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� Abstract
Cellular phenotypes are observable characteristics of cells resulting from the interac-
tions of intrinsic and extrinsic chemical or biochemical factors. Image-based phenotyp-
ic screens under large numbers of basal or perturbed conditions can be used to study
the influences of these factors on cellular phenotypes. Hundreds to thousands of phe-
notypic descriptors can also be quantified from the images of cells under each of these
experimental conditions. Therefore, huge amounts of data can be generated, and the
analysis of these data has become a major bottleneck in large-scale phenotypic screens.
Here, we review current experimental and computational methods for large-scale
image-based phenotypic screens. Our focus is on phenotypic profiling, a computation-
al procedure for constructing quantitative and compact representations of cellular phe-
notypes based on the images collected in these screens.
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INTRODUCTION

CELLULAR phenotypes are observable characteristics of cells resulting from the

interactions of intrinsic and extrinsic factors (Fig. 1). Intrinsic factors include bio-

molecules, such as DNA, RNA, proteins, or metabolites, produced within the cells.

Extrinsic factors include biomolecules or chemicals that originate from extracellular

sources, such as other cells, the environment, or man-made sources. Due to the

advances in automated microscopy and image analysis, it has become feasible to

image cellular phenotypes under large numbers of experimental conditions that

mimic the influences of these intrinsic or extrinsic factors. Often, such screens are

performed by varying either the intrinsic or extrinsic factors, while keeping all other

factors or conditions unchanged (Fig. 1). “Intrinsic-phenotype” screens can be used

to study phenotypes by monitoring different intrinsic factors while keeping cells

under the same extrinsic factors or environmental conditions. Alternatively,

“extrinsic-phenotype” screens can be used to study phenotypes by subjecting cells to

different extrinsic factors while monitoring the same intrinsic biomolecular species.

Although the purposes of intrinsic- and extrinsic-phenotype screens are different,

they often use analogous experimental and computational methods (Fig. 1). These

screens can generate images for millions of cells, from each of which thousands of

numerical descriptors (or “features”) of phenotypes can be measured. These huge

amounts of generated data, which are usually in high dimensions, are challenging for

manual analysis. This problem has become a major bottleneck in large-scale image-

based phenotypic screens. Here, we review current experimental and computational

methods for large-scale image-based phenotypic screens. We show how intrinsic-

and extrinsic-phenotype screens can produce vast amounts of images, and discuss a
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general computational workflow for analyzing these images.

Our focus is on phenotypic profiling, a computational proce-

dure to build more compact representations (or “profiles”) of

the data generated from these screens, while keeping most of

the biological information intact. We also discuss the current

challenges in the adoption and use of phenotypic profiling in

large-scale phenotypic screens.

IMAGE-BASED PHENOTYPIC SCREENS

Intrinsic Phenotypes

Intrinsic-phenotype screens are often used to infer the

biological functions of novel or uncharacterized intrinsic bio-

molecules (1–3). This is because biomolecules that perform

similar biological functions or participate in related biological

processes tend to express similar phenotypes, such as subcellu-

lar localization patterns (2,3), interaction partners (4), or

expression variations (5). To monitor the phenotypes of large

numbers of biomolecular species, scalable methods for label-

ing biomolecules are required. Among all the biomolecules,

the techniques for labeling proteins, one of the fundamental

building blocks of cells, are the most developed and widely

used. Endogenous proteins can be labeled using primary anti-

bodies followed by amplification with secondary antibodies

that are conjugated to fluorescent dyes (6). The Human Pro-

tein Atlas project has generated a repository of >25,000

specific antibodies, targeting proteins from >17,000 human

genes (7). Immunohistochemistry and immunofluorescence

images of tissues or cells stained with most of these antibodies

are available on the web portal of the project (http://www.pro-

teinatlas.org). Alternatively, proteins can be covalently labeled

with genetically encoded fluorescent-protein (FP) fusion tags

(6). Large-scale FP tagging has been performed for hundreds

to thousands of genes in the budding yeast Sacchramyces cere-

visiae (2), the fruit fly Drosophila (8), and human cells (9).

This labeling method allows the study of dynamic cellular

phenotypes using live-cell imaging; therefore, it can generate

tremendously more numbers of images than antibody-based

methods.

Labeling RNAs is more challenging than labeling pro-

teins, partly due to the shorter half-lives and lower abundan-

ces of RNA molecules in the cells. For example in the budding

yeast, it was estimated that �4,000–6,000 protein molecules

are translated per mRNA molecule (10,11). Fluorescence in

situ hybridization (FISH) can be used to fluorescently label

and image RNAs via the hybridization of sequence-specific

fluorescent oligonucleotides (12). The signal intensity of FISH

can be increased by using multiple short oligonucleotide

probes to adjacent sequences on a RNA target (13), and/or

conjugating multiple fluorescent dyes to each oligonucleotide

probe (14). Then, single mRNA molecules can be detected as

diffraction-limited spots under fluorescence microscopy. This

methodology is called single-molecule FISH (smFISH). It can

now be used to image the RNAs for �1,000 genes in different

(15) or even the same (16) single human cells, thereby

enabling image-based single-cell transcriptomic screens. The

traditional FISH method has also been optimized to allow the

imaging of tens to thousands of mRNAs in neurons (17) and

the Drosophila embryos (18). With the advent of all these bio-

molecule labeling techniques, we can now image and measure

the abundance and localization of large numbers of intrinsic

biomolecular species at the single-cell level.

Despite the enduring doctrine that RNA expression leads

to protein expression, the relationship between RNA and pro-

tein expressions are not always positively correlated. A previ-

ous study of the NCI-60 human cancer cell lines found that

only �65% of the genes showed significant gene-protein

expression correlations (19). A more recent study, which mea-

sured mRNA and protein expression levels in parallel from the

same cell populations, shows that mRNA levels explain only

�40% of the variability in protein levels (20). Therefore,

intrinsic phenotypic screens based on RNA or protein labeling

may convey different information. The former may be more

useful for studying transcription-driven processes, such as cell

differentiation (18) or division; while the latter may be more

useful for studying protein-modification or translocation-

driven processes, such as drug response (21,22) or vesicle

transport (23).

However, the use of RNA or protein labeling in pheno-

typic screens is often limited by other more practical consider-

ations. Proteome-wide screening using antibodies is expensive

and time consuming. Furthermore, antibodies for specific iso-

forms or modified proteins may be hard to obtain or generate.

Figure 1. Experimental and computational workflow of large-

scale image-based phenotypic screening. Intrinsic-phenotype

screens involve the screening of many intrinsic factors (such as

RNAs, proteins, or metabolites), while keeping the extrinsic fac-

tors or conditions constant; whereas extrinsic-phenotype screens

involve the screening of many extrinsic factors (such as synthetic

small molecules or oligonucleotides), while monitoring the same

intrinsic factors. [Color figure can be viewed at wileyonlinelibrary.

com]
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Although the design and synthesis of RNA oligonucleotide

probes are relatively easy and in theory can cover all possible

transcripts, certain RNA species may be hard to detect simply

due to their lower abundances in the cells. Finally, live-cell

imaging of RNA and protein molecules remains very challeng-

ing. Transient overexpression of RNAs fused with RNA-

aptamer-fluorophore complexes (24) or proteins fused with

FPs (6) may be used, but these overexpression techniques may

interfere with the functions of endogenous RNAs or proteins

and/or cause undesirable cellular toxicity (25). Several new

labeling techniques have been recently developed to address

some of these problems. They include genome-editing techni-

ques to express FP tags at near endogenous levels by integrat-

ing them directly into native genomic loci (26) or generate

programmable nuclease complexes that can recognize differ-

ent endogenous mRNAs (27). Low-toxicity chemical probes

that can label endogenous DNA, actin cytoskeleton, or micro-

tubules in live cells have also been developed (28). These excit-

ing techniques may make large-scale intrinsic-phenotype

screens in live cells more efficient and feasible.

Extrinsic Phenotypes

Extrinsic-phenotype screens are often used to identify

extrinsic factors or perturbations that can induce certain

desired cellular phenotypes. These screens differ from intrinsic-

phenotype screens, in which different extrinsic factors or per-

turbations are applied to the cells, while the same biomolecular

species are monitored (Fig. 1). Synthetic or natural chemical

libraries are examples of extrinsic perturbations that have been

widely used for large-scale screening. The development of large

libraries of structurally diverse chemicals is mainly driven by

the needs of the pharmaceutical industry in drug discovery

(29). Large drug screening programs in pharmaceutical compa-

nies can generate >50 million data points per screening cam-

paign, where each of the data points is from a compound tested

at a concentration (30). A survey of the new drugs approved

between 1999 and 2008 found that most of the first-in-class

small-molecule drugs were discovered through phenotypic

screening (31). However, cellular imaging is a relatively new

approach for phenotypic screens. Only since the turn of the

millennium has image-based approach steadily gained traction

(32), and been used to screen for small-molecule inhibitors of

signal transduction (33,34), viral infection (35), and blood-

vessel angiogenesis (36).

The mechanisms of action of extrinsic perturbations are

often unknown. Such are the cases for novel or uncharacter-

ized synthetic small molecules, natural products, or environ-

mental toxicants. However, extrinsic factors with similar

targets or mechanisms are likely to induce similar changes in

cellular phenotypes (22,37). Therefore, extrinsic-phenotype

screens can still be used to associate these factors together and

separate them from other extrinsic factors that have different

mechanisms or modes of action. In many applications, such

as drug discovery, the molecular targets of the selected extrin-

sic factors (or “hits”) will need to be further identified, so that

the hits can be chemically optimized. This type of phenotypic

screens is also called “forward chemical-genetic” screens (29).

For other applications, such as toxicity classification (38–40),

the tested extrinsic factors may have multiple, diverse, or even

non-specific intracellular targets. Sometimes, these extrinsic

factors, such as environmental pollutants or natural-product

extract samples, may even consist of mixtures of chemicals

with unknown proportions and identities (39). Phenotypic

screening is one of the few viable approaches for characteriz-

ing or classifying these types of extrinsic perturbations (40).

If the molecular targets of the extrinsic perturbations are

known and specific, extrinsic-phenotype screens can be used

to directly infer the biomolecules that are involved in the gen-

eration of the observed phenotypes. This type of phenotypic

screen is also called “reverse genetic or chemical-genetic”

screens (29). RNA interference (RNAi) and the clustered regu-

larly interspaced short palindromic repeat (CRISPR)/CRISPR-

associated-protein-9 (Cas9) system are two genetic perturba-

tion techniques based on the cellular adaptive immune sys-

tems against viruses or other foreign genetic materials. RNAi

is a form of post-transcriptional gene regulation, in which

long double-stranded RNA (dsRNA) molecules of exogenous

or endogenous origins are cleaved into small interfering RNA

(siRNA) molecules that mediate sequence-specific degrada-

tion of messenger RNA (mRNA) molecules (41). The

CRISPR/Cas9 system is a prokaryotic immune system that

can recognize and degrade foreign double-stranded DNA

from bacteria, viruses, or plasmids through the introduction

of double stranded breaks (42). Although RNAi and CRISPR/

Cas9 were first discovered in plants and bacteria, respectively,

they can also be used to knockdown, knockout, or even

enhance the expressions of specific genes in other species,

including human, at the cellular (43–45) or organismal

(46,47) levels. Genome-wide siRNA or CRISPR-Cas9 libraries

for human genes have been developed (48,49). Image-based

phenotypic screens based on these or similar libraries have

been used to identify genes involved in cell division (50), cell

migration (51), endocytosis (52), and chromosome segrega-

tion (53).

One of the main advantages of using a CRISPR/Cas9 sys-

tem is that complete knockouts of genes can be achieved,

thereby enabling direct inferences of the relationships between

genotypes and phenotypes. However, the knockouts of certain

genes, especially essential genes, may result in cell death or

other severe defects that can mask the phenotypes of interest.

RNAi, which only reduces the expression of genes, may still be

used to study the phenotypes associated with these genes.

Interestingly, a recent comparative study found that large-

scale CRISPR/Cas9- or RNAi-based phenotypic screens identi-

fy gene sets that have little correlation and different enrich-

ments of biological processes (54). Therefore, these genetic

perturbation techniques are not directly interchangeable, and

more studies are still required to better understand their geno-

mic coverage and selectivity. The usage of these techniques is

also limited by several practical considerations. Most of them

require a multi-day transfection or delivery stage, which is

both time-consuming and artifact-prone. For example, vari-

ability in transfection may lead to variability in knockdown

efficiency (55), and the transfection process itself may trigger
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unwanted cellular responses (56). For certain phenotypic

screens, especially those aim to identify extrinsic factors that

can rapidly inhibit protein post-translational modifications,

perturbations based on small molecules may still be more

desirable due to their rapid (often within minutes) and effi-

cient uptake by cells. There is also an increasing interest to

screen or design polypharmacological compounds that can

inhibit multiple intra-cellular targets, which may lead to more

effective but less toxic therapeutic agents (57). Therefore,

despite the difficulty in de-convoluting the targets of small

molecules, they remain one of the most commonly used per-

turbation methods in extrinsic-phenotype screens.

AUTOMATED IMAGE ACQUISITION AND PROCESSING

Image Acquisition

Imaging is one of the most direct ways to observe cellular

phenotypes. Technological advances in automated microscopy

have enabled near-autonomous large-scale image-based pheno-

typic screens. The developments of robotics for sample prepara-

tion, liquid dispensing, plate handling, and microscope control

have enabled the imaging of cells under huge numbers of

diverse intrinsic or extrinsic factors (53,58,59). Although most

of the experimental processes can be automated, imaging large

numbers of cells still requires considerable time. Focus control

is one of the bottlenecks in microscope automation (60).

Image-based autofocus methods are slow, and have been mostly

replaced with faster and more robust reflection-based autofo-

cusing methods (61), which are commercially available from

several vendors of microscopes. However, most of the

reflection-based methods work by maintaining constant vertical

offsets between the imaging interfaces and objective lens, and

may still have problems imaging samples with uneven thickness

(either due to the culture/supporting substrates or the cell/tis-

sue specimens themselves). To reduce imaging time, especially

for live-cell imaging, machine-learning-based methods and

tools, such as the Micropilot platform (62), can be used to rec-

ognize, track, and image only certain selected subset of cells.

Assay miniaturization has also contributed to the increase

in the scale of phenotypic screens. There are currently two

approaches for assay miniaturization. The first approach

involves microtiter plates with higher well density and smaller

well volume, such as the 384- or even 1536-well plates

(37,53,63). The second approach uses microfluidic devices,

which are miniaturized fluidic channels (usually <1 mm) that

can perform liquid handling and perturbation experiments

(64,65). All of these technologies reduce the amount of biologi-

cal and chemical reagents used per assay, and therefore allow

more phenotypic screening experiments to be performed.

Image Preprocessing and Cell Segmentation

Due to the large numbers of generated images, automat-

ed image processing is required and critical for large-scale

image-based phenotypic screen. First, image pre-processing

algorithms are used to reduce noise and correct non-even

background or illumination in the images (66). For certain

applications, image stitching is also used to combine images

taken from multiple positions (67). Then, automated cell

segmentation is used to identify cellular or subcellular regions

from the acquired images (68). The accuracy of cell segmenta-

tion affects the subsequent measurements of cellular pheno-

types, especially for morphological properties—such as cell

size and roundness. Cell segmentation algorithms usually

detect cellular regions based the staining properties, such as

brightness, size, and gradient, of fluorescence labels that spe-

cifically stain the entire cells or only the nucleus. Common

segmentation algorithms include watershed transformation

and level-set methods (68). There are also algorithms that are

optimized for specific applications, such as segmentation of

touching cells (69–71), overlapping cells (72), texture-based

regions (73), and protein aggregates (74). Readers may refer

to other previous reviews for more information about image

pre-processing (66) and cell segmentation (68).

Feature Extraction

After identifying the image regions that correspond to

individual cells, numerical phenotypic descriptors (or

“features”) can be used to quantify changes in the intrinsic or

extrinsic phenotypes depicted in these regions. This process is

called “feature extraction.” The advent of more powerful com-

puters has enabled the automation of feature extraction. As

early as in the 1960s, automated measurements of the length,

size, skewness, and other morphological properties of chro-

mosomes (75) and neurons (76) from microscopy images had

been performed. Most of the current commonly used pheno-

typic features are “location-independent” features, whose val-

ues are based on either the statistics of the pixel values in the

cellular regions, or the shape properties of the outlines of the

regions (Fig. 2). These features are location-independent

because they do not consider the locations of individual pixels

within the cellular regions, and would give exactly the same

values even if the positions of the underlying pixels are ran-

domly shuffled. Examples of this type of features include cel-

lular morphology (e.g., cell size and roundness), organelle

structures (e.g., mitochondria or nuclear sizes), and intracel-

lular levels of biomolecules (e.g., mean intensity values of the

fluorescent labels for these molecules) (Fig. 2). The usage of

“location-dependent” features is rare, except for the measure-

ments of the localizations of biomolecules at specific subcellu-

lar regions (e.g., nuclear-to-cytoplasmic intensity ratios of the

fluorescent labels for these molecules). Most of the current

phenotypic features are manually designed or selected to be

readouts for specific biological processes or phenotypes of

interest, and thus they usually have direct biological interpre-

tations. For example, blebbing of the nucleus (77) and DNA

fragmentation (78) are indicators of cell death, and nuclear

translocation of transcription factors often reflects activation

of transcription (79). Due to the rich information that can be

extracted from cellular images, image-based phenotypic

screens are also commonly referred to as “high-content”

screens (80). Several freely available biological image-

processing software packages, including ImageJ/Fiji (81),

OMERO (82), CellProfiler (83), and cellXpress (84), can be

used to perform automated cell segmentation and feature

extraction (Table 1).
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IMAGE-BASED PHENOTYPIC PROFILING

New Challenges in Large-Scale Screens

The advent of large-scale screening has created new chal-

lenges to the feature extraction and analysis steps in image-

based phenotypic screens. Due to the large numbers of experi-

mental conditions tested in these screens, changes in the

intrinsic or extrinsic phenotypes are usually unknown before

the experiments, or manifested in complex or non-continuous

forms. For example, a previous genome-wide siRNA screen

induced at least 16 distinct morphological changes in the

nuclei of cells during cell division (50). This creates two new

problems. First, it is difficult to specifically design quantitative

features for these phenotypes a priori. There is an increasing

awareness in the community that most current high-content

studies actually rely on only one or two manually selected

phenotypic features (32), most of which are location-

independent features as discussed above. The usage of these

features is prone to human selection bias and may not lead to

the discovery of novel phenotypes. Second, the numbers and

definitions of all possible categories of phenotypic changes are

usually unknown. This prohibits the use of supervised

machine-learning methods, which automatically learn and

build computational models based on labeled training data

that represent pre-defined categories of phenotypes (85).

These two problems were avoided in most of the past studies

by using manually defined and/or assigned categories of phe-

notypes. For example, several previous intrinsic-phenotype

screens, such as the original genome-wide yeast protein locali-

zation study (2) and Human Protein Atlas project (7), used

pre-defined categories that correspond to known subcellular

compartments or organelles. The assignment of proteins to

these categories were also performed manually (2). Similarly,

several extrinsic-phenotype screens based on genome-wide

siRNA libraries also classified the resulting phenotypes into

manually defined phenotypic categories (50,52,86). Although

these categories are human interpretable and allow the usage

of supervised data analysis methods, they provide limited rep-

resentations of the rich information contained in the images.

For example, manual assignments based on visual inspections

may have difficulty in distinguishing proteins that localize in

multiple subcellular compartments or in different ratios (3).

Extrinsic factors may also induce new phenotypes beyond

these pre-defined categories and these changes may be

completely missed. Even for well-defined phenotypes, such as

the chromatin morphology for different stages of mitosis, user

annotations were found to be inconsistent (87). Therefore,

Figure 2. Types of phenotypic features that can be quantified

from microscopy images of cells. Location-independent features

can be based on the shape properties of the outlines of cellular

regions (e.g., cell roundness), or the statistics of the intensity val-

ues of the pixels within the regions (e.g., mean intensity value of

the staining of a cytoskeleton marker, actin, in the cellular region).

These features are location-independent because they would

give the same values even if the positions of the pixels within the

same regions are randomly shuffled. Location-dependent fea-

tures can be based on the intensity ratios of the same biomole-

cule markers at different subcellular regions [e.g., the nuclear-to-

cytoplasmic ratio of a transcription factor, nuclear factor kappa B

(NF-jB)], textural properties of the marker staining patterns [e.g.,

mean entropy of the gray-level co-occurrence matrix (90) based

on a DNA marker], and spatial correlations between two different

markers (e.g., correlation coefficient between the markers for

DNA and phosphorylated histone 2A-X, cH2AX, at the cellular

regions). Examples of primary human proximal tubular cells with

different values of these features are shown. The cells were

treated with nephrotoxic compounds (extrinsic factors) at differ-

ent concentrations, which induce the changes in cellular pheno-

types. More information about the cells, features, and

experimental protocols for generating the shown images can be

found in our previous report (40). [Color figure can be viewed at

wileyonlinelibrary.com]
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new automated data analysis methods and tools are needed to

characterize the phenotypic changes in large-scale screens.

Phenotypic Profiling

Phenotypic profiling is a procedure to construct quanti-

tative representations (or “profiles”) of cellular phenotypes

based on the images collected in large-scale phenotypic

screens (Fig. 3). These profiles are usually used to build com-

putational models that can automatically classify or group

intrinsic or extrinsic factors in the screens. The idea of pheno-

typic profiling was first demonstrated by Murphy and col-

leagues. A set of 84 image features were measured from

cellular images, and then stepwise discriminant analysis was

used to identify a subset of 37 features that could classify pro-

teins localized in ten different subcellular compartments (88).

Since then, several other studies have demonstrated that phe-

notypic profiling may also be used to classify the effects of

small molecules (22,34,37), identify novel biomolecules that

mediate biological processes (50,52,86), annotate protein

localization patterns (3,89), compare spatial and functional

divergence of proteins (3), or predict the toxicity of xenobiotic

compounds (40).

There are two unique characteristics that distinguish phe-

notype profiling from other high-content analysis (HCA)

methods (Fig. 3). The first characteristic is that large numbers

of general phenotypic features are usually automatically and

Table 1. Freely available phenotypic screening and profiling software tools

SOFTWARE DESIGN PHENOTYPIC PROFILING

PROJECT WEBSITESGUI

MULTI-

CPU

SUPPORT

MULTI-WELL

PLATE

BROWSER

INTENSITY

FEATURES

SHAPE

FEATURES

TEXTURE

FEATURES

OBJECT-

BASED

FEATURES

PROFILE

CONSTRUCTION

CecogAnalyzer (1.6) 1 2 2 1 1 1 2 1 www.cellcognition.org

CellProfiler (2.1.1)/

CellProfiler

Analyst (2.0)

1 1 1 1 1 1 1 1 www.cellprofiler.org

cellXpress (1.3) 1 1 1 1 1 1 1 1 www.cellxpress.org

EBImage (4.12.2) 2 2 2 1 1 1 1 2 www.bioconductor.org

Icy (1.7.3) 1 1 2 1 1 2 1 2 icy.bioimageanalysis.org

Image J (1.50) 1 1 2 1 1 2 1 2 imagej.nih.gov/ij

OMERO (5.2)/

WND-CHARM

1 1 1 1 1 1 1 1 www.openmicroscopy.org

Figure 3. Computational workflow of phenotypic profiling. The first step of phenotypic profiling is to generate large numbers of pheno-

typic features, which usually include many spatial-dependent features. The second step is to construct compact representations of cellular

phenotypes based on the extracted high-dimensional data. Several examples of profile construction methods are shown.
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unbiasedly generated from the cellular images. In addition to

the location-independent features mentioned above, pheno-

typic profiling usually also measures many location-

dependent features, such as the Haralick’s (22,40,88,90,91) or

Gabor (92) texture features, which describe the spatial

arrangements of the intensity values of neighboring pixels in

the images; moment and wavelet features (88,93), which mea-

sure the distributions of the intensity values of all pixels with

respect to some axes or basis; and local structures, which mea-

sure the statistics of local objects at different scales in the

images (3). These features can be used to describe complex

spatial distribution patterns of intrinsic biomolecules in the

cells (3,22,40,88,89). In most applications, these features are

measured only in the detected cellular or subcellular regions

(3,22,40), and thus they represent local properties of the

images. However, the same features may also be measured

globally in the entire images (88,89,94). There is also a special

type of feature extraction methods called “local key-point fea-

ture detection,” which identifies key points in the entire

images and extracts local features in the regions around these

points. Examples of such methods are the Scale-Invariant Fea-

ture Transform (SIFT) (95) and Speeded Up Robust Features

(SURF) (89). Both global and local key-point features do not

require cell segmentation, and thus may be potentially faster

than segmentation-based features. Unlike standard HCA

methods, all of the above mentioned features are not designed

for any specific cellular phenotype. In theory, some of these

features, such as the moment and wavelet features, can re-

construct any spatial distribution patterns of the intrinsic bio-

molecules (93). However, due to the non-specificity of these

features, many of them are expected to be irrelevant or redun-

dant for the representations of the observed cellular

phenotypes.

The second unique characteristic of phenotypic profiling

is the conversion of the measured high-dimensional feature

data into compact and representative phenotypic profiles.

This can be done by either selecting optimum feature subsets

from all the extracted features (“feature selection”), or map-

ping the high-dimensional feature data to a lower-

dimensional feature space (“feature mapping”) (Fig. 3). Fea-

ture mapping can usually remove more redundant or irrele-

vant features than feature selection. However, the lower-

dimensional feature space may not be human interpretable,

and thus is not preferable when the understanding or inter-

pretation of the observed phenotypes is required. Most of the

feature selection and mapping methods developed for high-

dimensional data in the data mining, computer vision, docu-

ment classification, and bioinformatics fields are directly

applicable to phenotypic screening data, but a few methods

have been specifically designed for phenotypic profiling. In

the following paragraph, we will provide some examples for

each of these methods, and highlight those that are more

recently developed or relevant to image-based phenotypic

profiling. Phenotypic profiling is conceptually very similar to

the approach of gene expression profiling, where the expres-

sions of large numbers of genes are first measured and then

the differentially expressed genes are automatically identified.

Most conventional HCA only use small numbers of manually

designed features, and therefore they do not need to construct

phenotypic profiles.

Feature Selection and Mapping

Feature selection methods can be divided into two main

types (96) (Fig. 3). First, filter-based methods select features

regardless of the computational models that will be built.

They include univariate methods, such as the fold-change fil-

ter, variants of t test, and Kolmogorov-Smirnov test (37); and

multivariate methods, such as discriminant function analysis

(88,97) and the Relief algorithm (98). Most of these methods

are based on the comparisons of the statistics or properties of

the feature distributions under treated and control conditions,

and therefore are more widely used in extrinsic-phenotype

screens. We have previously developed the Drug Profiling

(“D-profiling”) (22) and Protein-localization Profiling (“P-

profiling”) algorithms (3), which can be used to both extrin-

sic- and intrinsic-phenotype screens. The algorithms construct

phenotypic profiles based on hyperplanes that optimally sepa-

rate cells under the tested extrinsic or intrinsic factors and ref-

erence conditions in the multidimensional feature space. Most

of the filter-based methods, including D- and P-profiling, do

not require pre-defined categories of phenotypes, and there-

fore can be used even if the changes in extrinsic or intrinsic

phenotypes are unknown before the experiments (3,22). Sec-

ond, wrapper-based methods select features by using the even-

tual computational models to evaluate feature subsets. They

include recursive feature elimination (22,40,99), floating

search (100), and genetic algorithm (101). Wrapper-based

methods usually produce more compact phenotypic profiles

and more predictive computational models than filter-based

methods. However, they require pre-definition of phenotypes,

and cannot be used if the changes in phenotypes are unknown

before the experiments. Also, they are usually more computa-

tionally intensive and take longer time to complete.

Feature mapping methods can be divided into four main

types (Fig. 3). First, decomposition-based methods decom-

pose the feature data into new axes with lower redundancy or

correlation. They include principal component analysis (102)

and partial least square regression (103). These methods are

usually very computationally efficient. Second, clustering-

based methods group features into clusters according to their

similarities, and then generate phenotypic profiles by combin-

ing features from the same clusters together (104,105). Third,

transformation-based methods transform the data into new

feature spaces while retaining certain inter-condition proper-

ties, such as the phenotypic dissimilarity among different test-

ed conditions, in the original feature space. These methods

include multi-dimensional scaling (106) and kernel-base

methods (107). A more recently developed method is autoen-

coder, which is based on multilayer (or “deep”) neural net-

works with a small central layer to reconstruct high-

dimensional input data (108,109). Interestingly, autoencoder

may also be applied directly to the raw pixel values in the

images without the need to define or extract phenotypic fea-

tures from the images. Finally, model-based methods
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construct models to represent the observed phenotypes and

use parameters of the models as phenotypic profiles. These

models may represent the prevalence (in the form of histo-

grams or distributions) of different cellular subpopulations

(110,111) or local patches/key-point regions (89), temporal

relationships between different classes of phenotypes (87,91),

or cell shape or protein subcellular localization patterns (112).

These methods have the advantage of being interpretable, and

thus may be used to infer or identify the underlying mecha-

nisms that generate the observed phenotypes.

Supervised Versus Unsupervised Profiling

After phenotypic profiling, the resulting profiles are usu-

ally used to construct computational models for the observed

phenotypes (Fig. 1). In supervised learning, the models are

trained using phenotypic profiles collected under intrinsic or

extrinsic conditions that are known to induce certain pre-

defined or categorized changes in cellular phenotypes (85),

such as localization at specific subcellular compartments

(88,89), stages of cell cycle (53), or responses to chemicals

(40,113). Common computational methods for building

supervised models include support vector machine (53,89)

and random forest (40,114). Once trained, supervised models

can be used to automatically assign new test samples into one

of the pre-defined categories based on the measured pheno-

typic profiles. For example, supervised models were used to

predict biological functions of new proteins (50,89), or phar-

macological (113) and toxicological (40) effects of new chemi-

cals. However, one of the major limitations of supervised

models is that they require pre-defined phenotypic categories.

As discussed earlier, the numbers and definitions of all possi-

ble categories of phenotypic changes may be unknown a

priori.

To overcome this, unsupervised learning may be used to

find phenotypic categories by grouping conditions with simi-

lar phenotypic profiles together. Commonly used methods for

building unsupervised models include hierarchical or K-mean

clustering (85). The identified categories may lead to the dis-

covery of novel relationships among the tested conditions. For

example, unsupervised models were used to discover proteins

that are involved in related biological processes or functions,

cellular states, common targets or mechanisms of chemicals

(3,22,34,87). However, in practice, the occurrence of different

phenotypic categories is usually non-uniform. Therefore, it

remains a challenge to automatically identify “rare” pheno-

typic categories because insufficient numbers of measured

conditions may be associated with these categories. Models

based on skewed and heavy-tailed distributions (115) and

spanning-tree progression analysis (116) have been proposed

to identify “rare” clusters in flow cytometry data, and may

also be used for clustering of image-based phenotypic profiles.

Another limitation of supervised learning is that large

numbers of labeled samples are usually required to build gen-

eralizable and predictive models. The labeling of samples is

usually a time- and labor-intensive process. To overcome this

limitation, a semi-supervised learning method, called “active

learning,” may be used (117,118). The method interactively

queries human annotators or performs additional perturba-

tion experiments to obtain the labels of the most relevant

samples, thereby achieving high prediction accuracy while

minimizing the required number of labeled samples. For

example, a phenotypic screening platform has recently been

developed to integrate liquid handling robotics, automated

microscopy, and active learning algorithms (118). The plat-

form could accurately classify the effects of 48 chemical com-

pounds by performing only 29% of all possible perturbation

and imaging experiments (118). As phenotypic screens are

designed to test increasing numbers of intrinsic and extrinsic

factors, we expect to see more future adoptions of similar

intelligent experimental design methods to “virtually” scale

up the throughput of phenotypic screens.

CONCLUDING REMARKS

Several studies have found that phenotypic profiling can

be used to discover novel phenotypes. For example, we have

previously shown that P-profiles, which were constructed

without using any pre-defined phenotypic category, can be

used to search and rank proteins based on their dissimilarity

in subcellular localization patterns to a set of query proteins

(3) (Fig. 4). Other unsupervised studies have identified novel

biologically active small molecules (34), temporal patterns

during cell cycle (87), or subpopulations of cells with hetero-

geneous drug responses (110). Several previous studies have

also compared the performances of supervised models based

on phenotypic profiles or raw high-dimensional feature data.

Phenotypic profiles were consistently found to give better

classification performances in both intrinsic (3,89,90) or

extrinsic (40,84) phenotype screens.

Despite the advantages of phenotypic profiling, it is not

widely used in current large-scale image-based screens (32).

One of the reasons is the lack of user-friendly software tools

to perform the phenotypic profiling process. The OMERO

(82), CellProfiler (83), and cellXpress (84) software packages

can be used to generate and export large numbers of location-

dependent and -independent features (Table 1), but custom-

ized computer programs or scripts are still needed to con-

struct phenotypic profiles. Many of the profile construction

methods are available as library packages under the R, Matlab,

or python environments. The cellXpress software package also

includes software routines for performing the D- and P-

profiling algorithms under the R environment. Weka is also a

powerful, general, and user-friendly software package that can

be used to perform profile construction and data analysis

(119). Another reason is that many different image features

and methods have been used or developed for phenotypic

profiling (see above sections). It is often unclear, especially for

novice users, which image feature set or method is the most

appropriate for a specific application. We expect that, as the

field matures, more comparative studies will be performed

and lead to more standardized feature sets and procedures for

phenotypic profiling. Interestingly, several past studies have

consistently found that Haralick’s texture features are highly

informative (22,40,86,88,91,97), and therefore these features

Review Article

122 Phenotypic Screening and Profiling



are recommended to be included as part of the standard initial

feature set in phenotypic profiling. Finally, image-based fea-

tures, especially location-dependent features, may not be easi-

ly interpretable. As mentioned above, this problem may be

addressed using model-based phenotypic profiles. Neverthe-

less, as with all other types of screening methodologies, fur-

ther biomolecular validation experiments are still required to

verify the identified hits and understand the underlying mech-

anisms that generate the phenotypes.
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