-9, the remaining true-positive predictions have one or two mature miRNAs embedded exclusively in either arms of their (a)symmetric stem. $^{\Delta}kshv$ -mir-K12-9 is subsequently eliminated as it is a duplicate copy containing the exact sequence of kshv-mir-K12-9, and the en-

coded mature miRNAs overlap the most with its predicted 4-nts (**uaua**) terminal loop. Together, we can identify 44.64% (25/56) of the known *pre-miRs* for the four viruses as hairpins, and recover 96.00% from these hairpins (24/25) as true-positives.

Fig. 2. A) Distribution of viral-encoded hairpins by *miPred* scores. B) Genomic map of predicted (pX denotes *mghv-mir-pX*) and published (mX denotes *mghv-mir-M1-X*) MGHV68-encoded *pre-miRs*, drawn *not to scale* by Genepalette 1.2 (Rebeiz and Posakony 2004); RNA structure of m6 (inset; *mghv-mir-M1-6*) as obtained from miRBase 8.2 (Griffiths-Jones *et al.*, 2006); red region denotes mature miRNA.

The 25 identified positives report high *miPred* scores ≥ 0.815 except for two [†]ebv-mir-BHRF1-1 (0.437 miPred score) and [§]mghv-mir-M1-8 (0.658), indicative of the default cut-off at 0.5 was unlikely to be stringent. (Table S7) With the new cut-off set at 0.815, only 92.00% (EBV; 23/35), 60.00% (KSHV; 9/15), 75.00% (MGHV68; 6/8), and 92.73% (HCMV; 51/55) of the previous positives (excluding published premiRs) survive as novel putatives. Majority has not yet been discovered (more will arise due to innate evolutionary mutations), suggesting previous estimates of viral-encoded pre-miRs and miRNAs especially in EBV and HCMV may be grossly understated. (Figure 2B) By mapping carefully the 6 newly found MGHV68-encoded pre-miRs to the entire MGHV68 viral genome (the closest relative to human EBV and KSHV (Pfeffer et al., 2005)), we observe that p1 overlaps exactly with but is shorter than m6 by 3-nts (UUU) at the 3' termini (see inset for RNA structure). Since the mature miRNA (red region) encoded in m6 was experimentally cloned (Pfeffer et al., 2005), p1 is reassigned as a false-positive. p2 resides immediate downstream of m3 and within a known miRNA cluster ~1.5 kb consisting of m1-7 that are transcribed by RNA Polymerase III (Pol-III) (Pfeffer et al., 2005), which indicates p2 is likely to be regulated by similar Pol-III promoter. Known host miRNA transcripts are synthesized from intergenic or intronic regions of annotated transcription units (Rodriguez et al., 2004) by Pol-II with the hallmarks of 5' m⁷G cap structures and 3' poly(A) tails (Cai et al., 2004; Lee et al., 2004), however, there are emerging evidence of them being transcribed from the exons of protein-coding genes like in O. sativa (Sunkar et al., 2005). Thus, p3, p4, and p5-6 located in the exons of three proteins may also undergo distinct processing and nuclear export mechanism from the host cell's miRNA maturation machinery.

4 CONCLUSION

In this work, we have proposed a *de novo* SVM classifier model *mi*-*Pred* to address specifically the challenges in improving the classification accuracy of existing (quasi) *de novo* approaches. Considering that a single criterion to filter pseudo hairpins has not yet been identified, it is trained solely on 29 global and intrinsic attributes derived from human *pre-miRs*, without relying on species-conservation information. The feature set defines distinctively a *pre-miR* at the base (dinucleotide frequencies and %G+C ratio), hairpin folding (MFE and base pairing propensity), non-linear statistical thermodynamics (shannon entropy and base pair distance), and topological (Fiedler eigenvalue) levels. By integrating simultaneously the Gaussian Radial Basis Function kernel (RBF) of SVM as a similarity measure into *miPred*'s design, our classifier yields comparable or significantly better performances (in terms of sensitivity and specificity) than existing classifiers for distinguishing non-conserved functional *pre-miRs* (spanning diverse species) from genomic pseudo hairpins and non *pre-miRs* (most classes of ncRNAs and mRNAs) with high discriminative accuracy.

Deployment of miPred will likely to translate into considerable saving on precious and scarce experimental resources devoted to validating significantly fewer false-positives, since we are highly assured those precursor transcripts predicted would be experimentally confirmed as functional pre-miRs. Recognizing these benefits that underscore *miPred* as a potential and invaluable pre-experimental screening tool, we are currently revamping our research prototype into a userfriendly online predictor. As part of our ongoing research, we are actively identifying novel and clustered pre-miRs in human, mouse, and viruses. We believe with the availability of a comprehensive repository of combined pre-miRs and mature miRNAs, will then computational mRNA target identification and comprehensive genome annotation be greatly advanced. An expanded repertoire of miRNA genes will definitely signify both a huge opportunity and technical challenge, as we delve into the functional roles of miRNAs interplay with other genetic regulatory networks, biological pathways, and signaling cascades.

ACKNOWLEDGEMENTS

The authors are deeply indebted to the anonymous reviewers (current and ISMB2006) for their generous feedback and constructive suggestions, which has greatly inspired the quality and technical ideas developed in this paper. Sincere appreciation to BII's Clustering Group for their best effort in ensuring the three clusters run smoothly. This work was supported by Bioinformatics Institute. SNKL received Ph.D scholarship funds from Agency for Science, Technology and Research (A*STAR), Singapore.

Authors' contributions: SNKL and SKM conceived the initial ideas. SNKL designed and performed the experiments. SNKL and SKM wrote this manuscript.

Competing interests: none declared

REFERENCES

Adai, A. et al. (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res., 15, 78-91.

Ambros, V. et al. (2003) A uniform system for microRNA annotation. RNA, 9, 277-279.

- Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-297.
- Benson, D.A. et al. (2005) GenBank. Nucleic Acids Res., 33, D34-D38.
- Bentwich, I. et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet., 37, 766-770.
- Berezikov, E. et al. (2006) Approaches to microRNA discovery. Nat. Genet., 38 Suppl, S2-S7.
- Berezikov, E. et al. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120, 21-24.
- Boffelli, D. et al. (2003) Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome. Science, 299, 1391-1394.
- Bonnet, E. et al. (2004a) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc. Natl. Acad. Sci. USA, 101, 11511-11516.
- Bonnet, E. et al. (2004b) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. *Bioinformatics*, 20, 2911-2917.
- Brennecke, J. et al. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113, 25-36.
- Burges, C.J.C. (1998) A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121-167.
- Cai,X. et al. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10, 1957-1966.
- Calin,G.A. and Croce,C.M. (2006) MicroRNA-Cancer Connection: The Beginning of a New Tale. Cancer Res., 66, 7390-7394.
- Chen,X. (2004) A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. *Science*, **303**, 2022-2025.
- Cullen, B.R. (2006) Viruses and microRNAs. Nat. Genet., 38 Suppl, S25-S30.
- Cummins, J.M. et al. (2006) The colorectal microRNAome. Proc. Natl. Acad. Sci. USA, 103, 3687-3692.
- Devor, E.J. (2006) Primate MicroRNAs miR-220 and miR-492 Lie within Processed Pseudogenes. J. Hered. 97, 186-190.
- Dror, G et al. (2005) Accurate identification of alternatively spliced exons using support vector machine. *Bioinformatics*, 21, 897-901.
- Duan, K. et al. (2003) Evaluation of simple performance measures for tuning SVM hyperparameters. *Neurocomputing*, 51, 41-59.
- Fera,D. et al. (2004) RAG: RNA-As-Graphs web resource. BMC Bioinformatics, 5, 88. Floyd,S.K. and Bowman,J.L. (2004) Gene regulation Ancient microRNA target sequences in
- plants. Nature, **428**, 485-486. Freyhult, E. et al. (2005) A comparison of RNA folding measures. BMC Bioinformatics, **6**,
- 241.
- Gan,H.H. et al. (2004) RAG: RNA-As-Graphs database--concepts, analysis, and features. Bioinformatics, 20, 1285-1291.
- Griffiths-Jones, S. et al. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res., 34, D140-D144.
- Griffiths-Jones,S. et al. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res., 33, D121-D124.
- Han,L.Y. et al. (2004) Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. RNA, 10, 355-368.
- Hertel, J. and Stadler, P.F. (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. *Bioinformatics*, 22, e197-e202.
- Hofacker,I.L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res., 31, 3429-3431.
- Isabelle,G and Andre,E. (2003) An introduction to variable and feature selection. J. Mach. Learn. Res., 3, 1157-1182.
- Jones-Rhoades, M.W. and Bartel, D.P. (2004) Computational identification of plant microR-NAs and their targets, including a stress-induced miRNA. *Mol. Cell*, 14, 787-799.
- Kim, V.N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol., 6, 376-385.
- Lagos-Quintana, M. et al. (2003) New microRNAs from mouse and human. RNA, 9, 175-179.
- Lagos-Quintana, M. et al. (2001) Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294, 853-858.
- Lai, E. et al. (2003) Computational identification of Drosophila microRNA genes. Genome Biol., 4, R42.
- Lau,N.C. et al. (2001) An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans. Science, 294, 858-862.
- Lee,R.C. and Ambros,V. (2001) An Extensive Class of Small RNAs in Caenorhabditis elegans. *Science*, **294**, 862-864.
- Lee, R.C. et al. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-854.
- Lee, Y. et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 23, 4051-4060.
- Lim,L.P. et al. (2003a) Vertebrate MicroRNA Genes. Science, 299, 1540.

- Lim,L.P. et al. (2003b) The microRNAs of Caenorhabditis elegans. Genes Dev., 17, 991-1008.
- Liu, J. et al. (2006) Distinguishing Protein-Coding from Non-Coding RNAs through Support Vector Machines. PLoS Genet., 2, e29.
- Lowe,T.M. and Eddy,S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res.*, 25, 955-964.
- Lu,J. et al. (2005) MicroRNA expression profiles classify human cancers. Nature, 435, 834-838.
- McGinnis, S. and Madden, T.L. (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. *Nucleic Acids Res.*, **32**, W20-W25.
- Miranda,K.C. et al. (2006) A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes. Cell, 126, 1203-1217.
- Moulton, V. et al. (2000) Metrics on RNA Secondary Structures. J. Comp. Biol., 7, 277-292.
- Nam,J.W. et al. (2005) Human microRNA prediction through a probabilistic co-learning model of sequence and structure. *Nucleic Acids Res.*, 33, 3570-3581.
- Palatnik, J.F. et al. (2003) Control of leaf morphogenesis by microRNAs. Nature, 425, 257-263.
- Pasquinelli, A.E. et al. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408, 86-89.
- Pervouchine,D.D. et al. (2003) On the normalization of RNA equilibrium free energy to the length of the sequence. Nucleic Acids Res., 31, e49.
- Pfeffer,S. et al. (2005) Identification of microRNAs of the herpesvirus family. Nat. Method, 2, 269-276.
- Pruitt,K.D. and Maglott,D.R. (2001) RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res., 29, 137-140.
- Rebeiz, M. and Posakony, J.W. (2004) GenePalette: a universal software tool for genome sequence visualization and analysis. *Dev. Biol.*, 271, 431-438.
- Reinhart, B.J. et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. *Nature*, **403**, 901-906.
- Rodriguez,A. et al. (2004) Identification of Mammalian microRNA Host Genes and Transcription Units. Genome Res., 14, 1902-1910.
- Sarnow, P. et al. (2006) MicroRNAs: expression, avoidance and subversion by vertebrate viruses. Nat. Rev. Microbiol., 4, 651-659.
- Schultes,E.A. *et al.* (1999) Estimating the contributions of selection and self-organization in RNA secondary structure. *J. Mol. Evol.*, **49**, 76-83.
- Seffens,W. and Digby,D. (1999) mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. *Nucleic Acids Res.*, 27, 1578-1584.
- Smalheiser, N.R. and Torvik, V.I. (2005) Mammalian microRNAs derived from genomic repeats. *Trends Genet.*, 21, 322-326.
- Sprinzl,M. and Vassilenko,K.S. (2005) Compilation of tRNA sequences and sequences of tRNA genes. *Nucleic Acids Res.*, **33**, D139-D140.
- Sullivan, C.S. et al. (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature, 435, 682-686.
- Sunkar, R. et al. (2005) Cloning and Characterization of MicroRNAs from Rice. Plant Cell, 17, 1397-1411.
- Wang, X. et al. (2005) MicroRNA identification based on sequence and structure alignment. Bioinformatics, 21, 3610-3614.
- Weinstein,L.B. and Steitz,J.A. (1999) Guided tours: from precursor snoRNA to functional snoRNP. Curr. Opin. Cell Biol., 11, 378-384.
- Winkler, W.C. and Breaker, R.R. (2003) Genetic control by metabolite-binding riboswitches. *Chembiochem.*, 4, 1024-1032.
- Xu,P. et al. (2003) The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism. Curr. Biol., 13, 790-795.
- Xue, C. et al. (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics, 6, 310.
- Yang,J.H. et al. (2006) snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome. *Nucleic Acids Res.* gkl672.
- Yousef, M. et al. (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. *Bioinformatics*, 22, 1325-1334.
- Zhang,B. et al. (2006a) Evidence that miRNAs are different from other RNAs. Cell. Mol. Life Sci., 63, 246-254.
- Zhang, B. et al. (2006b) Plant microRNA: A small regulatory molecule with big impact. Dev. Biol., 289, 3-16.

Structural Bioinformatics

De Novo SVM Classification of Precursor MicroRNAs from Genomic **Pseudo Hairpins Using Global and Intrinsic Folding Measures**

Stanley NG Kwang Loong^{†,‡,*}, Santosh K. MISHRA^{†,‡}

[†] Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671

[‡]NUS Graduate School for Integrative Sciences & Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456

Received on December 13, 2006; revised on; accepted on

5 **BIOGENESIS OF MATURE MICRORNAS**

In the prevailing biogenesis model of miRNAs maturation (Bartel 2004; Kim 2005), >1000-nts primary transcripts (pri-miRs) originate from the intergenic or intronic regions of annotated (non-)proteincoding transcription units (Rodriguez et al., 2004). The pri-miRs are cleaved by the nuclear RNase III endonuclease Drosha/Pasha complex, yielding ~70-120-nts precursor transcripts (pre-miRs) with 5' phosphate and ~2-nts 3' overhang. These pre-miRs exhibiting characteristic imperfect and extended RNA stem-loop structures are actively exported by the cargo transporter Exportin-5 in a Ran-GTP dependent manner into the cytoplasm (Bohnsack et al., 2004; Yi et al., 2003; Zeng and Cullen 2004). The pre-miRs are further excised by another RNase III endonuclease Dicer into an intermediate duplex miR:miR*, a ~21-23-nts asymmetric mature miRNA duplex. The miR:miR* is recruited by a ribonucleoprotein RNA-Induced Silencing Complex (RISC) (Gregory et al., 2005; Maniataki and Mourelatos 2005; Rivas et al., 2005; Tang 2005). The strand miR with weaker hydrogen binding survives as the mature miRNA, which is preferentially loaded into RISC. miRNA-directed posttranscriptional silencing of target genes occurs by mRNA degradation (Brennecke et al., 2005), or translational arrest of protein synthesis (Doench and Sharp 2004), or mRNA deadenylation (Wu et al., 2006).

6 MATERIALS AND METHODS

6.1 **Biologically relevant datasets**

8,494 pseudo hairpin sequences. We analyze 8,494 pseudo hairpin sequences that were extracted from the protein-coding regions (CDSs) according to the UCSC refGene annotation tables (Karolchik et al., 2003) and human RefSeq genes (Pruitt and Maglott 2001). As wrongly assumed 'negative samples' can distort the decision boundary of SVM in an unpredictable and/or significant manner, special requirements are imposed on the selection of genomic inverted repeats. First, they originate from genomic regions that do not undergo any known experimentally validated alternative splicing (AS) events, as described previously (Xue et al., 2005). This criterion ensures that they do not encode genuine human pre-miRs. Second, they are analogous to genuine human premiRs by displaying similar distribution in terms of their length ~90-nts, hairpin structures with stem \geq 8-bps including the GU wobble pairs, and MFEs \leq -15 kcal/mol. In addition, they fold without multiple loops in their RNA structures as verified by the RNAfold program (Hofacker 2003).

2,241 non-redundant pre-miR sequences. We retrieve 4,028 annotated pre-miR sequences spanning across 45 species from miRBase Registry Database release 8.2 (July 2006) (Griffiths-Jones et al., 2006). As strong sequence homologies exist among pre-miRs both within a single and between different specie(s), the homologs of the training pre-miRs must be excluded from the testing and independent evaluation sets. The original dataset is filtered to 90% identity using a greedy incremental clustering algorithm (Li and Godzik 2006). Briefly, all the sequences are first sorted in order of decreasing length and the longest one becomes the representative of the first cluster. Each remaining sequence is compared with the existing representatives and grouped into their cluster if the similarity with any representative is above a given threshold (default value is 0.9), else that sequence becomes the representative of a new cluster. Consequently, 2,241 non-redundant pre-miRs spanning 41 species (categorized into arthropoda, nematoda, verterbrata, viridiplantae, and viruses) serve as the reference positive set; none of the sequences from G. gorilla, M. nemestrina P. paniscus, and P. pygmaeus is retained.

12,387 functional prokaryotic and eukaryotic ncRNA sequences. We retrieve all curated seed ncRNA sequences from Rfam repository release 7.0 (March 2005) (Griffiths-Jones et al., 2005). After removing 46 types of pre-miRs, 12,387 functional prokaryotic and eukaryotic ncRNAs spanning 457 types (categorized into 16 classes) serve as the negative non pre-miR dataset. They have similar length distribution to the known *pre-miRs*, and can fold with hairpin(s) or stem-loop(s) (Eddy 2001; Storz 2002; Svoboda and Cara 2006).

31 mRNA sequences. We investigate 31 mRNA sequences that tend to fold into complex RNA structures with extremely negative MFEs (Freyhult et al., 2005). They are randomly selected from GeneBank DNA database (Benson et al., 2005) with the following GenBank accession numbers: NM_001005151.1, NM_001003967.1, NM_177233.4, AY675236.1, NM_001004202.1, NM_17-8539.2, AB164385.1, AY555511.1, AB189435.1, NM_178307.2, NM_001003-966.1, NM 205498.1, NM 013564.3, Z81556.1, NM 131070.2, X56279.1, AK045412.1, AF452886.1, BC049701.1, BC050086.1, NM_172343.1, AY18-2163.1, BC072691.1, CV127341.1, NC_004671.1, X00910.1, AY226143.1, AJ621386, CV122154.1, X68284, and CV199185.1.

Feature vector 6.2

Adjusted base pairing propensity, dP measures the total number of base pairs present in the RNA secondary structure S (Schultes et al., 1999) divided by the length L in nucleotides. It removes the bias that a long sequence tends to have more base pairs. dP ranges [0.0, 0.5], 0.0 for no base pair interactions and 0.5 for maximum of L/2 base pairs.

Adjusted minimum free energy of folding, dG measures the thermodynamic stability of RNA structure S i.e., the lowest MFE for the most favorable conformation, divided by the length L in nucleotides (Frevhult et al., 2005). It removes the bias that a long sequence tends to have lower negative MFE (Seffens and Digby 1999).

MFE Index 1, MFEI₁ is the ratio of dG and %G+C content (Zhang et al., 2006).

Adjusted shannon entropy, dQ in Eq. (1), characterizes the base pairing probability distribution (BPPD) in a RNA structure S as a chaotic dynamical system (Freyhult et al., 2005; Huynen et al., 1997; Schultes et al., 1999). Low values of dQ correspond to BPPD that are dominated by single, a few, or by the absence of base pairings. These bases are better predicted than those having multiple alternative states.

[©] The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

$$dQ = -\frac{1}{L} \sum_{i < j} p_{ij} \log_2(p_{ij}), \quad p_{ij} = \sum_{S_a \in S(x)} P(S_a) d_{ij}^a.$$
(1)

Here, p_{ij} denotes the probability of bases *i* and *j* pair, computed from the McCaskill's algorithm (J.S.McCaskill 1990); $d_{ij}^a = 1$ if *i* and *j* pair, 0 otherwise. RNA molecules exist *in vivo* as an ensemble of secondary structures $S_a \in S(\mathbf{x})$ with the Boltzmann distribution probability $P(S_a)$ (Mathews 2004).

Adjusted base pair distance, dD in Eq. (2), is the base pair distance for all pairs of structures S_a and S_β inferred from sequence **s** (Freyhult *et al.*, 2005; Moulton *et al.*, 2000).

$$dD = \frac{1}{2L} \sum_{S_a, S_b \in \mathbf{S}(s)} P(S_a) P(S_b) d_{BP}(S_a, S_b) = \frac{1}{L} \sum_{i < j} p_{ij} (1 - p_{ij}).$$
(2)

Here, the number of base pairs not shared by them is given by $d_{BF}(S_{\alpha}, S_{\beta}) = |S_{\alpha} \cap S_{\beta}| = \sum_{i < j} (a_{ij}^{\alpha} + a_{ij}^{\alpha} - 2a_{ij}^{\alpha} a_{ij}^{\alpha})$. The number of base pairs in S_{α} is $|S_{\alpha}| = \sum_{i < j} d_{ii}^{\alpha}$. Definitions of p_{ij} and d_{ij}^{α} follow those of dQ in Eq. (1).

Second (or the Fiedler) eigenvalue, dF in Eq. (3), measures the compactness of a tree-graph G = (V, E) (Fera *et al.*, 2004; Gan *et al.*, 2004). At the coarsest scale, each vertex $v \in V$ represents a bulge loop, hairpin loop, internal loop, the 5' and 3' unpaired termini, or the multi-branch loop; each edge $e \in E$ denotes a RNA stem. dF is computed from the Laplacian matrix $\mathbf{L}(G)$, a mathematical representation of the tree-graph *G*. dF can be used as a similarity measure among a collection of RNA secondary structures.

$$\mathbf{L}(G)\mathbf{X} = l\,\mathbf{X} \Leftrightarrow dF = FidlerEigen[\mathbf{L}(G)]. \tag{3}$$

*MFE Index 2, MFEI*₂ is the ratio of dG and the number of stems *S*, which are structural motifs containing more than three contiguous base pairs.

Normalized feature vectors. The Z-score $Z(s_n)$ in Eq. (4) normalizes the feature $S(s_n)$ of n^{th} native RNA sequence s_n in terms of the number of standard deviations by which $S(s_n)$ differs from the mean of inferred $R = 10^4$ random RNA sequences \mathbf{r}_n . $S(s_n)$ can be dG, dP, dQ, dD, and dF; corresponding Z-scores are denoted as zG, zP, zQ, zD, and zF.

$$Z(\mathbf{s}_{n}) = \frac{S(\mathbf{s}_{n}) - \mathbf{m}_{n}}{\mathbf{s}_{n}}, \quad \mathbf{s}_{n}^{2} = \frac{1}{R-1} \sum_{i=1}^{R} [S_{i}(\mathbf{r}_{n}) - \mathbf{m}_{n}]^{2}.$$
 (4)

Here, $S_i(\mathbf{r}_n)$ is the computed feature for the *i*th random sequence of \mathbf{r}_n , μ_n and σ_n are the sample mean and the standard deviation of the feature $S(\mathbf{s}_n)$. The entire set of *R* random sequences \mathbf{r}_n is synthesized by the "Altschul-Erikson algorithm" (Altschul and Erickson 1985), a form of dinucleotide shuffling. Briefly, it shuffles \mathbf{s}_n while preserving exactly both the mono- and di-nucleotide frequencies. The \mathbf{r}_n shares the same first and last nucleotides as \mathbf{s}_n . The order of the shuffled nucleotides is 'less random' due to fewer possible dinucleotide-preserving permutations.

6.3 Statistical tests and performance evaluation

F-scores of features. The "quality" of the i^{th} feature is described commonly by the F-scores F1 (Dror *et al.*, 2005) and F2 (Chen and Lin 2006) in Eq. (5). The larger their values for the i^{th} feature, the more likely this feature possesses discriminative importance/power.

$$F1 = \frac{\left| \mathbf{m}_{i}^{*} - \mathbf{m}_{i}^{-} \right|}{\left| \mathbf{s}_{i}^{*} + \mathbf{s}_{i}^{-} \right|}, \quad F2 = \frac{\left(\mathbf{m}_{i}^{*} - \overline{\mathbf{m}}_{i} \right)^{2} + \left(\mathbf{m}_{i}^{-} - \overline{\mathbf{m}}_{i} \right)^{2}}{\left(\mathbf{s}_{i}^{*} \right)^{2} + \left(\mathbf{s}_{i}^{-} \right)^{2}}.$$
(5)

Here $\mathbf{m}_i^*/\mathbf{m}_i^-$ and $\mathbf{s}_i^*/\mathbf{s}_i^-$ denote the means and standard deviations of the positive (+) and negative (-) training datasets, correspondingly. The numerator and denominator describe the discrimination between the two classes, and that within each of the two classes.

Performance measures. SE (Sensitivity or recall), *SP* (Specificity), *ACC* (Accuracy), *Fm* (F-measure) (Liu *et al.*, 2006), and *MCC* (Matthew's Correlation Coefficient) (Bhasin *et al.*, 2006) are defined in Eq. (6). All metrics (except *MCC*) range [0.0, 1.0]; closer to 1.0 implies better scores, and *vice-versa*. *MCC* ranges [-1.0, 1.0]; -1.0, 0.0, and 1.0 indicate worst possible, perfectly random, and best possible classification, respectively. Unlike *ACC*, *Fm* and *MCC* account for the unbalanced datasets.

$$SE = \frac{TP}{TP + FN}, \quad SP = \frac{TN}{TN + FP}, \quad ACC = \frac{TP + TN}{TP + TN + FP + FN},$$

$$Fm = \frac{2(SP \times PPV)}{SP + PPV} \quad \text{where } PPV \text{ (Positive Predictive Value)} = \frac{TP}{TP + FP}, \quad (6)$$

$$MCC = \frac{TP \times TN - FN \times FP}{\sqrt{(TP + FN)(TN + FP)(TP + FP)(TN + FN)}}.$$

Here *TP*, *FN*, *FP*, and *TN* denote the number of true/false *pre-miRs* detected/missed, correspondingly. The "quality" of a binary classification is measured by the area under the Receiver Operating Characteristic curve (ROC) or simply AUC. ROC plots the trade-off between the *SE* and *FPR* (False-positive rate = 1 - SP) across all possible thresholds (Lasko *et al.*, 2005). AUC ranges [0.5, 1.0]; closer to 0.5 (about the upward diagonal) and to 1.0 (along the left-top boundary) signify a totally random and a perfect classifier (Lasko *et al.*, 2005). In this work, AUC is computed by the trapezoidal rule (Kestler 2001).

Benchmarking miPred. Both 3SVM (Xue et al., 2005) and Naïve Bayesian Classifier (*NBC*) serve as independent baseline models to benchmark the performance improvements or deterioration (if any) of miPred. The original 3SVM was previously trained on 163 human pre-miRs and 168 pseudo hairpins using the older libSVM 2.36 with the "-b 1" option disabled. Here, 3SVM is trained on randomly selected 200 human pre-miRs and 400 pseudo hairpins using the latest libSVM 2.82 (the "-b 1" option is enabled) and the optimal hyperparameter pair (*C*, γ). 3SVM is applied to the testing and independent evaluation datasets with "svm-predict -b 1". The Bayes Classifier Induction (bci) version 2.14, a free implementation of NBC (http://fuzzy.cs.unimagdeburg.de/~borgelt/bayes.html), is used for training and testing with the exact samples and attributes employed by 3SVM and miPred; denoted as 3SVM-NBC and miPred-NBC. For training, "bci -L1" yields better classification results than the default "-L0". NBC seeks to maximize the probability $P(X|C) = P(f_1, f_2, \dots, f_n)|C)$ such that the sample X belongs to one of the binary classes C = (T, F).

REFERENCES

- Altschul,S.F. and Erickson,B.W. (1985) Significance of nucleotide sequence alignments: a method for random sequence permutation that preserves dinucleotide and codon usage. *Mol. Biol. Evol.*, 2, 526-538.
- Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-297.
- Benson, D.A. et al. (2005) GenBank. Nucleic Acids Res., 33, D34-D38.
- Bhasin, M. et al. (2006) Recognition and Classification of Histones Using Support Vector Machine. J. Comp. Biol., 13, 102-112.
- Bohnsack, M.T. et al. (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 10, 185-191.
- Brennecke, J. et al. (2005) Principles of MicroRNA-Target Recognition. PLoS Biol., 3, e85.
- Chen, Y.-W. and Lin, C.-J. (2006) Combining SVMs with various feature selection strategies. In Guyon, I., Gunn, S., Nikravesh, M. and Zadeh, L. (eds), *Feature extraction, foundations and applications. Springer*, pp. 315-323.
- Doench,J.G. and Sharp,P.A. (2004) Specificity of microRNA target selection in translational repression. *Genes Dev.*, 18, 504-511.
- Dror, G. et al. (2005) Accurate identification of alternatively spliced exons using support vector machine. *Bioinformatics*, 21, 897-901.
- Eddy,S.R. (2001) Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet., 2, 919-929.
- Fera, D. et al. (2004) RAG: RNA-As-Graphs web resource. BMC Bioinformatics, 5, 88.
- Freyhult, E. et al. (2005) A comparison of RNA folding measures. BMC Bioinformatics, 6, 241.
- Gan,H.H. et al. (2004) RAG: RNA-As-Graphs database--concepts, analysis, and features. Bioinformatics, 20, 1285-1291.
- Gregory,R.I. et al. (2005) Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing. Cell, 123, 631-640.
- Griffiths-Jones, S. et al. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res., 34, D140-D144.
- Griffiths-Jones,S. et al. (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res., 33, D121-D124.
- Hofacker, I.L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res., 31, 3429-3431.
- Huynen, M. et al. (1997) Assessing the reliability of RNA folding using statistical mechanics. J. Mol. Biol., 267, 1104-1112.
- J.S.McCaskill (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. *Biopolymers*, 29, 1105-1119.

Karolchik, D. et al. (2003) The UCSC Genome Browser Database. Nucleic Acids Res., 31, 51-54.

Kestler,H.A. (2001) ROC with confidence - a Perl program for receiver operator characteristic curves. Comput. Methods Programs Biomed., 64, 133-136.

Kim, V.N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol., 6, 376-385.

Lasko, T.A. et al. (2005) The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform., 38, 404-415.

Li,W. and Godzik,A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics*, 22, 1658-1659.

Liu, J. et al. (2006) Distinguishing Protein-Coding from Non-Coding RNAs through Support Vector Machines. PLoS Genet., 2, e29.

Maniataki, E. and Mourelatos, Z. (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. *Genes Dev.*, 19, 2979-2990.

Mathews, D.H. (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. *RNA*, 10, 1178-1190.

Moulton, V. et al. (2000) Metrics on RNA Secondary Structures. J. Comp. Biol., 7, 277-292. Pruitt, K.D. and Maglott, D.R. (2001) RefSeq and LocusLink: NCBI gene-centered resources.

Nucleic Acids Res., 29, 137-140. Rivas, F.V. et al. (2005) Purified Argonaute2 and an siRNA form recombinant human RISC.

Nat. Struct. Mol. Biol., **12**, 340-349.

Rodriguez,A. et al. (2004) Identification of Mammalian microRNA Host Genes and Transcription Units. Genome Res., 14, 1902-1910. Schultes, E.A. et al. (1999) Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol., 49, 76-83.

Seffens,W. and Digby,D. (1999) mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. *Nucleic Acids Res.*, 27, 1578-1584.

Storz,G (2002) An Expanding Universe of Noncoding RNAs. Science, 296, 1260-1263. Svoboda,P. and Cara,A.D. (2006) Hairpin RNA: a secondary structure of primary importance. Cell. Mol. Life Sci., 63, 901-908.

Tang,G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem. Sci., 30, 106-114.

Wu,L. et al. (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA, 103, 4034-4039.

Xue,C. et al. (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics, 6, 310.

Yi, R. et al. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev., 17, 3011-3016.

Zeng, Y. and Cullen, B.R. (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res., 32, 4776-4785.

Zhang, B. et al. (2006) Evidence that miRNAs are different from other RNAs. Cell. Mol. Life Sci., 63, 246-254.

Table S2. The prediction performances of *miPred*, *miPred*-*NBC*, 3SVM, and 3SVM-NBC evaluated on the *pre-miR* datasets TR-H (200 human *pre-miRs* and 400 pseudo hairpins), TE-H (remaining 123 human *pre-miRs* and 246 pseudo hairpins), and IE-NH (1,918 *pre-miRs* across 40 non-human species and 3,836 pseudo hairpins).

miPred

Species	Genus	TP	FN	Р	FP	TN	Ν	%SE	%SP	%FPR	%ACC
Homo sapiens	Vertebrata	176	24	200	10	390	400	88.00	97.50	2.50	94.33
Homo sapiens	Vertebrata	104	19	123	5	241	246	84.55	97.97	2.03	93.50
Anopheles gambiae	Arthropoda	37	1	38	1	75	76	97.37	98.68	1.32	98.25
Apis mellifera	Arthropoda	25	0	25	2	48	50	100	96	4	97.33
Arabidopsis thaliana	Viridiplantae	101	7	108	2	214	216	93.52	99.07	0.93	97.22
Ateles geoffroyi	Vertebrata	2	0	2	0	4	4	100	100	0	100
Bos taurus	Vertebrata	8	3	11	2	20	22	72.73	90.91	9.09	84.85
Caenorhabditis briggsae	Nematoda	72	4	76	1	151	152	94.74	99.34	0.66	97.81
Caenorhabditis elegans	Nematoda	96	17	113	7	219	226	84.96	96.9	3.1	92.92
Canis familiaris	Vertebrata	3	0	3	0	6	6	100	100	0	100
Danio rerio	Vertebrata	235	11	246	19	473	492	95.53	96.14	3.86	95.94
Drosophila melanogaster	Arthropoda	67	6	73	4	142	146	91.78	97.26	2.74	95.43
Drosophila pseudoobscura	Arthropoda	32	3	35	1	69	70	91.43	98.57	1.43	96.19
Epstein Barr (EBV)	Viruses	22	0	22	2	42	44	100	95.45	4.55	96.97
Fugu rubripes	Vertebrata	68	2	70	2	138	140	97.14	98.57	1.43	98.1
Gallus gallus	Vertebrata	87	5	92	4	180	184	94.57	97.83	2.17	96.74
Glycine max	Viridiplantae	20	1	21	0	42	42	95.24	100	0	98.41
Herpes Simplex (HSV)	Viruses	1	0	1	0	2	2	100	100	0	100
Human cytomegalovirus (HCMV)	Viruses	11	0	11	1	21	22	100	95.45	4.55	96.97
Kaposi sarcoma-associated herpesvirus (KSHV)	Viruses	11	1	12	0	24	24	91.67	100	0	97.22
Lagothrix lagotricha	Vertebrata	1	1	2	0	4	4	50	100	0	83.33
Lemur catta	Vertebrata	2	1	3	0	6	6	66.67	100	0	88.89
Macaca mulatta	Vertebrata	1	1	2	0	4	4	50	100	0	83.33
Medicago truncatula	Viridiplantae	17	1	18	0	36	36	94.44	100	0	98.15
Mouse y-herpesvirus (MGHV68)	Viruses	8	1	9	1	17	18	88.89	94.44	5.56	92.59
Mus musculus	Vertebrata	166	33	199	9	389	398	83.42	97.74	2.26	92.96
Oryza sativa	Viridiplantae	140	12	152	4	300	304	92.11	98.68	1.32	96.49
Ovis aries	Vertebrata	2	0	2	0	4	4	100	100	0	100
Pan troglodytes	Vertebrata	2	1	3	1	5	6	66.67	83.33	16.67	77.78
Physcomitrella patens	Viridiplantae	17	0	17	0	34	34	100	100	0	100
Populus trichocarpa	Viridiplantae	144	13	157	13	301	314	91.72	95.86	4.14	94.48
Rattus norvegicus	Vertebrata	56	12	68	10	126	136	82.35	92.65	7.35	89.22
Rhesus lymphocryptovirus	Viruses	16	0	16	2	30	32	100	93.75	6.25	95.83
Saccharum officinarum	Viridiplantae	3	1	4	0	8	8	75	100	0	91.67
Saguinus labiatus	Vertebrata	1	1	2	0	4	4	50	100	0	83.33
Simian virus (SV40)	Viruses	1	0	1	0	2	2	100	100	0	100
Sorghum bicolor	Viridiplantae	48	2	50	2	98	100	96	98	2	97.33
Sus scrofa	Vertebrata	1	1	2	0	4	4	50	100	0	83.33
Tetraodon nigroviridis	Vertebrata	40	3	43	0	86	86	93.02	100	0	97.67
Xenopus laevis	Vertebrata	4	1	5	0	10	10	80	100	0	93.33
Xenopus tropicalis	Vertebrata	119	6	125	4	246	250	95.2	98.4	1.6	97.33
Zea mays	Viridiplantae	79	0	79	5	153	158	100	96.84	3.16	97.89
Total samples		2046	195	2241	114	4368	4482				

(Species) Row 1 (TR-H), row 2 (TE-H), and the remaining rows 3–43 (IE-NH). *TP* (real *pre-miRs* detected), *FN* (real *pre-miRs* missed), *P* (real *pre-miRs*), *FP* (pseudo hairpins detected), *TN* (pseudo hairpins missed), *N* (pseudo hairpins), %*SE* (Sensitivity), %*SP* (Specificity), %*FPR* (False-positive rate), and %*ACC* (Accuracy).

miPred-NBC

Species	Genus	TP	FN	Р	FP	TN	Ν	%SE	%SP	%FPR	%ACC
Homo sapiens	Vertebrata	200	0	200	0	400	400	100.00	100.00	0.00	100.00
Homo sapiens	Vertebrata	46	77	123	36	210	246	37.40	85.37	14.63	69.38
Anopheles gambiae	Arthropoda	12	26	38	7	69	76	31.58	90.79	9.21	71.05
Apis mellifera	Arthropoda	6	19	25	6	44	50	24.00	88.00	12.00	66.67
Arabidopsis thaliana	Viridiplantae	20	88	108	27	189	216	18.52	87.50	12.50	64.51
Ateles geoffroyi	Vertebrata	0	2	2	1	3	4	0.00	75.00	25.00	50.00
Bos taurus	Vertebrata	1	10	11	2	20	22	9.09	90.91	9.09	63.64
Caenorhabditis briggsae	Nematoda	27	49	76	20	132	152	35.53	86.84	13.16	69.74
Caenorhabditis elegans	Nematoda	51	62	113	26	200	226	45.13	88.50	11.50	74.04
Canis familiaris	Vertebrata	0	3	3	1	5	6	0.00	83.33	16.67	55.56
Danio rerio	Vertebrata	71	175	246	62	430	492	28.86	87.40	12.60	67.89
Drosophila melanogaster	Arthropoda	21	52	73	17	129	146	28.77	88.36	11.64	68.49
Drosophila pseudoobscura	Arthropoda	12	23	35	5	65	70	34.29	92.86	7.14	73.33
Epstein Barr (EBV)	Viruses	6	16	22	4	40	44	27.27	90.91	9.09	69.70
Fugu rubripes	Vertebrata	10	60	70	18	122	140	14.29	87.14	12.86	62.86
Gallus gallus	Vertebrata	24	68	92	22	162	184	26.09	88.04	11.96	67.39
Glycine max	Viridiplantae	2	19	21	3	39	42	9.52	92.86	7.14	65.08
Herpes Simplex (HSV)	Viruses	0	1	1	1	1	2	0.00	50.00	50.00	33.33
Human cytomegalovirus (HCMV)	Viruses	0	11	11	5	17	22	0.00	77.27	22.73	51.52
Kaposi sarcoma-associated herpesvirus (KSHV)	Viruses	1	11	12	5	19	24	8.33	79.17	20.83	55.56
Lagothrix lagotricha	Vertebrata	0	2	2	0	4	4	0.00	100.00	0.00	66.67
Lemur catta	Vertebrata	0	3	3	2	4	6	0.00	66.67	33.33	44.44
Macaca mulatta	Vertebrata	0	2	2	0	4	4	0.00	100.00	0.00	66.67
Medicago truncatula	Viridiplantae	4	14	18	4	32	36	22.22	88.89	11.11	66.67
Mouse y-herpesvirus (MGHV68)	Viruses	2	7	9	3	15	18	22.22	83.33	16.67	62.96
Mus musculus	Vertebrata	37	162	199	52	346	398	18.59	86.93	13.07	64.15
Oryza sativa	Viridiplantae	35	117	152	37	267	304	23.03	87.83	12.17	66.23
Ovis aries	Vertebrata	0	2	2	0	4	4	0.00	100.00	0.00	66.67
Pan troglodytes	Vertebrata	2	1	3	1	5	6	66.67	83.33	16.67	77.78
Physcomitrella patens	Viridiplantae	3	14	17	3	31	34	17.65	91.18	8.82	66.67
Populus trichocarpa	Viridiplantae	33	124	157	41	273	314	21.02	86.94	13.06	64.97
Rattus norvegicus	Vertebrata	23	45	68	11	125	136	33.82	91.91	8.09	72.55
Rhesus lymphocryptovirus	Viruses	5	11	16	2	30	32	31.25	93.75	6.25	72.92
Saccharum officinarum	Viridiplantae	1	3	4	0	8	8	25.00	100.00	0.00	75.00
Saguinus labiatus	Vertebrata	0	2	2	1	3	4	0.00	75.00	25.00	50.00
Simian virus (SV40)	Viruses	0	1	1	1	1	2	0.00	50.00	50.00	33.33
Sorghum bicolor	Viridiplantae	7	43	50	13	87	100	14.00	87.00	13.00	62.67
Sus scrofa	Vertebrata	0	2	2	1	3	4	0.00	75.00	25.00	50.00
Tetraodon nigroviridis	Vertebrata	9	34	43	9	77	86	20.93	89.53	10.47	66.67
Xenopus laevis	Vertebrata	2	3	5	4	6	10	40.00	60.00	40.00	53.33
Xenopus tropicalis	Vertebrata	35	90	125	33	217	250	28.00	86.80	13.20	67.20
Zea mays	Viridiplantae	16	63	79	18	140	158	20.25	88.61	11.39	65.82
Total samples		724	1517	2241	504	3978	4482				

(Species) Row 1 (TR-H), row 2 (TE-H), and the remaining rows 3–43 (IE-NH). TP (real pre-miRs detected), FN (real pre-miRs missed), P (real pre-miRs), FP (pseudo hairpins detected), TN (pseudo hairpins missed), N (pseudo hairpins), %SE (Sensitivity), %SP (Specificity), %FPR (False-positive rate), and %ACC (Accuracy).

3SVM[†]

Species	Genus	ТР	FN	Р	FP	TN	Ν	%SE	%SP	%FPR	%ACC
Homo sapiens	Vertebrata	172	28	200	12	388	400	86.00	97.00	3.00	93.33
Homo sapiens	Vertebrata	79	29	108	10	206	216	73.15	95.37	4.63	87.96
Anopheles gambiae	Arthropoda	33	4	37	1	73	74	89.19	98.65	1.35	95.50
Apis mellifera	Arthropoda	23	2	25	1	49	50	92.00	98.00	2.00	96.00
Arabidopsis thaliana	Viridiplantae	69	2	71	5	137	142	97.18	96.48	3.52	96.71
Ateles geoffroyi	Vertebrata	2	0	2	0	4	4	100.00	100.00	0.00	100.00
Bos taurus	Vertebrata	7	1	8	3	13	16	87.50	81.25	18.75	83.33
Caenorhabditis briggsae	Nematoda	68	2	70	6	134	140	97.14	95.71	4.29	96.19
Caenorhabditis elegans	Nematoda	94	13	107	4	210	214	87.85	98.13	1.87	94.70
Canis familiaris	Vertebrata	3	0	3	1	5	6	100.00	83.33	16.67	88.89
Danio rerio	Vertebrata	201	32	233	30	436	466	86.27	93.56	6.44	91.13
Drosophila melanogaster	Arthropoda	57	9	66	7	125	132	86.36	94.70	5.30	91.92
Drosophila pseudoobscura	Arthropoda	28	7	35	1	69	70	80.00	98.57	1.43	92.38
Epstein Barr (EBV)	Viruses	19	3	22	0	44	44	86.36	100.00	0.00	95.45
Fugu rubripes	Vertebrata	48	16	64	5	123	128	75.00	96.09	3.91	89.06
Gallus gallus	Vertebrata	73	14	87	4	170	174	83.91	97.70	2.30	93.10
Glycine max	Viridiplantae	16	0	16	0	32	32	100.00	100.00	0.00	100.00
Herpes Simplex (HSV)	Viruses	0	1	1	0	2	2	0.00	100.00	0.00	66.67
Human cytomegalovirus (HCMV)	Viruses	8	3	11	0	22	22	72.73	100.00	0.00	90.91
Kaposi sarcoma-associated herpesvirus (KSHV)	Viruses	4	8	12	0	24	24	33.33	100.00	0.00	77.78
Lagothrix lagotricha	Vertebrata	1	0	1	0	2	2	100.00	100.00	0.00	100.00
Lemur catta	Vertebrata	2	0	2	0	4	4	100.00	100.00	0.00	100.00
Macaca mulatta	Vertebrata	1	0	1	0	2	2	100.00	100.00	0.00	100.00
Medicago truncatula	Viridiplantae	15	0	15	2	28	30	100.00	93.33	6.67	95.56
Mouse y-herpesvirus (MGHV68)	Viruses	5	4	9	1	17	18	55.56	94.44	5.56	81.48
Mus musculus	Vertebrata	145	41	186	5	367	372	77.96	98.66	1.34	91.76
Oryza sativa	Viridiplantae	106	9	115	11	219	230	92.17	95.22	4.78	94.20
Ovis aries	Vertebrata	1	0	1	0	2	2	100.00	100.00	0.00	100.00
Pan troglodytes	Vertebrata	2	1	3	0	6	6	66.67	100.00	0.00	88.89
Physcomitrella patens	Viridiplantae	14	0	14	0	28	28	100.00	100.00	0.00	100.00
Populus trichocarpa	Viridiplantae	106	15	121	12	230	242	87.60	95.04	4.96	92.56
Rattus norvegicus	Vertebrata	50	12	62	5	119	124	80.65	95.97	4.03	90.86
Rhesus lymphocryptovirus	Viruses	16	0	16	1	31	32	100.00	96.88	3.13	97.92
Saccharum officinarum	Viridiplantae	0	0	0	0	0	0	NaN	NaN	NaN	NaN
Saguinus labiatus	Vertebrata	0	1	1	0	2	2	0.00	100.00	0.00	66.67
Simian virus (SV40)	Viruses	1	0	1	0	2	2	100.00	100.00	0.00	100.00
Sorghum bicolor	Viridiplantae	33	2	35	2	68	70	94.29	97.14	2.86	96.19
Sus scrofa	Vertebrata	0	2	2	0	4	4	0.00	100.00	0.00	66.67
Tetraodon nigroviridis	Vertebrata	39	2	41	3	79	82	95.12	96.34	3.66	95.94
Xenopus laevis	Vertebrata	2	3	5	1	9	10	40.00	90.00	10.00	73.33
Xenopus tropicalis	Vertebrata	101	21	122	7	237	244	82.79	97.13	2.87	92.35
Zea mays	Viridiplantae	50	2	52	7	97	104	96.15	93.27	6.73	94.23
Total samples		1694	289	1983	147	3819	3966				

†, 3SVM model was trained on 200 human pre-miRs and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option was enabled) and the optimal hyperparameter pair (C, γ). (Species) Row 1 (TR-H), row 2 (TE-H), and the remaining rows 3–43 (IE-NH). TP (real pre-miRs detected), FN (real pre-miRs missed), P (real pre-miRs), FP (pseudo hairpins detected), TN (pseudo hairpins missed), N (pseudo hairpins), %SE (Sensitivity), %SP (Specificity), %FPR (False-positive rate), and %ACC (Accuracy).

3SVM-NBC

Species	Genus	TP	FN	Р	FP	TN	Ν	%SE	%SP	%FPR	%ACC
Homo sapiens	Vertebrata	196	4	200	13	387	400	98.00	96.75	3.25	97.17
Homo sapiens	Vertebrata	71	37	108	51	165	216	65.74	76.39	23.61	72.84
Anopheles gambiae	Arthropoda	27	10	37	18	56	74	72.97	75.68	24.32	74.77
Apis mellifera	Arthropoda	20	5	25	9	41	50	80.00	82.00	18.00	81.33
Arabidopsis thaliana	Viridiplantae	44	27	71	30	112	142	61.97	78.87	21.13	73.24
Ateles geoffroyi	Vertebrata	1	1	2	1	3	4	50.00	75.00	25.00	66.67
Bos taurus	Vertebrata	4	4	8	4	12	16	50.00	75.00	25.00	66.67
Caenorhabditis briggsae	Nematoda	52	18	70	23	117	140	74.29	83.57	16.43	80.48
Caenorhabditis elegans	Nematoda	87	20	107	39	175	214	81.31	81.78	18.22	81.62
Canis familiaris	Vertebrata	3	0	3	2	4	6	100.00	66.67	33.33	77.78
Danio rerio	Vertebrata	140	93	233	112	354	466	60.09	75.97	24.03	70.67
Drosophila melanogaster	Arthropoda	38	28	66	31	101	132	57.58	76.52	23.48	70.20
Drosophila pseudoobscura	Arthropoda	20	15	35	15	55	70	57.14	78.57	21.43	71.43
Epstein Barr (EBV)	Viruses	12	10	22	9	35	44	54.55	79.55	20.45	71.21
Fugu rubripes	Vertebrata	31	33	64	33	95	128	48.44	74.22	25.78	65.63
Gallus gallus	Vertebrata	48	39	87	44	130	174	55.17	74.71	25.29	68.20
Glycine max	Viridiplantae	5	11	16	5	27	32	31.25	84.38	15.63	66.67
Herpes Simplex (HSV)	Viruses	0	1	1	0	2	2	0.00	100.00	0.00	66.67
Human cytomegalovirus (HCMV)	Viruses	3	8	11	1	21	22	27.27	95.45	4.55	72.73
Kaposi sarcoma-associated herpesvirus (KSHV)	Viruses	2	10	12	5	19	24	16.67	79.17	20.83	58.33
Lagothrix lagotricha	Vertebrata	1	0	1	0	2	2	100.00	100.00	0.00	100.00
Lemur catta	Vertebrata	2	0	2	0	4	4	100.00	100.00	0.00	100.00
Macaca mulatta	Vertebrata	1	0	1	1	1	2	100.00	50.00	50.00	66.67
Medicago truncatula	Viridiplantae	8	7	15	6	24	30	53.33	80.00	20.00	71.11
Mouse y-herpesvirus (MGHV68)	Viruses	4	5	9	7	11	18	44.44	61.11	38.89	55.56
Mus musculus	Vertebrata	110	76	186	83	289	372	59.14	77.69	22.31	71.51
Oryza sativa	Viridiplantae	73	42	115	56	174	230	63.48	75.65	24.35	71.59
Ovis aries	Vertebrata	1	0	1	1	1	2	100.00	50.00	50.00	66.67
Pan troglodytes	Vertebrata	2	1	3	1	5	6	66.67	83.33	16.67	77.78
Physcomitrella patens	Viridiplantae	7	7	14	3	25	28	50.00	89.29	10.71	76.19
Populus trichocarpa	Viridiplantae	73	48	121	52	190	242	60.33	78.51	21.49	72.45
Rattus norvegicus	Vertebrata	39	23	62	24	100	124	62.90	80.65	19.35	74.73
Rhesus lymphocryptovirus	Viruses	10	6	16	6	26	32	62.50	81.25	18.75	75.00
Saccharum officinarum	Viridiplantae	0	0	0	0	0	0	NaN	NaN	NaN	NaN
Saguinus labiatus	Vertebrata	0	1	1	0	2	2	0.00	100.00	0.00	66.67
Simian virus (SV40)	Viruses	1	0	1	0	2	2	100.00	100.00	0.00	100.00
Sorghum bicolor	Viridiplantae	19	16	35	14	56	70	54.29	80.00	20.00	71.43
Sus scrofa	Vertebrata	1	1	2	0	4	4	50.00	100.00	0.00	83.33
Tetraodon nigroviridis	Vertebrata	18	23	41	17	65	82	43.90	79.27	20.73	67.48
Xenopus laevis	Vertebrata	0	5	5	1	9	10	0.00	90.00	10.00	60.00
Xenopus tropicalis	Vertebrata	68	54	122	49	195	244	55.74	79.92	20.08	71.86
Zea mays	Viridiplantae	18	34	52	30	74	104	34.62	71.15	28.85	58.97
Total samples		1260	723	1983	796	3170	3966				

(Species) Row 1 (TR-H), row 2 (TE-H), and the remaining rows 3-43 (IE-NH). TP (real pre-miRs detected), FN (real pre-miRs missed), P (real pre-miRs), FP (pseudo hairpins detected), TN (pseudo hairpins missed), N (pseudo hairpins), %SE (Sensitivity), %SP (Specificity), %FPR (False-positive rate), and %ACC (Accuracy).

Table S3. The mean sensitivity and specificity of *miPred*, *miPred*-NBC, 3SVM, and 3SVM-NBC evaluated on the non-human *pre-miR* dataset IE-NH (1,918 *pre-miRs* across 40 non-human species and 3,836 pseudo hairpins) categorized by genus of *pre-miRs*.

		m	iPred	miPr	ed-NBC		35	VM [‡]	3SVI	M-NBC
Genus	No. of species	%SE	%SP	%SE	%SP	No. of excluded species	%SE	%SP	%SE	%SP
Arthropoda	4	95.14	97.63	29.66	90.00	0	86.89	97.48	66.92	78.19
		± 2.11	± 0.63	± 2.20	± 1.14		± 2.57	± 0.94	± 5.71	± 1.41
Viridiplantae	9	93.11	98.72	19.02	90.09	1	95.92	96.31	51.16	79.73
		± 2.47	± 0.51	± 1.60	± 1.40		± 1.57	± 0.93	± 4.31	± 1.92
Vertebrata [†]	18	79.29	97.53	15.91	84.83	0	76.44	96.11	61.23	79.58
		± 4.56	± 1.05	± 4.43	± 2.60		± 7.48	± 1.35	± 7.22	± 3.53
Nematoda	2	89.85	98.12	40.33	87.67	0	92.50	96.92	77.80	82.68
		± 4.89	± 1.22	± 4.80	± 0.83		± 4.65	± 1.21	± 3.51	± 0.90
Viruses	7	97.22	97.01	12.72	74.92	0	64.00	98.76	43.63	85.22
		± 1.81	± 1.08	± 5.23	± 6.81		± 14.04	± 0.84	± 12.49	± 5.36

 \dagger , *Homo sapiens* is excluded. \ddagger , *3SVM* model was trained on 200 human *pre-miRs* and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option was enabled) and the optimal hyperparameter pair (*C*, γ). *%SE* (Sensitivity) and *%SP* (Specificity). Values are expressed as mean \pm standard error.

Table S4. The prediction performances of *miPred*, *miPred-NBC*, 3SVM, and 3SVM-NBC evaluated on the non *pre-miR* datasets IE-NC (12,387 functional ncRNAs) and IE-M (31 mRNAs).

				m	Pred	miPre	ed-NBC		35	SVM [‡] .	3SVI	M-NBC
Accession	$Type^{\dagger}$	Class	Ν	TN	%SP	TN	%SP	Ν	TN	%SP	TN	%SP
RF00001	5S ribosomal RNA	Gene/rRNA	589	409	69.44	517	87.78	2	2	100.00	1	50.00
RF00002	5.8S ribosomal RNA	Gene/rRNA	63	59	93.65	59	93.65	1	1	100.00	1	100.00
RF00003	U1 spliceosomal RNA	Gene/snRNA/splicing	54	38	70.37	45	83.33	0	0	NaN	0	NaN
RF00004	U2 spliceosomal RNA	Gene/snRNA/splicing	73	8	10.96	53	72.60	0	0	NaN	0	NaN
RF00005	tRNA	Gene/tRNA	1114	953	85.55	969	86.98	158	150	94.94	142	89.87
RF00006	Vault RNA	Gene	9	5	55.56	8	88.89	3	3	100.00	1	33.33
RF00007	U12 minor spliceosomal RNA	Gene/snRNA/splicing	7	4	57.14	7	100.00	0	0	NaN	0	NaN
RF00008	Hammerhead ribozyme (type III)	Gene/ribozyme	84	61	72.62	68	80.95	1	1	100.00	1	100.00
RF00009	Nuclear RNase P	Gene/ribozyme	53	16	30.19	50	94.34	0	0	NaN	0	NaN
RF00010	Bacterial RNase P class A	Gene/ribozyme	236	77	32.63	203	86.02	0	0	NaN	0	NaN
RF00011	Bacterial RNase P class B	Gene/ribozyme	30	12	40.00	28	93.33	0	0	NaN	0	NaN
RF00012	U3 small nucleolar RNA	Gene/snRNA/guide/C/D-box	21	10	47.62	18	85.71	0	0	NaN	0	NaN
RF00013	6S / SsrS RNA	Gene	7	1	14.29	6	85.71	2	0	0.00	1	50.00
RF00014	DsrA RNA	Gene/sRNA	3	0	0.00	2	66.67	0	0	NaN	0	NaN
RF00015	U4 spliceosomal RNA	Gene/snRNA/splicing	25	21	84.00	25	100.00	1	1	100.00	1	100.00
RF00016	U14 small nucleolar RNA	Gene/snRNA/guide/C/D-box	18	17	94.44	16	88.89	2	2	100.00	2	100.00
RF00017	Eukaryotic type signal recognition particle RNA	Gene	70	3	4.29	61	87.14	0	0	NaN	0	NaN
RF00018	CsrB/RsmB RNA family	Gene/sRNA	9	9	100.00	8	88.89	0	0	NaN	0	NaN
RF00019	Y RNA	Gene	15	9	60.00	12	80.00	5	5	100.00	2	40.00
RF00020	U5 spliceosomal RNA	Gene/snRNA/splicing	32	12	37.50	26	81.25	0	0	NaN	0	NaN
RF00021	Spot 42 RNA	Gene/sRNA	8	0	0.00	8	100.00	0	0	NaN	0	NaN
RF00022	GcvB RNA	Gene/sRNA	5	3	60.00	5	100.00	0	0	NaN	0	NaN
RF00023	tmRNA	Gene	87	53	60.92	79	90.80	0	0	NaN	0	NaN
RF00024	Vertebrate telomerase RNA	Gene	35	10	28.57	31	88.57	0	0	NaN	0	NaN
RF00025	Ciliate telomerase RNA	Gene	16	13	81.25	12	75.00	0	0	NaN	0	NaN
RF00026	U6 spliceosomal RNA	Gene/snRNA/splicing	53	52	98.11	48	90.57	0	0	NaN	0	NaN
RF00028	Group I catalytic intron	Intron	30	15	50.00	29	96.67	0	0	NaN	0	NaN
RF00029	Group II catalytic intron	Intron	116	37	31.90	89	76.72	0	0	NaN	0	NaN
RF00030	RNase MRP	Gene/ribozyme	26	9	34.62	25	96.15	0	0	NaN	0	NaN
RF00031	Selenocysteine insertion sequence	Cis-reg	64	52	81.25	50	78.13	56	56	100.00	50	89.29
RF00032	Histone 3' UTR stem-loop	Cis-reg	64	64	100.00	57	89.06	26	26	100.00	26	100.00
RF00033	MicF RNA	Gene/antisense	9	8	88.89	6	66.67	0	0	NaN	0	NaN
RF00034	RprA RNA	Gene/sRNA	9	7	77.78	9	100.00	0	0	NaN	0	NaN
RF00035	OxyS RNA	Gene/sRNA	6	4	66.67	6	100.00	0	0	NaN	0	NaN
RF00036	HIV Rev response element	Cis-reg	65	0	0.00	39	60.00	0	0	NaN	0	NaN
RF00037	Iron response element	Cis-reg	39	39	100.00	33	84.62	0	0	NaN	0	NaN
RF00038	PrfA thermoregulator UTR	Cis-reg/thermoregulator	11	11	100.00	11	100.00	5	5	100.00	5	100.00
RF00039	DicF RNA	Gene/antisense	5	5	100.00	5	100.00	2	2	100.00	2	100.00
RF00040	RNase E 5' UTR element	Cis-reg	7	5	71.43	7	100.00	0	0	NaN	0	NaN
RF00041	Enteroviral 3' UTR element	Cis-reg	60	49	81.67	45	75.00	0	0	NaN	0	NaN
RF00042	CopA-like RNA	Gene/antisense	17	0	0.00	11	64.71	0	0	NaN	0	NaN
RF00043	R1162-like plasmid antisense RNA	Gene/antisense	6	6	100.00	5	83.33	0	0	NaN	0	NaN
RF00044	Bacteriophage pRNA	Gene	3	0	0.00	3	100.00	0	0	NaN	0	NaN
RF00045	U17/E1 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	23	16	69.57	18	78.26	0	0	NaN	0	NaN
RF00046	Small nucleolar RNA R30/Z108	Gene/snRNA/guide/C/D-box	6	6	100.00	2	33.33	0	0	NaN	0	NaN
RF00048	Enterovirus cis-acting replication element	Cis-reg	56	31	55.36	35	62.50	56	30	53.57	23	41.07
RF00049	U36/R47/Z100 small nucleolar RNA	Gene/snRNA/guide/C/D-box	20	20	100.00	19	95.00	3	3	100.00	2	66.67
RF00050	FMN riboswitch (RFN element)	Cis-reg/riboswitch	48	41	85.42	45	93.75	0	0	NaN	0	NaN
RF00054	U25 small nucleolar RNA	Gene/snRNA/guide/C/D-box	8	8	100.00	7	87.50	2	2	100.00	1	50.00
RF00055	Small nucleolar RNA Z37	Gene/snRNA/guide/C/D-box	8	8	100.00	5	62.50	0	0	NaN	0	NaN
RF00056	U71 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	15	10	66.67	11	73.33	0	0	NaN	0	NaN
RF00057	RyhB RNA	Gene/sRNA	9	9	100.00	6	66.67	0	0	NaN	0	NaN
RF00058	HgcF RNA	Gene	4	0	0.00	4	100.00	0	0	NaN	0	NaN
RF00059	TPP riboswitch (THI element)	Cis-reg/riboswitch	236	223	94.49	201	85.17	4	4	100.00	4	100.00

				m	iPred	miPre	ed-NBC		35	SVM [‡] .	3SVA	M-NBC
Accession	$Type^{\dagger}$	Class	Ν	TN	%SP	TN	%SP	Ν	TN	%SP	TN	%SP
RF00060	HgcE RNA	Gene	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00061	Hepatitis C virus IRES	Cis-reg/IRES	786	658	83.72	674	85.75	1	0	0.00	0	0.00
RF00062	HgcC family RNA	Gene	22	7	31.82	22	100.00	0	0	NaN	0	NaN
RF00063	SscA RNA	Gene	5	5	100.00	3	60.00	0	0	NaN	0	NaN
RF00064	HgcG RNA	Gene	3	0	0.00	3	100.00	0	0	NaN	0	NaN
RF00065	snoR9 / snoR19 family	Gene/snRNA/guide/C/D-box	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00066	U7 small nuclear RNA	Gene/snRNA	28	24	85.71	24	85.71	7	7	100.00	7	100.00
RF00067	U15 small nucleolar RNA	Gene/snRNA/guide/C/D-box	18	16	88.89	15	83.33	2	1	50.00	2	100.00
RF00068	U21 small nucleolar RNA	Gene/snRNA/guide/C/D-box	5	5	100.00	4	80.00	3	3	100.00	1	33.33
RF00069	U24/Z20/U76 small nucleolar RNA	Gene/snRNA/guide/C/D-box	14	14	100.00	10	71.43	3	3	100.00	3	100.00
RF00070	Small nucleolar RNA U29	Gene/snRNA/guide/C/D-box	10	10	100.00	6	60.00	2	2	100.00	2	100.00
RF00071	U73 small nucleolar RNA	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	2	2	100.00	2	100.00
RF00072	U23 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	6	2	33.33	3	50.00	0	0	NaN	0	NaN
RF00077	SraB RNA	Gene/sRNA	4	4	100.00	3	75.00	0	0	NaN	0	NaN
RF00078	SraD RNA	Gene/sRNA	5	5	100.00	4	80.00	0	0	NaN	0	NaN
RF00079	SraE/RygA/RygB family RNA	Gene/sRNA	6	5	83.33	4	66.67	0	0	NaN	0	NaN
RF00080	yybP-ykoY element	Cis-reg/riboswitch	74	52	70.27	70	94.59	2	2	100.00	1	50.00
RF00081	SraH RNA	Gene/sRNA	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00082	SraG RNA	Gene/sRNA	5	4	80.00	5	100.00	0	0	NaN	0	NaN
RF00083	SraJ RNA	Gene/sRNA	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00084	CsrC RNA family	Gene/sRNA	5	1	20.00	4	80.00	0	0	NaN	0	NaN
RF00085	U28 small nucleolar RNA	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	2	2	100.00	1	50.00
RF00086	U2//Z191/snR/4/Z4 small nucleolar RNA	Gene/snRNA/guide/C/D-box	10	10	100.00	7	70.00	0	0	NaN	0	NaN
RF00087	U26 small nucleolar RNA	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	2	0	0.00	2	50.00
RF00088	USU small nucleolar KIVA	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	2	1	50.00	1	50.00
RF00089	U31 small nucleolar KNA	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	4	4	100.00	2	50.00
RF00090	U 19 small nucleolar KIVA	Gene/snRNA/guide/H/ACA-box	3	0	0.00	2	00.07	0	0	INAIN	0	INAIN
RF00091	Small nucleolar RNA E2/ACA0/M2/MBI-150	Gene/snRNA/guide/H/ACA-box	10	2	20.00	8	100.00	0	0	NaN	0	NaN
RF00092	ES Small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	9	4	44.44	9	87.50	10	0	INAIN	0	INAIN 80.00
RF00093	Henetitis delta virus ribozyma	Gene/shKtvA/guide/C/D-box	15	14	03.33	14	100.00	0	9	90.00 NaN	0	NoN
RF00094	Pure access C/D has small much color PNA	Gene/nb02yme	29	29	100.00	27	07.27	19	19	100.00	17	1 Nai N
RF00095	Ils small nucleolar PNA	Gene/snRNA/guide/C/D-box	5	20	40.00	2	60.00	10	10	NoN	0	94.44 NoN
RF00090	Plant small nucleolar RNA R71	Gene/snRNA/guide/C/D-box	21	18	40.00	21	100.00	0	0	NaN	0	NaN
RF00098	Snake H/ACA box small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	21	22	100.00	20	90.91	0	0	NaN	0	NaN
RF00099	U22 small nucleolar RNA	Gene/snRNA/guide/C/D-hox	3	22	66.67	20	66.67	0	0	NaN	0	NaN
RF00100	7SK RNA	Gene	4	4	100.00	3	75.00	0	0	NaN	0	NaN
RF00101	SraC/RyeA RNA	Gene/sRNA	7	3	42.86	7	100.00	0	0	NaN	0	NaN
RF00102	VA RNA	Gene	23	0	0.00	22	95.65	0	0	NaN	0	NaN
RF00105	HBII-52 small nucleolar RNA	Gene/snRNA/guide/C/D-box	23	23	100.00	14	60.87	1	1	100.00	1	100.00
RF00106	RNAI	Gene/antisense	10	0	0.00	6	60.00	0	0	NaN	0	NaN
RF00107	FinP	Gene	6	0	0.00	6	100.00	0	0	NaN	0	NaN
RF00108	HBII-85 small nucleolar RNA	Gene/snRNA/guide/C/D-box	7	7	100.00	7	100.00	0	0	NaN	0	NaN
RF00109	Vimentin 3' UTR protein-binding region	Cis-reg	12	12	100.00	11	91.67	2	2	100.00	2	100.00
RF00110	RybB RNA	Gene/sRNA	4	2	50.00	4	100.00	2	2	100.00	0	0.00
RF00111	RyeB RNA	Gene/sRNA	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00112	RyeE RNA	Gene/sRNA	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00113	QUAD RNA	Gene/sRNA	15	6	40.00	15	100.00	0	0	NaN	0	NaN
RF00114	Ribosomal S15 leader	Cis-reg	11	11	100.00	7	63.64	0	0	NaN	0	NaN
RF00115	IS061 RNA	Gene/sRNA	5	5	100.00	2	40.00	0	0	NaN	0	NaN
RF00116	C0465 RNA	Gene/sRNA	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00117	C0719 RNA	Gene/sRNA	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00118	rydB RNA	Gene/sRNA	5	5	100.00	4	80.00	5	5	100.00	0	0.00
RF00119	C0299 RNA	Gene/sRNA	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00120	C0343 RNA	Gene/sRNA	4	4	100.00	1	25.00	0	0	NaN	0	NaN
RF00121	MicC RNA	Gene/sRNA	4	3	75.00	3	75.00	0	0	NaN	0	NaN
RF00122	GadY	Gene/sRNA	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00124	IS102 RNA	Gene/sRNA	8	1	12.50	8	100.00	0	0	NaN	0	NaN
RF00125	IS128 RNA	Gene/sRNA	3	1	33.33	3	100.00	0	0	NaN	0	NaN

								1				
				m	Pred	miPre	ed-NBC		35	VM [‡]	3SVI	A-NBC
Accession	$Type^{\dagger}$	Class	Ν	TN	%SP	TN	%SP	Ν	TN	%SP	TN	%SP
RF00126	rvfA RNA	Gene/sRNA	6	0	0.00	6	100.00	0	0	NaN	0	NaN
RF00127	t44 RNA	Gene/sRNA	9	4	44.44	9	100.00	0	0	NaN	0	NaN
RF00128	tke1 RNA	Gene/sRNA	7	2	28.57	5	71.43	0	0	NaN	0	NaN
RF00132	Small nucleolar RNA R24	Gene/snRNA/guide/C/D-box	12	7	58.33	9	75.00	4	2	50.00	1	25.00
RF00133	Small nucleolar RNA Z195	Gene/snRNA/guide/C/D-box	8	8	100.00	8	100.00	0	0	NaN	0	NaN
RF00134	Small nucleolar RNA Z196	Gene/snRNA/guide/C/D-box	7	7	100.00	3	42.86	0	0	NaN	0	NaN
RF00135	Small nucleolar RNA Z223	Gene/snRNA/guide/C/D-box	5	4	80.00	4	80.00	2	2	100.00	0	0.00
RF00136	U81 small nucleolar RNA	Gene/snRNA/guide/C/D-box	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00137	U83/U84 small nucleolar RNA	Gene/snRNA/guide/C/D-box	7	7	100.00	7	100.00	0	0	NaN	0	NaN
RF00138	U16 small nucleolar RNA	Gene/snRNA/guide/C/D-box	5	3	60.00	5	100.00	3	2	66.67	2	66.67
RF00139	U72 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	7	4	57.14	7	100.00	0	0	NaN	0	NaN
RF00140	Alpha operon ribosome binding site	Cis-reg	9	3	33.33	8	88.89	0	0	NaN	0	NaN
RF00141	Small nucleolar RNA R39/R59	Gene/snRNA/guide/C/D-box	6	6	100.00	6	100.00	0	0	NaN	0	NaN
RF00142	Small nucleolar RNA Z118/Z121/Z120	Gene/snRNA/guide/C/D-box	7	4	57.14	4	57.14	2	2	100.00	1	50.00
RF00145	Small nucleolar RNA Z105	Gene/snRNA/guide/C/D-box	5	5	100.00	5	100.00	1	1	100.00	1	100.00
RF00146	Small nucleolar RNA U33	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00147	Small nucleolar RNA U34	Gene/snRNA/guide/C/D-box	9	9	100.00	8	88.89	4	3	75.00	3	75.00
RF00149	Small nucleolar RNA Z103	Gene/snRNA/guide/C/D-box	9	9	100.00	7	77.78	0	0	NaN	0	NaN
RF00150	Small nucleolar RNA U42	Gene/snRNA/guide/C/D-box	7	7	100.00	6	85.71	0	0	NaN	0	NaN
RF00151	Small nucleolar RNA U58	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00152	Small nucleolar RNA U79/Z22	Gene/snRNA/guide/C/D-box	6	6	100.00	6	100.00	3	3	100.00	0	0.00
RF00153	Small nucleolar RNA U62	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	1	1	100.00	1	100.00
RF00154	Small nucleolar RNA U63	Gene/snRNA/guide/C/D-box	2	2	100.00	1	50.00	1	1	100.00	1	100.00
RF00155	Small nucleolar RNA U66	Gene/snRNA/guide/H/ACA-box	3	1	33.33	2	66.67	0	0	NaN	0	NaN
RF00156	Small nucleolar RNA U70	Gene/snRNA/guide/H/ACA-box	14	11	78.57	13	92.86	0	0	NaN	0	NaN
RF00157	Small nucleolar RNA U39/U55	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00158	Small nucleolar RNA U82/Z25	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	1	1	100.00	1	100.00
RF00159	Small nucleolar RNA Z168/Z174	Gene/snRNA/guide/C/D-box	6	6	100.00	6	100.00	0	0	NaN	0	NaN
RF00160	Small nucleolar RNA Z159/U59	Gene/snRNA/guide/C/D-box	10	10	100.00	9	90.00	0	0	NaN	0	NaN
RF00161	Nanos 3' UTR translation control element	Cis-reg	2	1	50.00	1	50.00	0	0	NaN	0	NaN
RF00162	SAM riboswitch (S box leader)	Cis-reg/riboswitch	71	53	74.65	60	84.51	1	1	100.00	0	0.00
RF00163	Hammerhead ribozyme (type I)	Gene/ribozyme	74	72	97.30	67	90.54	39	36	92.31	26	66.67
RF00164	Coronavirus 3' stem-loop II-like motif (s2m)	Cis-reg	37	37	100.00	37	100.00	33	33	100.00	32	96.97
RF00165	Coronavirus 3' UTR pseudoknot	Cis-reg	14	14	100.00	13	92.86	0	0	NaN	0	NaN
RF00166	PrrB/RsmZ RNA family	Gene/sRNA	6	6	100.00	5	83.33	0	0	NaN	0	NaN
RF00167	Purine riboswitch	Cis-reg/riboswitch	37	36	97.30	23	62.16	0	0	NaN	0	NaN
RF00168	Lysine riboswitch	Cis-reg/riboswitch	60	37	61.67	54	90.00	0	0	NaN	0	NaN
RF00169	Bacterial signal recognition particle RNA	Gene	70	43	61.43	52	74.29	58	55	94.83	32	55.17
RF00170	Retron msr RNA	Gene	8	7	87.50	6	75.00	2	2	100.00	1	50.00
RF00171	Tombusvirus 5' UTR	Cis-reg	9	9	100.00	9	100.00	1	0	0.00	1	100.00
RF00172	ctgf/hcs24 CAESAR	Cis-reg	9	9	100.00	8	88.89	0	0	NaN	0	NaN
RF00173	Hairpin ribozyme	Gene/ribozyme	3	3	100.00	3	100.00	1	1	100.00	0	0.00
RF00174		Cis-reg/riboswitch	1/0	155	/9.41	15/	92.35	0	0	NaN	0	NaN
RF00175	Ketroviral Psi packaging element	Cis-reg	108	108	100.00	150	92.80	0	0	INAIN	0	INAIN
RF00170	Tombusvirus 3 UTR region IV	Cis-reg	18	18	100.00	225	94.44	0	0	NaN	0	NaN
RF00177	Small subunit ribosomai KINA, 5 aomain	Gene/rKivA	338	0	40.00	323	90.78	0	4	100.00	4	100.00
RF00179	GAIT element	Cis-reg	0	0	100.00	0	100.00	4	4	100.00 NoN	4	NoN
RF00180	Kenin stability regulatory element (KEN-SKE) C/D has small muchaeler PNA $1/a(I)/1/a(II)$	Caselon PNA louidelC/D her	15	57	06.61	50	24.75	26	26	100.00	22	1 nain
RF00181	C/D box small nucleolar RIVA 14q(1)/14q(1)	Gene/snkivA/guide/C/D-box	15	10	90.01	15	04.75 100.00	15	5	33 33	55	33 33
RF00182	C CSE factor stor loop destabilising element (SLDE)	Cis-reg	15	10	100.07	6	100.00	15	0	55.55 NoN	0	33.33 NoN
RF00183	Potato virus V cis acting regulatory element (SLDE)	Cis-reg	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00185	Flavivirus 3' UTR pseudobaot	Cis-reg	1/	2	21/13	11	78 57	0	0	NaN	0	NaM
RF00186	Small nucleolar RNA U101	GenelsnRNA JouidelC/D-box	3	3	100.00	3	100.00	3	3	100.00	3	100.00
RF00187	Small nucleolar RNA 11102	Gene/snRNA/guide/C/D-box	2	2	100.00	2	100.00	2	2	100.00	2	100.00
RF00188	Small nucleolar RNA U103	GenelsnRNA/quide/C/D-box	3	2	100.00	2	100.00	0	0	NaN	0	NaN
RF00189	Small nucleolar RNA U95	Gene/snRNA/guide/C/D-box	5	5	100.00	4	80.00	5	5	100.00	5	100.00
RF00190	U98 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	3	3	100.00	2	66.67	0	0	NaN	0	NaN

				m	iPred	miPre	ed-NBC		35	SVM‡ .	3SVN	1-NBC
Accession	$Type^{\dagger}$	Class	Ν	TN	%SP	TN	%SP	Ν	TN	%SP	TN	%SP
RF00191	U99 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	3	1	33.33	3	100.00	0	0	NaN	0	NaN
RF00192	Bovine leukaemia virus RNA packaging signal	Cis-reg	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00193	Citrus tristeza virus replication signal	Cis-reg	9	9	100.00	9	100.00	0	0	NaN	0	NaN
RF00194	Rubella virus 3' cis-acting element	Cis-reg	9	9	100.00	9	100.00	0	0	NaN	0	NaN
RF00195	RsmY RNA family	Gene/sRNA	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00196	Alfalfa mosaic virus RNA 1 5' UTR stem-loop	Cis-reg	4	2	50.00	0	0.00	2	2	100.00	0	0.00
RF00197	rbcL 5' UTR RNA stabilising element	Cis-reg	3	2	66.67	3	100.00	0	0	NaN	0	NaN
RF00198	SL1 RNA	Gene	28	0	0.00	24	85.71	0	0	NaN	0	NaN
RF00199	SL2 RNA	Gene	32	10	31.25	24	75.00	0	0	NaN	0	NaN
RF00200	Small nucleolar RNA Z199	Gene/snRNA/guide/C/D-box	8	8	100.00	7	87.50	6	6	100.00	4	66.67
RF00201	Small nucleolar RNA Z278	Gene/snRNA/guide/C/D-box	7	5	71.43	7	100.00	7	7	100.00	5	71.43
RF00202	Small nucleolar RNA R66	Gene/snRNA/guide/C/D-box	6	6	100.00	6	100.00	1	1	100.00	1	100.00
RF00203	Small nucleolar RNA R160	Gene/snRNA/guide/C/D-box	9	9	100.00	9	100.00	4	4	100.00	4	100.00
RF00204	Small nucleolar RNA R12	Gene/snRNA/guide/C/D-box	9	9	100.00	8	88.89	2	2	100.00	2	100.00
RF00205	Small nucleolar RNA R41	Gene/snRNA/guide/C/D-box	7	7	100.00	6	85.71	7	7	100.00	1	14.29
RF00206	Small nucleolar RNA U54	Gene/snRNA/guide/C/D-box	13	13	100.00	11	84.62	1	1	100.00	1	100.00
RF00207	K10 transport/localisation element (TLS)	Cis-reg	3	0	0.00	3	100.00	0	0	NaN	0	NaN
RF00208	Small nucleolar RNA R72	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	0	0	NaN	0	NaN
RF00209	Pestivirus IRES	Cis-reg/IRES	25	1	4.00	20	80.00	0	0	NaN	0	NaN
RF00210	Aphthovirus IRES	Cis-reg/IRES	32	2	6.25	29	90.63	0	0	NaN	0	NaN
RF00211	Small nucleolar RNA U35	Gene/snRNA/guide/C/D-box	8	8	100.00	5	62.50	1	1	100.00	0	0.00
RF00212	U38 small nucleolar RNA	Gene/snRNA/guide/C/D-box	7	7	100.00	6	85.71	3	3	100.00	2	66.67
RF00213	Small nucleolar RNA R38	Gene/snRNA/guide/C/D-box	12	10	83.33	11	91.67	6	6	100.00	3	50.00
RF00214	Retrovirus direct repeat 1 (dr1)	Cis-reg	25	24	96.00	21	84.00	1	0	0.00	1	100.00
RF00215	Tombus virus defective interfering (DI) RNA region 3	Cis-reg	48	48	100.00	34	70.83	6	6	100.00	6	100.00
RF00216	c-myc IRES	Cis-reg/IRES	23	23	100.00	21	91.30	0	0	NaN	0	NaN
RF00217	Small nucleolar RNA U20	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	4	4	100.00	3	75.00
RF00218	Small nucleolar RNA U40	Gene/snRNA/guide/C/D-box	9	9	100.00	9	100.00	8	8	100.00	4	50.00
RF00219	Small nucleolar RNA U32	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00220	Human rhinovirus internal cis-acting regulatory element	Cis-reg	12	12	100.00	12	100.00	10	10	100.00	10	100.00
RF00221	Small nucleolar RNA U43	Gene/snRNA/guide/C/D-box	6	5	83.33	3	50.00	3	2	66.67	3	100.00
RF00222	Bag-1 IRES	Cis-reg/IRES	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00223	bip IRES	Cis-reg/IRES	4	4	100.00	4	100.00	2	2	100.00	2	100.00
RF00224	FGF-2 IRES	Cis-reg/IRES	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00225	Tobamovirus IRES	Cis-reg/IRES	7	7	100.00	7	100.00	0	0	NaN	0	NaN
RF00226	n-myc IRES	Cis-reg/IRES	6	6	100.00	6	100.00	0	0	NaN	0	NaN
RF00227	FIE3 (ftz instability element 3') element	Cis-reg	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00228	Hepatitis A virus IRES	Cis-reg/IRES	23	9	39.13	22	95.65	0	0	NaN	0	NaN
RF00229	Picornavirus IRES	Cis-reg/IRES	195	96	49.23	180	92.31	0	0	NaN	0	NaN
RF00230	T-box leader	Cis-reg	66	28	42.42	60	90.91	0	0	NaN	0	NaN
RF00231	U93 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	3	1	33.33	3	100.00	0	0	NaN	0	NaN
RF00232	Spi-1 (PU.1) 5' UTR regulatory element	Cis-reg	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00233	Tymovirus/Pomovirus tRNA-like 3' UTR element	Cis-reg	27	27	100.00	23	85.19	0	0	NaN	0	NaN
RF00234	glmS glucosamine-6-phosphate activated ribozyme	Cis-reg/riboswitch	14	10	71.43	11	78.57	0	0	NaN	0	NaN
RF00235	Plasmid RNAIII	Gene	7	0	0.00	7	100.00	0	0	NaN	0	NaN
RF00236	ctRNA	Gene/antisense	17	0	0.00	16	94.12	0	0	NaN	0	NaN
RF00238	ctRNA	Gene/antisense	48	5	10.42	44	91.67	0	0	NaN	0	NaN
RF00240	RNA-OUT	Gene	7	0	0.00	3	42.86	7	2	28.57	3	42.86
RF00242	ctRNA	Gene/antisense	15	6	40.00	10	66.67	0	0	NaN	0	NaN
RF00243	traJ 5' UTR	Cis-reg	6	2	33.33	6	100.00	0	0	NaN	0	NaN
RF00250	Trans-activation response element (TAR)	Cis-reg	416	26	6.25	370	88.94	412	49	11.89	221	53.64
RF00252	Alfalfa mosaic virus coat protein binding (CPB) RNA	Cis-reg	18	2	11.11	18	100.00	0	0	NaN	0	NaN
RF00259	Interferon gamma 5' UTR regulatory element	Cis-reg	5	5	100.00	2	40.00	0	0	NaN	0	NaN
RF00260	Hepatitis C virus (HCV) cis-acting replication element	Cis-reg	52	52	100.00	52	100.00	52	52	100.00	46	88.46
RF00261	L-myc IRES	Cis-reg/IRES	2	2	100.00	2	100.00	0	0	NaN	0	NaN
RF00262	sar RNA	Gene	3	0	0.00	3	100.00	0	0	NaN	0	NaN
RF00263	U68 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	4	3	75.00	3	75.00	0	0	NaN	0	NaN
RF00264	Small nucleolar RNA U64	Gene/snRNA/guide/H/ACA-box	3	1	33.33	3	100.00	0	0	NaN	0	NaN
RF00265	Small nucleolar RNA U69	Gene/snRNA/guide/H/ACA-box	3	1	33.33	2	66.67	0	0	NaN	0	NaN

				т	Pred	miPre	ed-NBC		35	SVM [‡]	3SVI	M-NBC
Accession	$Type^{\dagger}$	Class	Ν	TN	%SP	TN	%SP	Ν	TN	%SP	TN	%SP
RF00266	Small nucleolar RNA Z17	Gene/snRNA/guide/C/D-box	4	4	100.00	2	50.00	0	0	NaN	0	NaN
RF00267	Small nucleolar RNA R64	Gene/snRNA/guide/C/D-box	3	3	100.00	0	0.00	0	0	NaN	0	NaN
RF00268	Small nucleolar RNA snoZ7/snoR77	GenelsnRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00270	U61 small nucleolar RNA	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	2	2	100.00	2	100.00
RF00271	U60 small nucleolar RNA	GenelsnRNA/guide/C/D-box	3	3	100.00	2	66 67	0	0	NaN	0	NaN
RF00272	U67 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	10	10	100.00	- 8	80.00	0	0	NaN	0	NaN
RF00272	US9 small nucleolar RNA	GenelsnRNA/guide/C/D-box	10	10	100.00	4	100.00	2	2	100.00	2	100.00
RF00273	US7 small nucleolar RNA	Gene/snRNA/guide/C/D-box	4	-	100.00	4	100.00	1	1	100.00	2	100.00
RF00274	US6 small nucleolar PNA	GenelsnRNA/guide/C/D box	7	7	100.00	7	100.00	1	1	100.00	0	0.00
RF00275	US2 small nucleolar RNA	GenelsnRNA/guide/C/D-box	/	4	100.00	3	75.00	3	3	100.00	2	66.67
RF00270	U40 small nucleolar RNA	Canalan PNA (quida) C/D har	4	4	100.00	4	100.00	1	1	100.00	2	0.00
RF00277	US0 small nucleolar RNA	Canalan BNA/guida/C/D-box	4	4	100.00	4	100.00	1	1	100.00	1	100.00
RF00270	U45 mm all mucleolar RNA	Cene/snRtvA/guide/C/D-box	11	11	100.00	10	00.01	1	7	100.00	1	100.00
RF00279	U45 Small nucleolar RNA	Gene/snRivA/guide/C/D-box	2	2	100.00	2	90.91	1	/	0.00	/	100.00
RF00280		Gene/snRivA/guide/C/D-box	2	2	100.00	2	100.00	1	0	0.00	1	100.00
RF00281	U47 small nucleolar KNA	Gene/snRNA/gutae/C/D-box	2	3	100.00	3	100.00	0	0	INAIN	1	INAIN
RF00282	U48 small nucleolar RNA	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	1	1	100.00	1	100.00
RF00283	U91 small nucleolar RNA	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00284	Z18 small nucleolar RNA	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	2	2	100.00	2	100.00
RF00285	Z6 small nucleolar RNA	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	1	1	100.00	1	100.00
RF00286	U92 small nucleolar RNA	Gene/snRNA/guide/H/ACA-box	3	1	33.33	2	66.67	0	0	NaN	0	NaN
RF00287	U44 small nucleolar RNA	Gene/snRNA/guide/C/D-box	3	3	100.00	2	66.67	1	1	100.00	1	100.00
RF00288	Z30 small nucleolar RNA	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	4	4	100.00	1	25.00
RF00289	Z12 small nucleolar RNA	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	2	2	100.00	2	100.00
RF00290	Bamboo mosaic potexvirus (BaMV) CE	Cis-reg	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00291	Small nucleolar RNA snoR639/H1	Gene/snRNA/guide/H/ACA-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00292	Small nucleolar RNA TBR5	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	0	0	NaN	0	NaN
RF00293	Small nucleolar RNA snoM1	Gene/snRNA/guide/H/ACA-box	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00294	Small nucleolar RNA TBR17	Gene/snRNA/guide/C/D-box	4	3	75.00	4	100.00	0	0	NaN	0	NaN
RF00295	Small nucleolar RNA TBR7	Gene/snRNA/guide/C/D-box	6	6	100.00	5	83.33	1	1	100.00	1	100.00
RF00296	Small nucleolar RNA R16	Gene/snRNA/guide/C/D-box	6	6	100.00	5	83.33	2	2	100.00	2	100.00
RF00297	Small nucleolar RNA Z177	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	0	0	NaN	0	NaN
RF00299	Small nucleolar RNA Z200	Gene/snRNA/guide/C/D-box	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00300	Small nucleolar RNA Z221	Gene/snRNA/guide/C/D-box	3	3	100.00	2	66.67	2	2	100.00	1	50.00
RF00301	Small nucleolar RNA Z256	Gene/snRNA/guide/C/D-box	3	3	100.00	1	33.33	0	0	NaN	0	NaN
RF00302	Small nucleolar RNA U65	Gene/snRNA/guide/H/ACA-box	4	0	0.00	4	100.00	0	0	NaN	0	NaN
RF00303	Small nucleolar RNA snoR86	Gene/snRNA/guide/H/ACA-box	3	3	100.00	1	33.33	0	0	NaN	0	NaN
RF00304	Small nucleolar RNA Z279	Gene/snRNA/guide/C/D-box	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00305	Small nucleolar RNA Z248	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00306	Small nucleolar RNA Z178	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00307	Small nucleolar RNA snoR98	Gene/snRNA/guide/H/ACA-box	5	5	100.00	5	100.00	1	1	100.00	1	100.00
RF00308	Small nucleolar RNA Z268	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	2	2	100.00	1	50.00
RF00309	Small nucleolar RNA snR60/Z15/Z230/Z193/J17	Gene/snRNA/guide/C/D-box	24	23	95.83	21	87.50	5	4	80.00	1	20.00
RF00310	Small nucleolar RNA Z165	Gene/snRNA/guide/C/D-box	3	3	100.00	1	33.33	3	3	100.00	0	0.00
RF00311	Small nucleolar RNA Z188	Gene/snRNA/guide/C/D-box	4	1	25.00	4	100.00	3	0	0.00	3	100.00
RF00312	Small nucleolar RNA Z206	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00313	Small nucleolar RNA Z173	Gene/snRNA/guide/C/D-box	3	1	33.33	3	100.00	0	0	NaN	0	NaN
RF00314	Small nucleolar RNA Z182	Gene/snRNA/guide/C/D-box	7	7	100.00	7	100.00	4	4	100.00	0	0.00
RF00315	Small nucleolar RNA J33	Gene/snRNA/guide/C/D-box	5	5	100.00	3	60.00	2	2	100.00	0	0.00
RF00316	Small nucleolar RNA R43	Gene/snRNA/guide/C/D-box	16	16	100.00	16	100.00	6	6	100.00	5	83.33
RF00317	Small nucleolar RNA Z163	Gene/snRNA/guide/C/D-box	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00318	Small nucleolar RNA Z175	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00319	Small nucleolar RNA MBI-1	Gene/snRNA/guide/H/ACA-box	4	2	50.00	4	100.00	0	0	NaN	0	NaN
RF00320	Small nucleolar RNA 7.185	GenelsnRNA/guide/C/D-box	3	2	66.67	2	66.67	1	1	100.00	0	0.00
RF00321	Small nucleolar RNA 7247	Gene/snRNA/guide/C/D-box	6	6	100.00	6	100.00	0	0	NaN	0	NaN
RF00322	Small nucleolar RNA MRL161	GenelsnRNA/guide/H/ACA box	4	4	100.00	3	75.00	0	0	NaN	0	NaN
RF00323	Small nucleolar RNA R79	GenelsnRNA/auide/C/D-hor	4	- 1	100.00	4	100.00	0	0	NaN	0	NaN
RF00324	Small nucleolar RNA MRII-202	GenelsnRNA/auide/C/D-box	5	5	100.00	4	80.00	0	0	NaN	0	NaN
RF00325	Small nucleolar RNA 1/53	GenelsnRNA anida C/D how	3	3	100.00	4	100.00	3	3	100.00	3	100.00
11 00525	Sman meteorar mm 055	Genejsman/gume/C/D-D0x	5	5	100.00	5	100.00	5	5	100.00	5	100.00

				miPre		miPred miPred		ed-NBC		35	SVM [‡]	3SVI	M-NBC
Accession	Type [†]	Class	Ν	TN	%SP	TN	%SP	Ν	TN	%SP	TN	%SP	
RF00326	Small nucleolar RNA Z155	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN	
RF00327	Small nucleolar RNA Z194	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN	
RF00328	Small nucleolar RNA Z161/Z228	Gene/snRNA/guide/C/D-box	7	7	100.00	5	71.43	2	2	100.00	2	100.00	
RF00329	Small nucleolar RNA Z162	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN	
RF00330	Small nucleolar RNA Z43	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	2	2	100.00	1	50.00	
RF00331	Small nucleolar RNA Z169	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	2	2	100.00	2	100.00	
RF00332	Small nucleolar RNA Z266	Gene/snRNA/guide/C/D-box	4	4	100.00	2	50.00	2	2	100.00	0	0.00	
RF00333	Small nucleolar RNA Z157/R69/R10	Gene/snRNA/guide/C/D-box	10	8	80.00	5	50.00	2	2	100.00	0	0.00	
RF00334	Small nucleolar RNA MBI-28	Gene/snRNA/guide/H/ACA-box	3	0	0.00	3	100.00	0	0	NaN	0	NaN	
RF00335	Small nucleolar RNA Z13/snr52	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	3	3	100.00	3	100.00	
RF00336	Small nucleolar RNA J26	Gene/snRNA/guide/C/D-box	5	5	100.00	3	60.00	0	0	NaN	0	NaN	
RF00337	Small nucleolar RNA Z112	Gene/snRNA/guide/C/D-box	3	0	0.00	3	100.00	0	0	NaN	0	NaN	
RF00338	Small nucleolar RNA snR53	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	1	0	0.00	1	100.00	
RF00339	Small nucleolar RNA snoR60	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN	
RF00340	Small nucleolar RNA snoMBI-87	Gene/snRNA/guide/H/ACA-box	6	0	0.00	4	66.67	0	0	NaN	0	NaN	
RF00341	Small nucleolar RNA Z39	Gene/snRNA/guide/C/D-box	5	5	100.00	5	100.00	4	4	100.00	4	100.00	
RF00342	Small nucleolar RNA Z40	Gene/snRNA/guide/C/D-box	5	5	100.00	3	60.00	5	5	100.00	5	100.00	
RF00343	Small nucleolar RNA Z122	Gene/snRNA/guide/C/D-box	3	3	100.00	0	0.00	1	1	100.00	1	100.00	
RF00344	Small nucleolar RNA Z267	Gene/snRNA/guide/C/D-box	5	5	100.00	3	60.00	2	2	100.00	2	100.00	
RF00345	Small nucleolar RNA snoR1	Gene/snRNA/guide/C/D-box	7	7	100.00	6	85.71	3	3	100.00	1	33.33	
RF00346	Small nucleolar RNA snoZ1	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN	
RF00347	Small nucleolar RNA Z50	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	1	1	100.00	0	0.00	
RF00348	Small nucleolar RNA snoR9	Gene/snRNA/guide/C/D-box	7	7	100.00	6	85.71	3	3	100.00	3	100.00	
RF00349	Small nucleolar RNA R11/Z151	Gene/snRNA/guide/C/D-box	5	5	100.00	3	60.00	0	0	NaN	0	NaN	
RF00350	Small nucleolar RNA Z152/R70/R12/	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	0	0	NaN	0	NaN	
RF00351	Small nucleolar RNA R20	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	2	2	100.00	0	0.00	
RF00352	Small nucleolar RNA R21	Gene/snRNA/guide/C/D-box	4	4	100.00	2	50.00	0	0	NaN	0	NaN	
RF00353	Small nucleolar RNA snoR31/Z110/Z27	Gene/snRNA/guide/C/D-box	8	5	62.50	2	25.00	0	0	NaN	0	NaN	
RF00355	Small nucleolar RNA snoR28	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN	
RF00356	Small nucleolar RNA R32/R81/Z41	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	4	4	100.00	1	25.00	
RF00357	Small nucleolar RNA R44/J54	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	3	3	100.00	3	100.00	
RF00358	Small nucleolar RNA Z101	Gene/snRNA/guide/C/D-box	3	3	100.00	2	66.67	2	2	100.00	0	0.00	
RF00359	Small nucleolar RNA Z102/R77	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	2	2	100.00	2	100.00	
RF00360	Small nucleolar RNA Z107/R87	Gene/snRNA/guide/C/D-box	6	5	83.33	6	100.00	0	0	NaN	0	NaN	
RF00361	Small nucleolar RNA Z119	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN	
RF00362	Pospiviroid RY motif stem loop	Cis-reg	16	14	87.50	15	93.75	11	11	100.00	3	27.27	
RF00368	sroB RNA	Gene/sRNA	5	5	100.00	5	100.00	0	0	NaN	0	NaN	
RF00369	sroC RNA	Gene/sRNA	5	0	0.00	4	80.00	0	0	NaN	0	NaN	
RF00370	sroD RNA	Gene/sRNA	3	2	66.67	3	100.00	0	0	NaN	0	NaN	
RF00371	sroE RNA	Gene/sRNA	3	0	0.00	3	100.00	0	0	NaN	0	NaN	
RF00372	sroH RNA	Gene/sRNA	3	0	0.00	3	100.00	0	0	NaN	0	NaN	
RF00373	Archaeal RNase P	Gene/ribozyme	40	16	40.00	33	82.50	0	0	NaN	0	NaN	
RF00374	Gammaretrovirus core encapsidation signal	Cis-reg	23	11	47.83	23	100.00	0	0	NaN	0	NaN	
RF00375	HIV primer binding site (PBS)	Cis-reg	373	265	71.05	334	89.54	0	0	NaN	0	NaN	
RF00376	HIV gag stem loop 3 (GSL3)	Cis-reg	1374	1371	99.78	1200	87.34	9	9	100.00	4	44.44	
RF00377	Small nucleolar RNA U6-53/MBII-28	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	0	0	NaN	0	NaN	
RF00378	Qrr RNA	Gene/sRNA	14	7	50.00	9	64.29	0	0	NaN	0	NaN	
RF00379	ydaO/yuaA element	Cis-reg/riboswitch	35	35	100.00	32	91.43	0	0	NaN	0	NaN	
RF00380	ykoK element	Cis-reg/riboswitch	39	25	64.10	32	82.05	0	0	NaN	0	NaN	
RF00381	Antizyme RNA frameshifting stimulation element	Cis-reg/frameshift	13	12	92.31	12	92.31	10	10	100.00	7	70.00	
RF00382	DnaX ribosomal frameshifting element	Cis-reg/frameshift	3	3	100.00	2	66.67	0	0	NaN	0	NaN	
RF00383	Insertion sequence IS1222 ribosomal frameshifting element	Cis-reg/frameshift	6	6	100.00	6	100.00	0	0	NaN	0	NaN	
RF00384	Poxvirus AX element late mRNA CE	Cis-reg	7	7	100.00	7	100.00	0	0	NaN	0	NaN	
RF00385	Infectious bronchitis virus D-RNA	Cis-reg	10	6	60.00	10	100.00	10	8	80.00	6	60.00	
RF00386	Enterovirus 5' cloverleaf cis-acting replication element	Cis-reg	60	5	8.33	52	86.67	0	0	NaN	0	NaN	
RF00387	FGF-1 IRES	Cis-reg/IRES	6	6	100.00	6	100.00	0	0	NaN	0	NaN	
RF00388	Qa RNA	Gene/antisense	5	2	40.00	3	60.00	0	0	NaN	0	NaN	
RF00389	Bamboo mosaic virus satellite RNA CE	Cis-reg	42	42	100.00	41	97.62	0	0	NaN	0	NaN	
RF00390	UPSK RNA	Cis-reg	4	4	100.00	4	100.00	0	0	NaN	0	NaN	

				m	iPred	miPre	d-NBC		35	SVM [‡]	3SVI	M-NBC
Accession	$Type^{\dagger}$	Class	Ν	TN	%SP	TN	%SP	Ν	TN	%SP	TN	%SP
RF00391	RtT RNA	Cis-reg	19	16	84.21	18	94 74	0	0	NaN	0	NaN
RE00302	Small nucleolar RNA ACA5	GenelsnRNA auide/H/ACA-box	6	6	100.00	4	66.67	0	0	NaN	0	NaN
RF00303	Small nucleolar RNA ACA8	Gene/smRNA/guide/H/ACA box	5	4	80.00	-	80.00	0	0	NoN	0	NoN
RF00394	Small nucleolar RNA ACA4	Gene/snRNA/guide/H/ACA-box	7	4	57.14	7	100.00	0	0	NaN	0	NaN
RF00305	Small nucleolar RNA ACA10	Gene/smRNA/guide/H/ACA box	1		100.00	, 1	100.00	0	0	NoN	0	NoN
RF00395	Small nucleolar RNA ACA13	Gene/snRNA/guide/H/ACA-box	3	-	0.00	1	33 33	0	0	NaN	0	NaN
RF00390	Small nucleolar RNA ACA15	Gene/snRNA/guide/H/ACA box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00397	Small nucleolar RNA ACA15	Conolog PNA/guide/H/ACA-box	3	2	50.00	3	100.00	0	0	NoN	0	NoN
RF00390	Small nucleolar RNA ACA15	Gene/snRNA/guide/II/ACA-box	4	2	100.00	4	80.00	0	0	NaN	0	NaN
RF00399	Small nucleolar RNA ACA24	Conolm PNA/guide/H/ACA-box	2	2	66.67	4	100.00	0	0	NoN	0	NoN
RF00400	Small nucleolar RNA ACA20	Gene/snRivA/guide/II/ACA-box	17	4	00.07	14	22.25	0	0	NaN	0	NaN
RF00401	Small nucleolar RNA ACA20	Gene/snRivA/guide/H/ACA-box	17	4	25.55	0	82.55	0	0	NoN	0	NoN
RF00402	Small nucleolar RNA ACA25	Gene/snRivA/guide/H/ACA-box	9	/	16.67	0	100.09	0	0	NaN	0	NaN
RF00403	Small nucleolar RNA ACA41	Gene/snRNA/guide/H/ACA-box	0	1	10.07	0	100.00	0	0	NaN	0	NaN
RF00404	Small nucleolar RINA ACA40	Gene/snRivA/guide/H/ACA-box	3	1	33.33	2	100.07	0	1	INAIN	1	INAIN 100.00
RF00405	Small nucleolar RNA ACA44	Gene/snRNA/guide/H/ACA-box	6	6	100.00	6	100.00	1	1	100.00	1	100.00
RF00406	Small nucleolar RNA ACA42	Gene/snRNA/guide/H/ACA-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00407	Small nucleolar RNA ACA50	Gene/snRNA/guide/H/ACA-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00408	Small nucleolar RNA ACA1	Gene/snRNA/guide/H/ACA-box	6	5	83.33	5	83.33	0	0	NaN	0	NaN
RF00409	Small nucleolar RNA ACA7	Gene/snRNA/guide/H/ACA-box	8	8	100.00	6	75.00	1	1	100.00	1	100.00
RF00410	Small nucleolar RNA ACA2/ACA34	Gene/snRNA/guide/H/ACA-box	18	5	27.78	16	88.89	0	0	NaN	0	NaN
RF00411	Small nucleolar RNA ACA9	Gene/snRNA/guide/H/ACA-box	6	3	50.00	5	83.33	0	0	NaN	0	NaN
RF00412	Small nucleolar RNA ACA21	Gene/snRNA/guide/H/ACA-box	5	1	20.00	3	60.00	0	0	NaN	0	NaN
RF00413	Small nucleolar RNA ACA19	Gene/snRNA/guide/H/ACA-box	4	1	25.00	3	75.00	0	0	NaN	0	NaN
RF00414	Small nucleolar RNA ACA22	Gene/snRNA/guide/H/ACA-box	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00415	Small nucleolar RNA ACA30/ACA37/MBI-26	Gene/snRNA/guide/H/ACA-box	6	6	100.00	6	100.00	0	0	NaN	0	NaN
RF00416	Small nucleolar RNA ACA43	Gene/snRNA/guide/H/ACA-box	7	7	100.00	6	85.71	0	0	NaN	0	NaN
RF00417	Small nucleolar RNA ACA56	Gene/snRNA/guide/H/ACA-box	3	0	0.00	3	100.00	0	0	NaN	0	NaN
RF00418	Small nucleolar RNA ACA52	Gene/snRNA/guide/H/ACA-box	4	0	0.00	3	75.00	0	0	NaN	0	NaN
RF00419	Small nucleolar RNA ACA52	Gene/snRNA/guide/H/ACA-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00420	Small nucleolar RNA ACA61	Gene/snRNA/guide/H/ACA-box	4	3	75.00	3	75.00	0	0	NaN	0	NaN
RF00421	Small nucleolar RNA ACA32	Gene/snRNA/guide/H/ACA-box	9	6	66.67	6	66.67	0	0	NaN	0	NaN
RF00422	Small nucleolar RNA ACA12	Gene/snRNA/guide/H/ACA-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00423	Small nucleolar RNA ACA26	Gene/snRNA/guide/H/ACA-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00424	Small nucleolar RNA ACA47	Gene/snRNA/guide/H/ACA-box	6	2	33.33	4	66.67	0	0	NaN	0	NaN
RF00425	Small nucleolar RNA ACA18	Gene/snRNA/guide/H/ACA-box	6	3	50.00	3	50.00	0	0	NaN	0	NaN
RF00426	Small nucleolar RNA ACA45	Gene/snRNA/guide/H/ACA-box	3	1	33.33	3	100.00	0	0	NaN	0	NaN
RF00427	Small nucleolar RNA ACA11	Gene/snRNA/guide/H/ACA-box	3	1	33.33	3	100.00	0	0	NaN	0	NaN
RF00428	Small nucleolar RNA ACA38	Gene/snRNA/guide/H/ACA-box	5	4	80.00	5	100.00	0	0	NaN	0	NaN
RF00429	Small nucleolar RNA ACA29	Gene/snRNA/guide/H/ACA-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00430	Small nucleolar RNA ACA54	Gene/snRNA/guide/H/ACA-box	3	0	0.00	3	100.00	0	0	NaN	0	NaN
RF00431	Small nucleolar RNA ACA55	Gene/snRNA/guide/H/ACA-box	3	0	0.00	3	100.00	0	0	NaN	0	NaN
RF00432	Small nucleolar RNA ACA51	Gene/snRNA/guide/H/ACA-box	9	8	88.89	9	100.00	0	0	NaN	0	NaN
RF00433	Hsp90 CE	Cis-reg/thermoregulator	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00434	Luteovirus cap-independent translation element (BTE)	Cis-reg	17	17	100.00	13	76.47	0	0	NaN	0	NaN
RF00435	Repression of heat shock gene expression (ROSE) element	Cis-reg/thermoregulator	3	2	66.67	2	66.67	0	0	NaN	0	NaN
RF00436	UnaL2 line 3' element	Cis-reg	144	141	97.92	113	78.47	50	49	98.00	13	26.00
RF00437	Hairy RNA localisation element (HLE)	Cis-reg	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00438	Small nucleolar RNA ACA33	Gene/snRNA/guide/H/ACA-box	5	5	100.00	4	80.00	0	0	NaN	0	NaN
RF00439	Small nucleolar RNA U87	Gene/snRNA/guide/C/D-box	4	4	100.00	3	75.00	0	0	NaN	0	NaN
RF00440	Small nucleolar RNA U37	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	3	3	100.00	3	100.00
RF00441	Small nucleolar RNA Z242	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00442	ykkC-yxkD element	Cis-reg/riboswitch	16	15	93.75	14	87.50	0	0	NaN	0	NaN
RF00443	Small nucleolar RNA ACA27	Gene/snRNA/guide/H/ACA-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00444	PrrF RNA	Gene/sRNA	7	2	28.57	7	100.00	0	0	NaN	0	NaN
RF00447	Voltage-gated potassium-channel Kv1.4 IRES	Cis-reg/IRES	6	5	83.33	6	100.00	0	0	NaN	0	NaN
RF00448	Epstein-Barr virus nuclear antigen (EBNA) IRES	Cis-reg/IRES	8	8	100.00	8	100.00	0	0	NaN	0	NaN
RF00449	HIF-1 alpha IRES	Cis-reg/IRES	7	7	100.00	7	100.00	0	0	NaN	0	NaN
RF00450	Small nucleolar RNA R105/R108	Gene/snRNA/guide/C/D-box	4	3	75.00	4	100.00	0	0	NaN	0	NaN

			-	mi	Pred	miPre	d-NBC		35	VM [‡] .	3SVA	1-NBC
Accession	$Type^{\dagger}$	Class	Ν	TN	%SP	TN	%SP	Ν	TN	%SP	TN	%SP
RF00453	Cardiovirus cis-acting replication element	Cis-reg	12	11	91.67	9	75.00	2	2	100.00	2	100.00
RF00454	p27 CE	Cis-reg	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00457	Mnt IRES	Cis-reg/IRES	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00458	Cripavirus IRES	Cis-reg/IRES	7	6	85.71	6	85.71	0	0	NaN	0	NaN
RF00459	Mason-Pfizer monkey virus packaging signal	Cis-reg	4	4	100.00	4	100.00	0	0	NaN	0	NaN
RF00460	U1A polyadenylation inhibition element (PIE)	Cis-reg	6	6	100.00	6	100.00	3	3	100.00	3	100.00
RF00461	Vascular endothelial growth factor (VEGF) IRES A	Cis-reg/IRES	7	7	100.00	7	100.00	0	0	NaN	0	NaN
RF00462	APC IRES	Cis-reg/IRES	6	6	100.00	2	33.33	0	0	NaN	0	NaN
RF00463	Apolipoprotein B (apoB) 5' UTR CE	Cis-reg	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00465	Japanese encephalitis virus (JEV) hairpin structure	Cis-reg	20	19	95.00	19	95.00	12	12	100.00	5	41.67
RF00466	Agrobacterium tumefaciens ROSE element	Cis-reg/thermoregulator	3	1	33.33	3	100.00	0	0	NaN	0	NaN
RF00467	Rous sarcoma virus (RSV) primer binding site (PBS)	Cis-reg	23	1	4.35	21	91.30	22	13	59.09	18	81.82
RF00468	Hepatitis C stem-loop VII	Cis-reg	63	9	14.29	32	50.79	63	45	71.43	63	100.00
RF00469	Hepatitis C stem-loop IV	Cis-reg	109	2	1.83	109	100.00	109	109	100.00	61	55.96
RF00470	Togavirus 5' plus strand CE	Cis-reg	32	5	15.63	29	90.63	0	0	NaN	0	NaN
RF00471	Small nucleolar RNA snR48	Gene/snRNA/guide/C/D-box	6	6	100.00	5	83.33	1	1	100.00	0	0.00
RF00472	Small nucleolar RNA snR55/Z10	Gene/snRNA/guide/C/D-box	7	7	100.00	4	57.14	0	0	NaN	0	NaN
RF00473	Small nucleolar RNA snR54	Gene/snRNA/guide/C/D-box	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00474	Small nucleolar RNA snR57	Gene/snRNA/guide/C/D-box	6	6	100.00	5	83.33	2	2	100.00	0	0.00
RF00475	Small nucleolar RNA snR69	Gene/snRNA/guide/C/D-box	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00476	Small nucleolar RNA snR61/Z11	Gene/snRNA/guide/C/D-box	9	9	100.00	8	88.89	0	0	NaN	0	NaN
RF00477	Small nucleolar RNA snR66	Gene/snRNA/guide/C/D-box	5	5	100.00	5	100.00	0	0	NaN	0	NaN
RF00478	Small nucleolar RNA U88	Gene/snRNA/guide/C/D-box	4	0	0.00	3	75.00	0	0	NaN	0	NaN
RF00479	Small nucleolar RNA snR71	Gene/snRNA/guide/C/D-box	5	5	100.00	3	60.00	0	0	NaN	0	NaN
RF00480	HIV Ribosomal frameshift signal	Cis-reg/frameshift	768	152	19.79	704	91.67	765	719	93.99	107	13.99
RF00481	Hepatitis C virus 3'X element	Cis-reg	22	0	0.00	13	59.09	0	0	NaN	0	NaN
RF00482	Small nucleolar RNA F1/F2/snoR5a	Gene/snRNA/guide/H/ACA-box	8	5	62.50	6	75.00	0	0	NaN	0	NaN
RF00483	Insulin-like growth factor II IRES	Cis-reg/IRES	8	8	100.00	7	87.50	0	0	NaN	0	NaN
RF00484	Connexin-32 IRES	Cis-reg/IRES	6	6	100.00	5	83.33	0	0	NaN	0	NaN
RF00485	Potassium channel RNA editing signal	Cis-reg	85	76	89.41	69	81.18	13	10	76.92	7	53.85
RF00487	Connexin-43 IRES	Cis-reg/IRES	13	13	100.00	12	92.31	0	0	NaN	0	NaN
RF00488	Yeast U1 spliceosomal RNA	Gene/snRNA/splicing	6	0	0.00	5	83.33	0	0	NaN	0	NaN
RF00489	ctRNA	Gene/antisense	15	6	40.00	14	93.33	10	8	80.00	7	70.00
RF00490	S-element	Cis-reg	13	13	100.00	9	69.23	3	3	100.00	3	100.00
RF00491	Simian virus 40 late polyadenylation signal (SVLPA)	Cis-reg	3	3	100.00	2	66.67	0	0	NaN	0	NaN
RF00492	Small nucleolar RNA U12-22	Gene/snRNA/guide/C/D-box	7	7	100.00	6	85.71	3	3	100.00	3	100.00
RF00493	Small nucleolar RNA U2-30	Gene/snRNA/guide/C/D-box	3	3	100.00	3	100.00	0	0	NaN	0	NaN
RF00494	Small nucleolar RNA U2-19	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	1	1	100.00	1	100.00
RF00495	Heat shock protein 70 (Hsp70) IRES	Cis-reg/IRES	13	13	100.00	13	100.00	0	0	NaN	0	NaN
RF00496	Coronavirus SL-III cis-acting replication element	Cis-reg	5	5	100.00	5	100.00	3	3	100.00	1	33.33
RF00497	Dengue virus 3'-SL cis-acting replication element	Cis-reg	23	5	21.74	21	91.30	0	0	NaN	0	NaN
RF00498	Equine arteritis virus leader TRS hairpin (LTH)	Cis-reg	4	4	100.00	4	100.00	4	4	100.00	4	100.00
RF00499	Human parechovirus 1 (HPeV1) cis regulatory element	Cis-reg	5	2	40.00	5	100.00	0	0	NaN	0	NaN
RF00500	Turnip crinkle virus (TCV) repressor of minus strand synthesis H5	Cis-reg	3	2	66.67	3	100.00	3	3	100.00	2	66.67
RF00501	Rotavirus cis-acting replication element	Cis-reg	14	14	100.00	8	57.14	4	4	100.00	1	25.00
RF00502	Turnin crinkle virus (TCV) core promoter hairpin (Pr)	Cis-reg	4	4	100.00	4	100.00	4	4	100.00	2	50.00
RF00503	RNAIII	Gene	12	2	16.67	12	100.00	0	0	NaN	0	NaN
RF00504	gcvT element	Cis-reg/riboswitch	117	111	94.87	102	87.18	3	3	100.00	2	66.67
RF00505	RydC RNA	Gene/sRNA	3	3	100.00	3	100.00	2	2	100.00	2	100.00
RF00506	Threonine operon leader	Cis-reg	27	1	3,70	25	92.59	0	0	NaN	0	NaN
RF00507	Coronavirus frameshifting stimulation element	Cis-reg/frameshift	18	12	66.67	15	83.33	0	0	NaN	0	NaN
RF00509	Small nucleolar RNA snR64	Gene/snRNA/guide/C/D-box	4	4	100.00	4	100.00	0	0	NaN	0	NaN
_	mRNAs	-	31	27	87.10	27	87.10	0	0	NaN	0	NaN
Total ncRNA	A samples (exclude mRNAs)	-	12387	. 8507		10771		2404	1884		1199	

 \dagger , cis-regulatory element (CE); internal ribosome entry site (IRES). N (non pre-miRs), TN (non pre-miRs missed), and %SP (Specificity). \ddagger , 3SVM model was trained on 200 human pre-miRs and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option was enabled) and the optimal hyperparameter pair (C, γ).

Table S5. The mean specificity of *miPred*, *miPred*-*NBC*, 3SVM, and 3SVM-NBC evaluated on the non *pre-miR* dataset IE-NC (12,387 functional ncRNAs) categorized by classes of ncRNAs.

		miPred	miPred-NBC		3SVM [†]	3SVM-NBC
Classes of ncRNAs	No. of types	%SP	%SP	No. of excluded types	%SP	%SP
Cis-reg	77	74.91 ± 4.03	87.99 ± 2.03	46	83.36 ± 5.60	69.96 ± 5.61
Cis-reg/frameshift	5	75.75 ± 15.27	86.80 ± 5.68	3	96.99 ± 3.01	42.00 ± 28.01
Cis-reg/IRES	24	85.47 ± 6.02	91.02 ± 3.06	22	50.00 ± 50.00	50.00 ± 50.00
Cis-reg/riboswitch	12	82.28 ± 3.96	85.77 ± 2.56	8	100.00 ± 0.00	54.17 ± 20.83
Cis-reg/thermoregulator	4	75.00 ± 15.96	91.67 ± 8.33	3	100.00 ± 0.00	100.00 ± 0.00
Gene	24	34.73 ± 7.71	86.65 ± 3.03	18	70.57 ± 18.19	45.23 ± 3.26
Gene/antisense	10	41.93 ± 13.01	78.05 ± 5.03	8	90.00 ± 10.00	85.00 ± 15.00
Gene/ribozyme	9	60.08 ± 10.10	91.54 ± 2.36	6	97.44 ± 2.56	55.56 ± 29.40
Gene/rRNA	3	70.66 ± 12.94	90.74 ± 1.70	1	100.00 ± 0.00	75.00 ± 25.00
Gene/snRNA	1	85.71 ± 0.00	85.71 ± 0.00	0	100.00 ± 0.00	100.00 ± 0.00
Gene/snRNA/guide/C/D-box	165	94.61 ± 1.28	84.59 ± 1.58	72	92.78 ± 2.32	68.60 ± 4.06
Gene/snRNA/guide/H/ACA-box	71	60.97 ± 4.33	84.97 ± 2.04	68	100.00 ± 0.00	100.00 ± 0.00
Gene/snRNA/splicing	7	51.16 ± 13.89	87.30 ± 3.83	6	100.00 ± 0.00	100.00 ± 0.00
Gene/sRNA	42	65.71 ± 5.90	87.53 ± 2.81	39	100.00 ± 0.00	33.33 ± 33.33
Gene/tRNA	1	85.55 ± 0.00	86.98 ± 0.00	0	94.94 ± 0.00	89.87 ± 0.00
Intron	2	40.95 ± 9.05	86.70 ± 9.98	2	NaN	NaN

 \dagger , 3SVM model was trained on 200 human *pre-miRs* and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option was enabled) and the optimal hyperparameter pair (*C*, γ). %SP (Specificity). Values are expressed as mean \pm standard error.

	=		miPred				3SVM [†]	
Rank	Features	F1 score	F2 score	$\varDelta F = F1 - F2$	Features	F1 score	F2 score	$\varDelta F = F1 - F2$
01	$MFEI_1$	1.28	1.52	-2.42E ⁻⁰¹	A(((8.20E ⁻⁰¹	6.97E ⁻⁰¹	1.22E ⁻⁰¹
02	zG	1.27	1.48	-2.15E ⁻⁰¹	U(((7.58E ⁻⁰¹	6.12E ⁻⁰¹	1.46E ⁻⁰¹
03	dP	1.03	1.18	-1.49E ⁻⁰¹	<i>G</i>	4.57E ⁻⁰¹	2.05E ⁻⁰¹	2.52E ⁻⁰¹
04	zP	9.67E ⁻⁰¹	1.03	-6.33E ⁻⁰²	A	4.42E ⁻⁰¹	$1.94E^{-01}$	2.47E ⁻⁰¹
05	zQ	8.33E ⁻⁰¹	7.29E ⁻⁰¹	$1.04E^{-01}$	С	4.31E ⁻⁰¹	$1.84E^{-01}$	$2.47E^{-01}$
06	dG	8.23E ⁻⁰¹	7.50E ⁻⁰¹	7.31E ⁻⁰²	G.((3.81E ⁻⁰¹	$1.62E^{-01}$	2.20E ⁻⁰¹
07	dQ	7.99E ⁻⁰¹	6.67E ⁻⁰¹	1.32E ⁻⁰¹	A(3.50E ⁻⁰¹	1.31E ⁻⁰¹	2.19E ⁻⁰¹
08	zD	$7.92E^{-01}$	6.70E ⁻⁰¹	1.23E ⁻⁰¹	A(3.28E ⁻⁰¹	$1.17E^{-01}$	$2.11E^{-01}$
09	dD	$7.46E^{-01}$	5.91E ⁻⁰¹	$1.55E^{-01}$	<i>C</i> ((.	3.19E ⁻⁰¹	$1.12E^{-01}$	$2.07E^{-01}$
10	$MFEI_2$	4.41E ⁻⁰¹	1.53E ⁻⁰¹	2.88E ⁻⁰¹	G(3.07E ⁻⁰¹	9.75E ⁻⁰²	2.10E ⁻⁰¹
11	%UA	3.87E ⁻⁰¹	1.56E ⁻⁰¹	2.31E ⁻⁰¹	<i>U</i>	3.05E ⁻⁰¹	$9.74E^{-02}$	2.08E ⁻⁰¹
12	%G+C	3.06E ⁻⁰¹	$1.04E^{-01}$	$2.02E^{-01}$	C($2.97E^{-01}$	$9.54E^{-02}$	$2.02E^{-01}$
13	zF	$2.88E^{-01}$	7.13E ⁻⁰²	$2.16E^{-01}$	G((($2.84E^{-01}$	8.95E ⁻⁰²	$1.94E^{-01}$
14	%UU	2.83E ⁻⁰¹	8.91E ⁻⁰²	$1.94E^{-01}$	C($2.70E^{-01}$	7.93E ⁻⁰²	1.91E ⁻⁰¹
15	% GU	$2.64E^{-01}$	7.71E ⁻⁰²	$1.87E^{-01}$	G((.	2.63E ⁻⁰¹	$7.62E^{-02}$	$1.87E^{-01}$
16	%GC	$2.44E^{-01}$	6.57E ⁻⁰²	$1.79E^{-01}$	G(2.48E ⁻⁰¹	6.69E ⁻⁰²	1.81E ⁻⁰¹
17	dF	$2.42E^{-01}$	5.16E ⁻⁰²	$1.90E^{-01}$	U(2.19E ⁻⁰¹	5.20E ⁻⁰²	$1.67E^{-01}$
18	%CC	$2.04E^{-01}$	4.59E ⁻⁰²	$1.58E^{-01}$	C.(($1.89E^{-01}$	3.92E ⁻⁰²	1.50E ⁻⁰¹
19	%AA	1.83E ⁻⁰¹	3.73E ⁻⁰²	$1.46E^{-01}$	C((($1.87E^{-01}$	3.88E ⁻⁰²	1.48E ⁻⁰¹
20	%GG	$1.82E^{-01}$	3.68E ⁻⁰²	$1.45E^{-01}$	G.(.	$1.82E^{-01}$	3.52E ⁻⁰²	$1.47E^{-01}$
21	%CA	$1.77E^{-01}$	3.48E ⁻⁰²	$1.42E^{-01}$	U.(.	$1.71E^{-01}$	$2.88E^{-02}$	1.42E ⁻⁰¹
22	%CG	1.73E ⁻⁰¹	3.30E ⁻⁰²	$1.40E^{-01}$	U($1.56E^{-01}$	$2.69E^{-02}$	1.30E ⁻⁰¹
23	%GA	$1.41E^{-01}$	2.13E ⁻⁰²	$1.19E^{-01}$	U(.(1.37E ⁻⁰¹	$2.08E^{-02}$	1.16E ⁻⁰¹
24	%AU	1.25E ⁻⁰¹	1.69E ⁻⁰²	$1.08E^{-01}$	A.(.	1.22E ⁻⁰¹	1.52E ⁻⁰²	1.07E ⁻⁰¹
25	%AG	$1.08E^{-01}$	1.28E ⁻⁰²	$9.54E^{-02}$	C.(.	1.10E ⁻⁰¹	1.32E ⁻⁰²	9.68E ⁻⁰²
26	%UG	6.31E ⁻⁰²	$4.42E^{-03}$	$5.87E^{-02}$	G(.($1.02E^{-01}$	1.13E ⁻⁰²	9.05E ⁻⁰²
27	%AC	3.71E ⁻⁰²	1.53E ⁻⁰³	3.55E ⁻⁰²	C(.(6.68E ⁻⁰²	4.95E ⁻⁰³	6.19E ⁻⁰²
28	%CU	3.21E ⁻⁰²	1.13E ⁻⁰³	3.09E ⁻⁰²	A(.(6.06E ⁻⁰²	4.06E ⁻⁰³	5.65E ⁻⁰²
29	%UC	2.18E ⁻⁰²	5.21E ⁻⁰⁴	2.13E ⁻⁰²	A.((5.90E ⁻⁰²	3.87E ⁻⁰³	5.52E ⁻⁰²
30	-	-	-	-	A((.	3.21E ⁻⁰²	1.14E ⁻⁰³	3.10E ⁻⁰²
31	-	-	-	-	U.((3.28E ⁻⁰³	1.20E ⁻⁰⁵	3.26E ⁻⁰³
32	-	-	-	-	U((.	6.80E ⁻⁰⁵	$0.00E^{+00}$	6.80E ⁻⁰⁵
		0.429 ± 0.0711	0.332 ± 0.0872	-		0.252 ± 0.0336	0.103 ± 0.0277	-

Table S6. F1 and F2 scores for features of miPred and 3SVM, sorted by descending F1 scores.

 \dagger , 3SVM model was trained on 200 human *pre-miRs* and 400 pseudo hairpins randomly selected using the latest libSVM 2.82 (the "-b 1" option was enabled) and the optimal hyperparameter pair (*C*, γ).

Classifiers	Human pre-miRs (TR-H and TE-H)	Non-human pre-miRs (IE-NH)	ncRNAs (IE-NC)	mRNAs (IE-M)
miPred	93.60	95.64	68.68	87.10
miPred3	94.12	95.69	68.31	87.10
miPred _{3/5}	92.67	95.36	71.20	100.00
miPred _{3/10}	93.40	95.64	69.82	83.87
miPred _{3/15}	93.40	95.79	60.93	80.65
miPred _{3/20}	92.67	94.68	72.18	100.00
miPred _{3/21}	92.67	95.29	72.01	100.00
miPred _{3/22}	92.57	95.15	71.26	100.00
miPred _{3/23}	92.67	95.22	70.15	100.00
miPred _{3/24}	92.98	95.39	64.56	100.00
miPred _{3/25}	91.64	93.52	63.16	96.77
miPred _I	77.30	76.35	67.53	90.32
$miPred_{II}$	93.81	95.83	61.38	54.84
miPred _{III}	93.60	95.69	66.13	70.97

Table S7. Effects of feature selection on *miPred*'s accuracy.

 $miPred_3$ contains a subset of 26 features from miPred that excludes dQ, dD, and zD. Derived from $miPred_3$, the remaining nine variants denoted as $miPred_{3/5}$, $miPred_{3/20}$, $miPred_{3/20}$, $miPred_{3/20}$, and $miPred_{3/20}$ only include the top ranking 21, 16, 11, 6, 5, 4, 3, 2, and 1 feature(s), respectively. $miPred_1$ (17 features: 16 dinucleotides frequencies and %G+C), $miPred_1$ (12 features; $MFEI_1$, $MFEI_2$, dP, dG, dQ, dD, dF, zP, zG, zQ, zD, and zF), and $miPred_{11}$ (9 features; a subset of $miPred_1$ that excludes dQ, dD, and zD).

Table S8. Putative viral-encoded *pre-miRs* having maximum length (\leq 95-nts), minimum size of terminal loop (\geq 3-nts), minimum free energy of folding (\leq -25 kcal/mol), and *miPred* scores \geq 0.815 (except for [†]*ebv-mir-BHRF1-1* and [§]*mghv-mir-M1-8*). They are categorized according to *E. Barr virus*, *K. sarcomaassociated herpesvirus*, *M. γ-herpesvirus* 68 strain WUMS, and *H. cytomegalovirus strain AD169*; sorted in descending *miPred* scores.

S	SP	L	<i>E. Barr virus</i> (EBV; AJ507799.2); $5' \rightarrow 3'$
+	147303	92	CCAGAGGAGUGUCCCGGGGCCACCUCUUUGGUUCUGUACAUAUuuuGUUAUUGUACAUAACCAUGGAGUUGGCUGUGGUGCACUCCAUCUGG (ebv-mir-BART10)
+	7681	94	AUAUAGAUUAGGAUAGCAUAUGCUAUCCAGAUAUUUGGGUAGUAGUAGCUACCAGAUAUAAAUUAGGAUAGCAUAUACCUACC
+	140016	92	UGACCUUGUUGGUACUUUAA <u>GGUUGGUCCAAUCCAUAGGCUU</u> UUU uugu GAAAACC <u>CGGGGAUCGGACUAGCCUUAGA</u> GUAACUCAAGGCCA (ebv-mir-BART6)
+	7693	95	AUAGCAUAUGCUAUCCAGAUAUUUGGGUAGUAUAUGCUACCCAGAUauaaUUAGGAUAGCAUAUACUACCCUAAUCUCUAUUAGGAUAGCAUAU (ebv-mir-p2)
+	7932	94	GCAUAUGCUACCCAGAUAUAGAUUAGGAUAGCCUAUGCUACCCAGauaUAGAUUAGGAUAGCAUAUGCUAUCCAGAUAUUUGGGUAGUAUAUGC (ebv-mir-p3)
+	9007	91	UAGGACCCUUUUACUAACCCUAAUUCGAUAGCAUAUGCUUCCCguuGGGUAACAUAUGCUAUUGAAUUAGGGUUAGUCUGGAUAGUAUAUA (ebv-mir-p4)
+	7708	95	CAGAUAUUUGGGUAGUAUAUGCUACCCAGAUAUAAAUUAGGAUAGcauauaCUACCCUAAUCUCUAUUAGGAUAGCAUAUGCUACCCGGAUACAG (ebv-mir-p5)
+	146422	94	GGAUCCAGUGUCCUGAUCCUGGACCUUGACUAUGAAACAAUUCUaaaAAAAUGCAUCAUAGUCCAGUGUCCAGGGACAGUGCACUCGGAAGUCU (ebv-mir-BART7)
+	9031	95	UCGAUAGCAUAUGCUUCCCGUUGGGUAACAUAUGCUAUUGAAUUAGGguuagUCUGGAUAGUAUAUACUACUACCGGGAAGCAUAUGCUACCCG (ebv-mir-p6)
+	152730	92	CUGGUGGACUUCCAGACUAUUUUCUGCAUUCGCCCUUGCGUGUCauuGUUGCAAGGAGCGAUUUGGAGAAAAUAAACUGUGAGUUUCACAG (ebv-mir-BART2)
+	146753	95	GGUCGAUGGGUUCACUGAUUACCGGUUUCCUAGAUUGUACAGAUgaacuagAACUGUCACAAUCUAUGGGGUCGUAGACAGUGUGCUUACCAGACU (ebv-mir-BART8)
+	42832	95	AAUGACCCGGCCCCCACUUUUAAAUUCUGUUGCAGCAGAUAGCUGAUacccAAUGUUAUCUUUUGCGGCAGAAAUUGAAAGUGCUGGCCAUAUCU (ebv-mir-BHRF1-2)
+	139064	93	AGGCAUUGUUAACCUUUGGUGG <u>AACCUAGUGUUAGUGUUGUGU</u> GUaaauAAGUGUCCAG <u>CGCACCACUAGUCACCAGGUGU</u> CACCGGAGGCU (ebv-mir-BART3)
+	139898	95	AACAGGAUGUGGCACCCUAAGAGGACGCAGGCAUACAAGGUUauuacccAGUCCUUGUAUGCCUGGUGUCCCCUUAGUGGACGCAGGCCUAGGU (ebv-mirp7)
+	12549	93	
+	139206	95	
+	42950	95	UAUACGCCUGUGGUGUUCUAACGGGAAGUGUGUAAGCACACACGACGUAauuUGCAAGCGGUGCUUCACGCUCUUCGUUAAAAUAACACAAGGACAAG (ebv-mir-BHRF1-3)
+	7754	94	AUAUACUACCCUAAUCUCUAUUAGGAUAGCAUAUGCUACCCGGAUacagAUUAGGAUAGCAUAUACUACCCAGAUAUAGAUUAGGAUAGCAUAU (ebv-mir-p9)
+	156856	94	UUUUGCGCCUGGAAGUUGUACUCCCGGAAGAUGCCCUCCAGGUCAAagacgUUGGAGGCACGCUGUUCGUCCGUGAGUACAGCUCCAGGGAGG (ebv-mir-p10)
+	140356	94	CUGGAGACCUGCUAUGUGGCUAGACGUAUGGCCUACCCAAGACGUuggGGGUCUCGGGUAGGCCAUGAUUCUUCCAGGCAUAGGUUACAACCAG (ebv-mirp1)
+	146941	94	
+	139778	95	GCUUUCAGGUGUGGAAUUUAGAUAGAGUGGGUGUGUGUGU
+	165115	94	UUCUUGGGUGAGCGAGUCACCCUGACCUCCUACUGGAGGAGGAGGgugagCCUCGGUCCAGAGAUUGAGGUCAGCUGGUUUAAACUGGGCCCAGGAG (ebv-mirp13)
+	139333	95	UAACAAACCCGUGGGGGGG <u>UCUUAGUGGAAGUGACGUGCUGU</u> GAAUacagGUCCA <u>UAGCACCGCUAUCCACUAUGUCU</u> CGCCCGGGCUAUAUGUCG (ebv-mir-BART1)
+	139658	93	GAUGCUCUGUGGCACCU <u>CAAGGUGAAUAUAGCUGCCCAUCG</u> ACGUAUCgcugGAAACCGGUGGGCCGCUGUUCACCUAAAGUGACGCAAGGUC (ebv-mir-BART5)
+	140396	87	GACGUUGGGGGUCUCGGGUAGGCCAUGAUUCUUCCAGGCAUAGGUuacAACCAGUCACUGCUAUCAAGCCUACUCAGUUCCCAACGC (ebv-mir-p14)
+	7666	94	GCAUAUGCUACCCAGAUAUAGAUUAGGAUAGCAUAUGCUAUCCAGauauUUGGGUAGUAUAUGCUACCCAGAUAUAAAUUAGGAUAGCAUAUAC (ebv-mir-p15)
+	165097	95	GGCCAGGCUGUCACCGCUUUCUUGGGUGAGCGAGUCACCCUAGCCUCCuacuGGAGGAGGGUGAGCCUCGGUCCAGAGAUUGAGGUCAGCUGGUU (ebv-mir-p16)
+	48951	93	GACCGUGGCUCCCGCCUCUUGGAUGCCAUCAUCCCCUGCUUGGgacCCGACCGCACUUGCAUGCGGCGGUGGUCCUGCGGGGGGGG
+	103504	95	UGGCAGAGCUUUCACCGGUGGAACUCGUGACAGAUGUCUACGCCACCcuaGGCAUCGUGGAGAUCAUCGACGAGCUCUACCGGAGCAGUCGCCUG (ebv-mir-p18)
+	68250	94	CUGAGUGUGGGGCCAUACGAGGCCUUCACUGGCCCUGUGGCCaaggcucaGGACGUGGGGGGCCGUUGAGGCCCACGUUGUCUGCUCGGUAGCAG (ebv-mirp19)
+	74472	94	UUGUGGCACAAACAAAACAGGCGGAAGCCCUCGUCAGGCCGcgagaggaUGGCAUCGAGGAUGGCCUCCGCAAUGUCAGUGUUUGAGGCCACAA (ebv-mir-p20)
+	153549	95	UGUAGGCUGAGAGCUUGCGGCUGAGCUCCGUUGAAAAGCAGAGCUCCCCcauGGGGACCCUGCCUUCACGGAGGUCUGUGUAGGCCUGGUUUAGG (ebv-mir-p21)
+	145656	87	GAGUGGGGGAUGCUAGCCAAUUUAGCUUCCCCUCCCCUUaacAGGGGGUCUCGCGGGGUGCCAAUUGUCGCCUGCCUUCCCCCGCUU (ebv-mir-p22)
+	132971	95	CCGUGCUGGGCAGUCAGGGCCUGGAAGUCUUGGCGGCGUUGGUAUUuaaAAACCAGCGAUCCCUGAGAACGCUCCAGGUAGAGUUUCCAGCCCUG (ebv-mir-p23)
	11.150		4
+	41458	94	AAGGACGGCUCCUUAU <u>UAACCUGAUCAGCCCCGGAGUU</u> GCCUGUuucAUCACUAACCCCGGGCCUGAAGAGGGUUGACAAGAAGGGUCAAGGUUU ('ebv-mir-BHRF1-1)
S	SP	L	K. sarcoma-associated herpesvirus (KSHV; U75698.1); $5' \rightarrow 3'$
-	119293	93	UCCAGUAGGUAUACCCAGCUGGGUCU <u>ACCCAGCUGCGUAAACCCcqcu</u> GCGUAAACACAG <u>CUGGGUAUACGCAGCUGCGUAA</u> ACCCGGCUGGG ([‡] kshv-mir-K12-9)
-	119273	94	
-	120744	94	GCGGGUUUAGAAAGACUUGU <u>CCAGCAGCACCUAAUCCAUCGG</u> CggucggCC <u>UGAUGGUUUUCGGGCUGUUGAG</u> CGAGUCUUUUUAUCUAGUCGC (<i>kshv-mir-K12-6</i>)
-	121535	89	GCCUGUGAUGGGCUA <u>UCACAUUCUGAGGACGGCAGCG</u> ACGUG <mark>uguc</mark> UAACGUCAACG <u>UCGCGGUCACAGAAUGUGACA</u> CCCCUCCAGGU (<i>kshv-mir-K12-3</i>)
-	23628	94	GUUUAAUUAUAGAAUUGCAGCUGGGUAUACCCAGCUGGGUUCACCCaccuGGGUAUACCUACUGGAUUACCCAGCUGGGUAUACCUACUGGAAU (kshv-mircp1)
-	119320	93	GCGCAGCUGAGUCAUCGCAGCCCCUAUUCCAGUAGGUAUACCCAgcuGGGUCUACCCAGCUGCGUAAACCCCGCUGCGUAAACACAGCUGGGU (kshv-mir-p2)
-	121400	95	GAACCGGGCAGUAUAACUAGCUAAACCGCAGUACUCUAGGGCAuucauuUGUUACAUAGAAUACUGAGGCCUAGCUGAUUAUACUACCUCCGUCC (kshv-mir-K12-4)
-	81073	86	UACCCAGUUUGUCAUGACACCCGACAGAAGCUGGUGCUGGCGA cgucu UCGCCGCGCCACUCGUCGGUGGACAGGCUGAUUUGAAA (<i>kshv-mir-p3</i>)
-	133793	94	AUUAUGCAGGCUGUUAUGAUAUCCCUGGGGGCAGACCUGCUACCGcuggCGGUGCAGGCUUCAACCGGGGACAAUUAUAACGUGGCCAGGUACU (kshv-mir-p4)
-	79458	93	AGGACGCUGACGUUGGGGCCCCCGUAAGGACGUCGGCGAUCGUC ucg GCGCUGUCGCCACUCGUACAAAAAAUAACCCUUACUGUCAGCGCCU (<i>kshv-mir-p5</i>)
-	9635	95	GCCGUGAUCUCGUUGGCCACAAAGUGGAAGCUGUCCUCGUGGGUAGU cugg AUGGAGCGCGGGAAGGUUUUCCACAGUGCCAGCGGACACACGGC (<i>kshv-mir-p6</i>)
-	77286	95	GUAUAUCUUUGUUUUUUCAAGUUUGUGGACGAGGUGGUCCAUGCAUAgacUGGCAUGUGAUUACUCGCACAAGCGCUGACGAAAGCUAUGGUUUU (kshv-mir-p7)
-	121856	95	GCAGGGUGCGGUGCUGCCCAGGACGGCCGGAUGCGGGGGGAUUACAGgaaaCUGGGUGUAAGCUGUACAUAAUCCCCGGCAGCACCUGUUUCCUGC (kshv-mir-p8)
-	108693	94	UGGAGUGUGGAUGGUGAUAUGGUCUCCUGGGCCUGGCCGGCC
-	120342	95	GCGCAUAUUGGCGUUGAGCGCCACCGGACGGGGAUUUAUGCUGUAucuUACUACCAUGAUCCCAUGUUGCUGGCGCUCACGGCCCGUGUGCCAGC (kshv-mir-K12-7)

s	SP	L	<i>M.</i> γ -herpesvirus 68 strain WUMS (MGHV68; U97553.2); 5' \rightarrow 3'
+	1320	59	AACCACCUCCCACAAUUUCAGAGUCUuagccAGAUUAUCUGAAACUGUGUGAGGUGGUU (mghv-mir-p1)
+	636	67	ACGAAGUAGCGAACCUCUGCUCACUGCCCGGGcccUCCGGGAGGUGAGCAGGAGUUGCGCUUUUCUU (mghv-mir-M1-3)
+	739	93	CACGCUGCCAAUCUCACCCUGACAGCUGUCAGGGGUUACAUGAGagaacUUCAUGUAACCCCUGACAGCUGUCAACCUAAUCCUGACCGUGAG (mghv-mir-p2)
+	104268	94	CAGCUAACUGGUGUUGAGAGUACAUGUUUGCUUUGGAUACACUU gug AAGUUUAUUCAAAGUGUAGGGAUGUGUGUACUAAACAUAACAGCUG (<i>mghv-mir-p3</i>)
+	548	91	CCCGAGCCCUGGUUGAGAGGGGGGAGUGUGUGUGUGUGGAGAGAGA
+	107005	94	UCUUUAGCAGACAGGUUAGAGCACUGUUGUGUGAGGGGGGGG
+	112453	95	GUUCUAUGGUACCAACAGACUCUUGUGUUUCUUGAAUGGUUCCAGuuucauuCUGGACAAGUAAGAAUACUUGAUCUGUUGUCACAUUAAGGAAU (mghv-mir-p5)
+	112662	95	GUGAGUAUUUCUUGGAUGGAGCACCUGACCUGUGGCAUCAUGGACcggauGUAACAGGCGUGAGAAAGGUCUUUGGUCCAUUCUUGUAAUACUCU (mghv-mir-p6)
+	3794	94	UGUGAGCUCUUCUUUACC <u>AGCACUCACUGGGGGUUUGGUC</u> AGGAGAUC aagua GAUCUGACCAACCCUAAGUGAGUUUUUCUUCUUGCUUAACA ([§] mghv-mir-M1-8)
S	SP	L	<i>H. cytomegalovirus strain AD169</i> (HCMV; X17403.1); $5' \rightarrow 3'$
_	49486	94	GCAAGGUAAGCCCCACG <u>UCGUUGAAGACACCUGGAAAGA</u> GGACGUUC <mark>gcuc</mark> GGGCACGUUCUUUCCAGGUGUUUUCAACGUGCGUGGAUUUUUU (hcmv-mir-UL36)
+	49484	94	AGAAAAAAUCCACGCACGUUGAAAACACCUGGAAAGAACGUGCCcgaGCGAACGUCCUCUUUCCAGGUGUCUUCAACGACGUGGGGCUUACCUU (hcmv-mir-p1)
-	174048	95	AUUGACGUCAAUGGGUGGAGUAUUUACGGUAAACUGCCCACUUGGcaguacaUCAAGUGUAUCAUAUGCCAAGUACGCCCCCUAUUGACGUCAAU (hcmv-mir-p2)
+	203097	95	UCUUCGGAAACUGUGGACGCUGUUUCCGAAUACCGGGAGGAGaucgugcuuccCUCUUCCAAGGAUCGGAAAGUAGCGUCCGUCGUUUCCGCGGA (hcmv-mir-p3)
+	93409	94	GCCGCGGAAUGGACGGGACCCGGGGUCCGCGCCCUUCCCCUCCccccacGGGGGGGCUGGGUCGCGGACCCCGGUUCCUAGGCUCGUUCCGCGGGU(hcmv-mir-p4)
-	155177	78	AAAGGACCGUCUCCCCCCGCACCCGGGUUUUUUCucuuGGUCGAACCCGGCUUGCGACGGGUUGUUCCUUU (hcmv-mir-p5)
+	27628	95	GUUUCUUCCCAUAGCCUGUCUAACUAGCCUUCCCGUGAGAGUUUAUgaacAUGUAUCUCACCAGAAUGCUAGUUUGUAGAGGCUAUGCGGGAUGC (hcmv-mir-UL22A)
-	35809	94	CAGAAAUAGGGCGACGGUGUUUUUAUAACCGAAAGUAGCGUGUUUgagACACGCGCUUCUGGUCGGUUUUUUCACCGUCGUCGUCGCUCUAGGUUUG (hcmv-mir-p6)
-	147717	94	
+	38054	87	CUCGUCAGCUUCACGGAGCUGUUGUUACCGCCGCCGUCcgucgccGCCGCGGCGGCGGCGACGAGCGAGGGGGGGGGGGGG
-	65216	95	AGUACCUGCUCGACGACGCGUUCCAUCUGCUUCAGGUCCUCUaccggcaaaAAGCCGUUAAGGAUGUGAUUGUGCACGCGCGUCAGCAGCUGCGU (hcmv-mir-p9)
+	116589	91	AUCACCGGCCUAUUACCGUCGCGCGCGACUCUCCCGGGCGGUAUGGaugaaCCACCGUCGGAUGGGAGCGUUACGACGGUGGUCACCGUGGU (hcmv-mir-p10)
-	7091	90	UUCGUCCCGUCUCCCUCUGUGGUCGUGGUGGUGCGAGAGUACACgauggGUGGCUCUCGUCUCGGGGGGACCACAGGGGGGGGGGGG
-	25058	95	ACGCCGGUUUCAUCAUAAACCACCGUGAGAACCGGCGGGGUUUCaacacGAAACCGCGUCACUCACGGACGUAGGUUAUUUCGAAAACCUACGU (hcmv-mir-p12)
+	174048	95	AUUGACGUCAAUAGGGGGGGUACUUGGCAUAUGAUACACUUGAUGAUGCACGUGGGCAGUUUACCGUAAAUACUCCACCCAUUGACGUCAAU (hcmv-mir-p13)
-	194927	94	GUACGGUGUCGCCACCGUUGACGUGGGCGGCGAUGAGAACGUCAgcggUGGCGAAACCGCCGUGCGGAAAGUCCCCGGUGCCGAAAUCACCGUGU (hcmv-mir-p14)
-	49464	94	GAAGACACCUGGAAAGAGGACGUUCGCUCGGGCACGUU cuuuccagguguuuuc AACGUGCGUGGAUUUUUUCUAUUCUACCAGGUGCUUAC (<i>hcmv-mir-p15</i>)
-	93410	92	CCGCGGAACGAGCCUAGGAACCGGGGUCCGCGACCCAGCCCCCGUgggGGGAGGGGAAGGGCGCGGGACCCCGGGUCCCGUCCAUUCCGCGG (hcmv-mir-p16)
-	140853	95	GAAGUUUCGCGGCAGCGCAAGCCGUGGUAACCGUCGCCGCUGGCGGgggcUGCCGCGAGACGACGACGGCGCACGACGACGACGACGACGA
+	196047	90	UCUGAUCCAACACUGAACGCUUUCGUCGUGUUUUUCAUGCAGCUUU <mark>uac</mark> AGACCA <u>UGACAAGCCUGACGAGAGCGU</u> UCAUCGGGGCAUGA (hcmv-mir-US5-1)
+	174117	95	UAAAUACUCCACCCAUUGACGUCAAUGGAAAGUCCCUAUUGGCGUuacuAUGGGAACAUACGUCAUUAUUGACGUCAAUGGGCGGGGGUCGUUGG (hcmv-mir-p18)
-	27632	90	CAUCCCGCAUAGCCUCUACAAACUAGCAUUCUGGUGAGAUACAUguucAUAAACUCUCACGGGAAGGCUAGUUAGACAGGCUAUGGGAAG (hcmv-mir-p19)
-	52491	89	CAUGUGCGCUCACCCGGCGUUCUGGCCACCGGUUACGCCGCGacaaCgUGGCGUAAUUGACGGUGAGAACUCGGAGACCGAGGCGGUCCGUG (hcmv-mir-p20)
+	35813	92	CCUAGAGCGACGACGGUGAAAAAACCGACCAGAAGCGCGUGU cuc AAACACGCUACUUUCGGUUAUAAAAACACCGUCGCCCUAUUUCUGGG (hcmv-mir-p21)
-	90766	95	GGCGGUUCUUUGUGAUUUAAAAAAACACCGUGUUCGUGAAACGUGACuuuUCACGGUUUGUUAGCUGAUGUGAUUUUGGAGGUCACAAACACCGUAC (hcmv-mir-p22)
+	25058	95	ACGUAGGUUUUCGAAAUAACCUACGUCCGUGAGUGACGCGGUUUCGuguUGAAACCCGCGCCGGUUCUCACGGUGGUUUAUGAUGAAACCCGGCGU (hcmv-mir-p23)
-	25024	94	CGCGGGUUUCAACACGAAACCGCGUCACUCACGGACGUAGGUUAUUucgAAAACCUACGUUAAUCCUGAACGCGUUUUGUGUCACGCGUCCCCG (hcmv-mir-p24)
+	92228	94	GACGUAGCGAGCGUAGCGAGCUACGUCACGUAUGCGUGCG
+	25023	94	CCGGGGACGCGUGACACAAAACGCGUUCAGGAUUAACGUAGGUUUU cga AAUAACCUACGUCCGUGAGUGACGCGGUUUCGUGUUGAAACCCGC (hcmv-mir-p26)
+	139178	89	GUUACCUGUUGUAUCGCAAGGCUCACGUGGAGCUGUCACUCU ccagca ACAAGGUGCAACACGUGGAAGCCGUGCGACAGGUGUAC (<i>hcmv-mir-p27</i>)
+	146735	94	CCCCCCAGCUAGGGUGCGCUGGCCUCGGCCGUGACUACGGACGCCGauGAGCGCCGGCGCGCGCGCGAGGAGCGGCGCGCGCGCGCG
+	37292	95	GCUUCGCUCUGGAUGGGCUCCGGGUCCGUCAACACGCGACUCGCgcgGCAAAAGGCACGCUGUUGACGGCGCGAGAGGCCCGUCGUGAUAGUCCAU (hcmv-mir-p29)
+	173784	95	GCCCAUUUGCGUCAAUGGGGCGGAGUUGUUACGACAUUUUGGAAAGUcccGUUGAUUUUGGUGCCAAAACAAACUCCCAUUGACGUCAAUGGGGU (hcmv-mir-p30)
+	25076	94	ACCUACGUCCGUGAGUGACGCGGUUUCGUGUUGAAACCCGCGCGCG
-	134672	93	AUCGUCAGCGAACCGCGCUUCAAACGCCAGAUCCGAAUACAGGUGCGuuucCAUAUUCGGAACGCAUCUGUUUCAGAAGCGCGUCCUCGCGCU (hcmv-mir-p32)
+	32963	95	GGCCUUGCGGCGGCAGCGGUUGGCGUGGUUGCUCAGCUCGGCGUCcgaGAGCGCCGAGCUGAACUGCGGCGCGCGCGGCGCGCGCGCG
-	90873	95	GGCGGAGCGCAGCGAAAAUCGGUGGUGAUAGCGGCGAUUGAGGUUGCGGGGCCAGAUUCAUCGUCGUGUGCGCGUGUGUGCGGUGUUUCUGCU (hcmv-mirp34
-	162576	95	CGGAGCAGAGGGUCGUUGUCCUCGUCGUCGUCGUCGCGGUUGUUUCuccGUCGCGAUCUCCGAGAGGAGGACGACGACGACGAUGCAGCCUGCCG (hcmv-mirp35)
+	30965	94	CCAGAGCCGUUCGGGGCGGGCGGCGCGCGCGCGCGCUUCAUUUUCUcacgucACGAAAAGGAGUGACGGACGGCCAGUACGCCACGUCUCUGCGG (hcmv-mir-p36)
+	222717	95	UUACUCUCGAGUGCGGUCGGUGUCUCGUCGGUGAGACGAGGCCGCCGCCGACAAGUUCGAUCUCAUGUCGCUCUUGGAGCGCGAAGAGAGUUGG (hcmv-mir-p37)
-	210170	94	CGCUGCUUUCGCAUGCCCAAGUUCUUUCCGCCGCCCAUGUGCCGCGUACAACGAAUGCGGCGUCGAAUUACCGGGCGGCGGCGAUAGCAGCG (hcmv-mir-p38)
-	203097	95	UCCGCGGAAACGACGGCGCUACUUUCCGAUCCUUGGAAGAGGgaagcacgaUCUCCUCCCGGUAUUCGGAAACAGCGUCCACAGUUUCCGAAGA (hcmv-mir-p39)
-	174118	92	AACGACCCCCGCCCAUUGACGUCAAUAAUGACGUAUGUUCCCAUaguaACGCCAAUAGGGACUUUCCAUUGACGUCAAUGGGUGGAGUAUUU (hcmv-mir-p40)
+	93225	94	CCCGCUCGACCCCCCAUCCGACGGCCCGGGCUGGGACC ccc GCACCGGGGUCCCGGUUCCCGUGGCCCGGGGGGACCCCGAGCGGG (hcmv-mir-p41)
+	20175	95	ACCCGCUGGGAGGAAAGCAACGUCGUGAGCCAGACGGCCACGCGaguaCGUACGUGGUUCGUGGAAAGAACCACGUUUUGGCGUCGCACGUGGGU (hcmv-mir-p42)
+	163175	94	UCCCGGCGCUCUGACAGCCUCCGGAUCACAUGGUUACUCAGCGUCUgccAGCCUAAGUGACGGUGAGAUCCAGGCUGUCCGUGCACCACGGUGA (hcmv-mir-UL 112)
-	174625	92	GCCGAUGUGAGUUUCUGUGUAACUGAUAUCGCCAUUUUUCCAAAAGugaUUUUUGGGCAUACGCGAUAUCUGGCGAUAGCGCUUAUAUCGUU (hcmv-mir-p43)
+	124992	95	CGCGGUUUACGUAGGCUACGCAGGUAUUUGACGUGUAACccagacccauGUCUACGGUGUUAAUGUUCUGCGUGACGUGGUACGUAGUGCUGAUG (hcmv-mir-p44)

-	119625	94	AUCCUCGGCGACGGCGUGCACGUCGGGGGUUAUGACACGCGGGCCgccuuaaGGCCGAGUCCACCGUCGCGCCCGAAGAGGACACCGACGAGGAU (hcmv-mir-p45)
-	36838	94	
-	197467	90	GUGGGUGCCCACGGACUUGGACCAUCUCACUCUGCAUUUGGUGC cgu GCACCAAAUGCAAACCCAUGUGGUGCCAGCCUCGGUACCAUAU (hcmv-mir-p47)
+	119625	94	AUCCUCGUCGGUGUCCUCUUCGGGCGCGACGGUGGACUCGGCCUUaagGCGGCGCGUGUCAUAACGCCCGACGUGCACGCCGUCGCCGAGGAU (hcmv-mir-p48)
+	147719	93	GACGGCGACGGUGAAAACAACGUCGUGGAAGUCAGCAGCAGCAGCACCGgcGGUGCGCACCGCGAGCGACGACGACGACGUGCACGUU(hcmv-mir-p49)
-	194965	93	UGACGUGACUCUUGACGUUUAUAAACCGCAUGGGAAAGUACGGUG ucgc CACCGUUGACGUGGGCGGCGAUGAGAACGUCAGCGGUGGCGAAA (<i>hcmv-mir-p50</i>)
+	128612	95	ACUGGGUCGUCUGUUACUGGGACCCGUGGCCGUACCCUGUUUUUGcgaCGGUGAAGUGGAGGGCCACGGUGAACAUCUGGUACCUACGACGCAGU (hcmv-mir-p51)

S (+/- strand), SP (start position), and L (length of the putative *pre-miRs*). 25 true-positives and 1 false-negative match 25 published *pre-miR* sequences (red regions) and their mature miRNAs (underlined regions) as obtained from miRBase 8.2 (Griffiths-Jones *et al.*, 2006); predicted terminal loop \geq 3-nts (bold lowercase nucleotides). $^{+/a}kshv$ -mir-K12-9 are the accepted and incorrect positives of *kshv*-mir-K12-9. ^{+}ebv -mir-BHRF1-1 (0.437 miPred score) and $^{\$}mghv$ -mir-M1-8 (0.658).