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Abstract (max 100 words):  Atopic dermatitis (AD) is a skin inflammatory disease affecting 
10% of the population worldwide. Raster-scanning optoacoustic mesoscopy (RSOM) has 
recently shown promise in dermatological imaging. We conducted a comprehensive analysis 
using three machine-learning models, Random Forest (RF), Support Vector Machine (SVM), 
and Convolutional Neural Network (CNN) for classifying healthy versus AD conditions, and 
sub-classifying different AD severities using RSOM images and clinical information. CNN 
model successfully differentiates healthy from AD patients with 97% accuracy. With limited 
data, RF achieved 65% accuracy in sub-classifying AD patients into mild versus moderate-
severe cases. Identification of disease severities is vital in managing AD treatment. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing 
Agreement 

 

1. Introduction 

Atopic dermatitis (AD) is a chronic inflammatory skin disease with itch, inflammation and 
red rashes. The prevalence of AD is approximately 10% and it is more commonly seen in 
children, especially children under the age of five [1-3]. Nonetheless, an adult who suffers 
from AD tends to represent a more persistent and severe condition [4]. The cause of AD is 
unknown but there is evidence that suggests that genetic, allergic and environmental factors 
can be related to the development of AD [5-7].  

The disease progression of AD can be variable and can proceed in three directions: (i) 
persistent AD, (ii) intermittent AD or (iii) improvement. It is therefore important to diagnose 
and prognosticate AD so that treatment can be tailored at each stage. Currently, many scoring 



systems are available to assess the severity of AD, such as Eczema Area Severity Index 
(EASI) and Scoring Atopic Dermatitis (SCORAD), modified EASI (mEASI) and others [8-
10]. However, these scoring systems are semi-quantitative at the best as they are designed 
based on metrics such as itchiness, redness and scale of the affected skin region, while others 
include the quality of patients’ life. In addition, these scoring systems are based on visual 
inspections and it has been reported that visual skin assessments can only differentiate 
severities of AD in  25% of cases when self-assessed by patients [11]. Furthermore, it 
requires experience and training for clinicians to make visual assessments, subjecting these 
scoring systems to inter-rater variability [12]. It is desirable to have a non-invasive objective 
scoring tool that reflects the true AD severity throughout the therapeutic intervention and AD 
clinical trial, especially for mild and non-mild severities. 

Raster-Scanning Optoacoustic Mesoscopy (RSOM), first introduced in 2013, is an 
emerging hybrid optical and ultrasound imaging technique that offers non-invasive, deep 
penetration imaging and provides high-resolution images [13]. RSOM imaging provides deep 
skin structural imaging up to 1-2 mm beneath the skin surface with high resolutions up to ~7 
μm axial and ~30 μm lateral resolution [14]. With these resolutions, the vascular remodeling 
of the skin in various clinical severities of AD can be detected by RSOM imaging [12, 15, 
16]. Differential diagnosis is thus critical to achieve accurate AD diagnosis [17]. Considerable 
efforts have been made to explore the efficacy of RSOM in assessing skin inflammatory 
diseases. For example, skin-specific metrics derived from RSOM such as total blood volume 
(TBV) and epidermis thickness (ET) have shown a substantial difference between control and 
skin inflammatory conditions [18, 19]. In another study by Li et al, the feasibility of using 
RSOM derived skin-specific metrics in different skin phenotypes populations was 
investigated [20].  

Machine learning models have shown significant success in the classification of skin 
disease diagnosis using dermatological images of superficial skin conditions [21-28]. 
However, these models have not been applied on RSOM images except for the work by Yew 
et al [18]. In the work by Yew et al., the authors proposed an objective AD severity 
evaluation metrics – the Eczema Vascular Severity Index (EVSI) using Support Vector 
Machine (SVM) [18]. Handcrafted skin-specific features derived from RSOM images such as 
TBV, low-high frequency ratio (LHFR) and ET were used as features to train the model [18]. 
However, Convolutional Neural Networks (CNNs) were not utilized to automatically extract 
useful features from 3D RSOM images. In this study, we explore the utilization of CNNs for 
automatic extraction of useful features from 3D RSOM images and combine these features 
with handcrafted features proposed by Yew et al. [18].  

We conducted a comprehensive analysis using three machine learning (ML) methods, 
SVM, Random Forest (RF) and CNNs in classifying healthy and various AD conditions. We 
performed two analyses (i) Healthy vs. AD and (ii) Mild vs. Moderate-Severe AD conditions. 
The motivation for conducting the second analysis in classifying between mild and more 
serious AD conditions is that patient-specific clinical care can be provided accordingly for 
better treatment outcomes.  

To the best of the authors’ knowledge, this study is the first effort to employ raw 3D 
RSOM images for the classification of AD conditions using a deep learning model. The 
objective of the study is to evaluate the performance of SVM, RF and CNNs in classifying 
healthy vs. AD conditions and mild vs. moderate-severe AD conditions. We designed an 
optimal neural network architecture that receives 3D RSOM images and other handcrafted 
features and successfully combines them in the network. 

2. Methods and Materials 

2.1 Overview  

In this study, we performed a thorough analysis by applying three different ML models on 3D 
RSOM images and compared the performance of each model using different combinations of 



inputs to the model. We utilized raw 3D RSOM images and four handcrafted features as 
inputs to train ML models. Three handcrafted features were derived from RSOM images, 
proposed by Yew et al. [17], namely TBV, ET and LHFR. The fourth feature is trans-
epidermal water loss (TEWL), which reflects skin barrier dysfunction and is shown to be 
affected in AD condition [29].  

The workflow of analysis is as follows: First, we evaluated the performance of traditional 
ML models such as SVM and RF using different combinations of the following features: 
TBV, ET, LHFR and TEWL. Secondly, we adopted CNN and used raw 3D RSOM images as 
inputs to train the network. Thirdly, we employed both 3D RSOM images and handcrafted 
features information to train the CNN model. The performance of models for every 
combination of inputs was compared and reported. 

2.2 Subjects 

This study was approved by the Domain Specific Review Board (DSRB) of the National 
Health Group, Singapore (Ref No. 2017/00932). Patients were imaged in compliance with our 
institutional approvals and informed consent was obtained. Study participants were recruited 
from AD patients visiting the National Skin Centre, Singapore. The diagnosis of AD was 
made based on the Hanifin and Rajka diagnostic criteria [30]. This study also included 
healthy controls who were defined as not having AD, any form of inflammatory skin diseases 
and any atopic co-morbidities such as asthma, allergic rhinitis and allergic conjunctivitis. 76 
participants were recruited for this study, 53 were AD patients and 23 were healthy controls. 
All 53 AD participants had their disease severity assessed by an experienced dermatologist 
using SCORAD. There were 19, 26 and 8 patients suffering from mild, moderate and severe 
AD, respectively. The criteria of AD severity using SCORAD is as follows: below 25 is 
defined as mild, between 25 and 50 as moderate and greater than 50 as severe [8]. 

 

2.3 Image Acquisition 

The 3D RSOM images were collected by using RSOM Explorer C50 system (iThera Medical 
GmbH, Germany). RSOM system was implemented with one diode-pumped solid-state 
(DPSS, Nd:YAG, 532 nm) to provide < 1 ns pulse and a per-pulse energy up to 125 µJ with a 
laser’s repetition rate of 270 Hz. The flexible articulated arm of RSOM allows raster scanning 
of 5 mm × 3 mm area on the skin in about 2.5 minutes. An in-tandem illumination-detector 
element is located at the focal point of the transducer, which raster-scans the two-dimensional 
(2D) region of interest (ROI) on the skin in a regularly-spaced acquisition grid and collects 
the ultra sound signals from 11 to 99 MHz. This non-invasive RSOM system can provide 
good quality 3D images with high resolution and deep penetration from the skin surface. The 
3D RSOM images were visualized with two frequency sub-bands, high-frequency (HF) (33-
99 MHz) in green and low-frequency (LF) (11-33 MHz) in red, representing the small and big 
vascular structure, respectively (Fig. 1). 



Fig. 1. 3D RSOM
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 Training Data Validation Data 
Severity Num. of 

Patients 
Num. of 
Cropped 

Regions per 
Patients 

Total 
Num. of 
Cropped 
Regions 

Num. of 
Patients 

Num. of 
Cropped 

Regions per 
Patients 

Total 
Num. of 
Cropped 
Regions 

Mild 15 5 225 4 5 20 
Moderate 20 5 100 6 2 12 
Severe 6 18 108 2 5 10 
       

2.6.3 Model Training and Evaluation 

The network was trained for 200 epochs with learning rate 1×10−5, learning rate decay of 
0.05 and learning step decay of two with Adam optimizer. The batch size was set to be four. 
All computations were carried out on a Linux workstation with Intel (R) Core (TM) i7-4790 
CPU with 3.6 GHz clock speed, 16 GB RAM and a GeForce GTX TITAN X. It took 
approximately 9 min for one epoch and a total of 30 hours to train the model using the above-
mentioned workstation. Tensorflow 1.12 [35] implementation was used in our study. Three 
CNN models were trained using different combinations of inputs. 

The first CNN model trained used only LF and HF 3D RSOM images (23 healthy and 53 
AD cases) as inputs. The second CNN model trained used 3D RSOM images, and three 
features (TBV, LHFR, and TEWL) added at the bottleneck layer (Fig. 2). The third CNN 
model used 3D RSOM images and four features (ET, TBV, LHFR, and TEWL). For the 
second and third analyses, 6 cases out of the 23 healthy cases did not have complete feature 
information, making the number of samples to be 53 AD and 17 healthy cases. Validation 
data was used to evaluate the models’ prediction accuracy. Since one patient would have 
more than one sample due to the cropping pipeline, majority voting was performed to 
determine the final prediction for that patient. If there is a patient without a final prediction 
due to having an equal number of prediction outcomes, one additional sample was randomly 
cropped from the 3D RSOM images and evaluated to obtain the final prediction. 
  



3. Results 

Table 2 tabulates the average and standard deviation of the validation accuracy of RF, SVM 
and CNN for six-fold cross-validation results. Figure 4 shows the confusion matrices for the 
three models evaluated on validation datasets. The confusion matrices shown are for models 
that yielded the highest validation accuracy as reported in Table 2.  

In healthy vs. AD analysis, CNN achieved the highest performance among the three 
models, giving a validation accuracy of 97%, using all four features. However, when using 
only LF and HF 3D RSOM images, CNN yielded only 48% validation accuracy in classifying 
healthy vs. AD condition. Adding three handcrafted features (TBV, LHFR and ET) to the 
model increased the validation accuracy to 94%. The performance of CNN was further 
improved by 3% when TEWL was added to the model, achieving 97% accuracy. For ML 
models, RF performed better than SVM in all the analyses performed for different 
combinations of features.  

In mild vs. moderate-severe analysis, RF gave the highest accuracy of 65% in severity 
score prediction among all three models using all four features. SVM model, on the other 
hand, showed a validation accuracy of 59% when TBV, LHFR, and ET were used. Lastly, 
CNN exhibited slightly lower accuracy at 56% in predicting severity compared to RF and 
SVM, using 3D RSOM images and three handcrafted features derived (TBV, LHFR, ET) 
from RSOM images as inputs.  

Table 2. Validation accuracy for two analyses using three models with specified inputs to the models. Values 
shown are average and standard deviation for six-fold cross-validation. The highest validation accuracy for 
each particular model is shown in bold. TBV: Total Blood Volume, LHFR: Low High Frequency Ratio, ET: 

Epidermis Thickness, TEWL: Transepidermal water loss measured from VapoMeter. 

Model 

Inputs to Model Validation Accuracy 

3D 
RSOM 

Features derived from RSOM 
TEWL 

Healthy vs. 
Atopic 

Dermatitis 

Mild vs. 
Moderate-

Severe 
TBV LHFR ET 

RF 
     0.81 ± 0.08 0.63 ± 0.12 
     0.92 ± 0.07 0.65 ± 0.09 
     0.91 ± 0.06 0.59 ± 0.14 

SVM 
     0.77 ± 0.08 0.59 ± 0.12 
     0.82 ± 0.11 0.58 ± 0.18 
     0.86 ± 0.10 0.49 ± 0.18 

CNN 

     0.48 ± 0.13 0.47 ± 0.16 
     0.94 ± 0.10 0.56 ± 0.17 
     0.97 ± 0.04 0.54 ± 0.27 
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respectively (refers to Table 2). When raw 3D RSOM images were added to the pipeline 
using CNN, the diagnostic accuracy was improved to 97% and the model demonstrated more 
stability in prediction compared to RF and SVM, judging from the low standard deviation. 
This suggested that the CNN model indeed extracted useful features from 3D RSOM images, 
which aided in enhancing the CNN’s diagnostic accuracy. Even though CNN showed very 
high diagnostic accuracy in classifying healthy and AD conditions, it did not achieve similar 
performance in classifying mild vs. moderate-severe AD conditions. The CNN’s highest 
diagnostic accuracy for mild vs moderate-severe AD classification was 56%. A similar 
prediction accuracy was observed in RF and SVM, where the average diagnostic accuracy 
was ~60%.  

 From Figure 5, the RSOM cross-sectional images for healthy and AD cases were visibly 
distinguishable. CNN model thus was able to extract useful features in classifying healthy and 
AD cases even though the datasets were small. For the mild vs. moderate-severe AD 
conditions, using both raw 3D RSOM images and handcrafted features did not improve the 
CNN model’s accuracy as what we had observed in the healthy vs. AD classification. We 
believe this was because it is challenging to differentiate between mild and moderate-severe 
AD RSOM images, as shown in Figures 5 and 6. There are several reasons for the erroneous 
classification in Figure 6. Firstly, since pathological and physiological features form the basis 
for determining the severity of AD in this study, any deviation in the features will affect the 
CNN’s prediction accuracy. Notably, the mild representative case in Figure 6 exhibited a 
TEWL value of 31 g/m2h, far higher than that of severe AD cases. Similarly, the TEWL value 
of the moderate representative case in Figure 6 was lower than that of healthy subjects, 
possibly rendering the wrong classification of the case to be ‘mild’. Secondly, if the structural 
features of the RSOM images are lost due to skin barrier dysfunction in severe AD cases, the 
feature quantification is challenging since the boundary between epidermis and dermis region 
is not delineated. As in the severe case in Figure 6, the ET calculation yields a value of 148 
μm, similar to that of healthy subjects which leads it to be wrongly classified. The limited 
amount of training data further adds to the difficulty resulting in inaccurate classification for 
validation data set. As shown in Table 1, there are a total of 41 AD and 19 healthy subjects in 
our data set for classifying healthy vs AD cases. However, to predict mild vs moderate-severe 
AD subjects, fewer samples are available including 15 mild AD subjects and 26 moderate-
severe AD subjects. The limited number of samples is another reason for why classification 
of mild AD vs moderate-severe AD subjects is harder. CNN models in general require many 
more samples in order to learn to extract useful features for classification. Retraining the 
model with a larger data set will mitigate this problem.  

During ML training, data balance between classes (e.g. healthy vs. disease) is important to 
ensure the number of samples from both classes is similar. It is particularly important to 
perform data splitting at the patients-level to avoid potential data leakage from training data to 
validation data [38]. We have successfully developed a CNN-based pipeline, which include 
data preparation, data augmentation and model training to recognize various AD severity 
conditions using raw 3D RSOM images, and handcrafted features. This CNN-based pipeline 
thus will handle the data splitting at patient-level and is not limited only to skin AD disease 
classification. It is designed in a modularized manner and has the flexibility to be applied for 
classification of other skin inflammatory diseases such as rosacea, and psoriasis and other 3D 
optoacoustic images such as optical coherence tomography, multispectral optoacoustic 
tomography and multispectral optoacoustic mesoscopy. We have shared our code in 
https://github.com/davidc9320sg/rsom-dermatitis-cnn/. 

It is crucial to diagnose AD severity accurately to monitor the treatment response and plan 
effective clinical care for patients. We successfully proposed an optimal network architecture 
suitable for 3D optoacoustic images for AD conditions classification, which can be used as an 
objective evaluation tool for assessing AD conditions in clinics. At the current state, our CNN 
model is unable to achieve desirable diagnostic accuracy in classifying mild vs. moderate-



severe AD conditions. One reason could be that the AD severities were determined from 
SCORAD scoring which was subjected to inter- and intra-observational variability, the 
accuracy may therefore suffer from discrepancies from the SCORAD results. While 
SCORAD or EASI takes into account the presentation and frequency of AD symptoms, the 
subsurface inflammation physiology of the skin was out of the scoring framework. With the 
naked eye, it may be possible to observe that superficial symptoms are improved overtime 
with treatment, but inflammation may persist under the skin that can significantly impact the 
way we classify the disease severity. With more data collected and consensus among multiple 
diagnoses for each patient, the model can be re-trained using the current framework as a 
baseline to further enhance its accuracy. 

There are several limitations in this study. Firstly, the size of the data set was small (76 
patients) and the population was mainly Asian cohort. Through an on-going collaboration, we 
are aiming to expand this study by including patients with lower Fitzpatrick scores (I-II). 
Secondly, the size of the cropped sample was set at 64 x 64 pixels due to our insufficient 
GPU memory. A larger cropped sample might aid in improving CNN models since it 
provides more information to the CNN model. 

The AD classification model in this paper can be an adjunctive diagnostic tool to aid in 
clinical decisions, especially in differentiating between mild and non-mild AD severities. As 
even clinicians with experience in optoacoustic images may face challenges to interpret the 
RSOM images, our classification model aims to classify AD severity with higher sensitivity 
by extracting features from volumetric vascular structure in 3D RSOM images rather than 
one-plane imaging features. This proposed pipeline provides the foundation for an AI-aided 
AD diagnosis and treatment platform. 

 

5. Conclusion 

To conclude, we have evaluated the performance of three ML models in classifying AD 
conditions using 3D RSOM images, handcrafted features derived from RSOM images and 
transepidermal water loss. Our results showed that CNN models yield the highest accuracy 
(97%) in classifying healthy vs. AD conditions while RF achieve the highest accuracy (65%) 
in classifying mild vs. moderate-severe AD conditions. This is the first study to classify AD 
severity using 3D RSOM images. We developed a pipeline to prepare 3D RSOM images for 
training a CNN model and showed that the use of raw RSOM voxel values can be 
advantageous over handcrafted features. Our method can easily be extended to other 
inflammatory skin diseases such as rosacea and psoriasis.   
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