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Abstract (max 100 words): Atopic dermatitis (AD) is a skin inflammatory disease affecting
10% of the population worldwide. Raster-scanning optoacoustic mesoscopy (RSOM) has
recently shown promise in dermatological imaging. We conducted a comprehensive analysis
using three machine-learning models, Random Forest (RF), Support Vector Machine (SVM),
and Convolutional Neural Network (CNN) for classifying healthy versus AD conditions, and
sub-classifying different AD severities using RSOM images and clinical information. CNN
model successfully differentiates healthy from AD patients with 97% accuracy. With limited
data, RF achieved 65% accuracy in sub-classifying AD patients into mild versus moderate-
severe cases. Identification of disease severities is vital in managing AD treatment.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing
Agreement

1. Introduction

Atopic dermatitis (AD) is a chronic inflammatory skin disease with itch, inflammation and
red rashes. The prevalence of AD is approximately 10% and it is more commonly seen in
children, especially children under the age of five [1-3]. Nonetheless, an adult who suffers
from AD tends to represent a more persistent and severe condition [4]. The cause of AD is
unknown but there is evidence that suggests that genetic, allergic and environmental factors
can be related to the development of AD [5-7].

The disease progression of AD can be variable and can proceed in three directions: (i)
persistent AD, (ii) intermittent AD or (iii) improvement. It is therefore important to diagnose
and prognosticate AD so that treatment can be tailored at each stage. Currently, many scoring



systems are available to assess the severity of AD, such as Eczema Area Severity Index
(EASI) and Scoring Atopic Dermatitis (SCORAD), modified EASI (mEASI) and others [8-
10]. However, these scoring systems are semi-quantitative at the best as they are designed
based on metrics such as itchiness, redness and scale of the affected skin region, while others
include the quality of patients’ life. In addition, these scoring systems are based on visual
inspections and it has been reported that visual skin assessments can only differentiate
severities of AD in 25% of cases when self-assessed by patients [11]. Furthermore, it
requires experience and training for clinicians to make visual assessments, subjecting these
scoring systems to inter-rater variability [12]. It is desirable to have a non-invasive objective
scoring tool that reflects the true AD severity throughout the therapeutic intervention and AD
clinical trial, especially for mild and non-mild severities.

Raster-Scanning Optoacoustic Mesoscopy (RSOM), first introduced in 2013, is an
emerging hybrid optical and ultrasound imaging technique that offers non-invasive, deep
penetration imaging and provides high-resolution images [13]. RSOM imaging provides deep
skin structural imaging up to 1-2 mm beneath the skin surface with high resolutions up to ~7
pm axial and ~30 pm lateral resolution [14]. With these resolutions, the vascular remodeling
of the skin in various clinical severities of AD can be detected by RSOM imaging [12, 15,
16]. Differential diagnosis is thus critical to achieve accurate AD diagnosis [17]. Considerable
efforts have been made to explore the efficacy of RSOM in assessing skin inflammatory
diseases. For example, skin-specific metrics derived from RSOM such as total blood volume
(TBV) and epidermis thickness (ET) have shown a substantial difference between control and
skin inflammatory conditions [18, 19]. In another study by Li et al, the feasibility of using
RSOM derived skin-specific metrics in different skin phenotypes populations was
investigated [20].

Machine learning models have shown significant success in the classification of skin
disease diagnosis using dermatological images of superficial skin conditions [21-28].
However, these models have not been applied on RSOM images except for the work by Yew
et al [18]. In the work by Yew et al., the authors proposed an objective AD severity
evaluation metrics — the Eczema Vascular Severity Index (EVSI) using Support Vector
Machine (SVM) [18]. Handcrafted skin-specific features derived from RSOM images such as
TBV, low-high frequency ratio (LHFR) and ET were used as features to train the model [18].
However, Convolutional Neural Networks (CNNs) were not utilized to automatically extract
useful features from 3D RSOM images. In this study, we explore the utilization of CNNs for
automatic extraction of useful features from 3D RSOM images and combine these features
with handcrafted features proposed by Yew et al. [18].

We conducted a comprehensive analysis using three machine learning (ML) methods,
SVM, Random Forest (RF) and CNNs in classifying healthy and various AD conditions. We
performed two analyses (i) Healthy vs. AD and (ii) Mild vs. Moderate-Severe AD conditions.
The motivation for conducting the second analysis in classifying between mild and more
serious AD conditions is that patient-specific clinical care can be provided accordingly for
better treatment outcomes.

To the best of the authors’ knowledge, this study is the first effort to employ raw 3D
RSOM images for the classification of AD conditions using a deep learning model. The
objective of the study is to evaluate the performance of SVM, RF and CNNs in classifying
healthy vs. AD conditions and mild vs. moderate-severe AD conditions. We designed an
optimal neural network architecture that receives 3D RSOM images and other handcrafted
features and successfully combines them in the network.

2. Methods and Materials
2.1 Overview

In this study, we performed a thorough analysis by applying three different ML models on 3D
RSOM images and compared the performance of each model using different combinations of



inputs to the model. We utilized raw 3D RSOM images and four handcrafted features as
inputs to train ML models. Three handcrafted features were derived from RSOM images,
proposed by Yew et al. [17], namely TBV, ET and LHFR. The fourth feature is trans-
epidermal water loss (TEWL), which reflects skin barrier dysfunction and is shown to be
affected in AD condition [29].

The workflow of analysis is as follows: First, we evaluated the performance of traditional
ML models such as SVM and RF using different combinations of the following features:
TBV, ET, LHFR and TEWL. Secondly, we adopted CNN and used raw 3D RSOM images as
inputs to train the network. Thirdly, we employed both 3D RSOM images and handcrafted
features information to train the CNN model. The performance of models for every
combination of inputs was compared and reported.

2.2 Subjects

This study was approved by the Domain Specific Review Board (DSRB) of the National
Health Group, Singapore (Ref No. 2017/00932). Patients were imaged in compliance with our
institutional approvals and informed consent was obtained. Study participants were recruited
from AD patients visiting the National Skin Centre, Singapore. The diagnosis of AD was
made based on the Hanifin and Rajka diagnostic criteria [30]. This study also included
healthy controls who were defined as not having AD, any form of inflammatory skin diseases
and any atopic co-morbidities such as asthma, allergic rhinitis and allergic conjunctivitis. 76
participants were recruited for this study, 53 were AD patients and 23 were healthy controls.
All 53 AD participants had their disease severity assessed by an experienced dermatologist
using SCORAD. There were 19, 26 and 8 patients suffering from mild, moderate and severe
AD, respectively. The criteria of AD severity using SCORAD is as follows: below 25 is
defined as mild, between 25 and 50 as moderate and greater than 50 as severe [8].

2.3 Image Acquisition

The 3D RSOM images were collected by using RSOM Explorer C50 system (iThera Medical
GmbH, Germany). RSOM system was implemented with one diode-pumped solid-state
(DPSS, Nd:YAG, 532 nm) to provide < 1 ns pulse and a per-pulse energy up to 125 pJ with a
laser’s repetition rate of 270 Hz. The flexible articulated arm of RSOM allows raster scanning
of 5 mm % 3 mm area on the skin in about 2.5 minutes. An in-tandem illumination-detector
element is located at the focal point of the transducer, which raster-scans the two-dimensional
(2D) region of interest (ROI) on the skin in a regularly-spaced acquisition grid and collects
the ultra sound signals from 11 to 99 MHz. This non-invasive RSOM system can provide
good quality 3D images with high resolution and deep penetration from the skin surface. The
3D RSOM images were visualized with two frequency sub-bands, high-frequency (HF) (33-
99 MHz) in green and low-frequency (LF) (11-33 MHz) in red, representing the small and big
vascular structure, respectively (Fig. 1).
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Fig. 1. 3D RSOM images were taken using RSOM Explorer C50 System. Representative 3D RSOM image stacks for
healthy, mild, moderate and severe AD conditions are shown in the Fig.

2.4 Features

In addition to raw voxel values, three handcrafted features extracted from RSOM images and
one feature measured using VapoMeter, were used in the evaluation: 1) Total blood volume
(TBV), 2) Epidermis thickness (ET), 3) The ratio of low and high frequency signals (LHFR)
and 4) Transepidermal water loss (TEWL). TEWL was measured using VapoMeter® (Delfin
Technologies, Kuopio, Finland). TBV, ET and LHFR were extracted from 3D RSOM images
using a similar algorithm as described in Li’s study [20]. Briefly, TBV was computed as TBV
= XN x dV, where N is the number of pixels with values above a threshold (20% of the
maximum value in the dermis region) and dV is a certain voxel’s volume. ET was computed
as the distance between the skin surface and the melanin layer, which is the basal layer of the
epidermis. The melanin layer was detected by averaging pixel-values in the x-y plane along
the z-axis and finding the region with overlapping peaks for both high and low frequency
optoacoustic profile, representing the center of the melanin layer. The full width at half
maximum (FWHM) was performed to obtain the boundary of the melanin layer. LHFR was
computed as the ratio of the mean value of the pixels in the LF band image and the HF band
image in the dermis region.

2.5 Machine Learning (ML) Models

Two traditional ML approaches, namely SVM and RF were adopted in classifying (i) healthy
vs. AD conditions and (ii) mild AD vs. moderate-severe AD conditions. A linear kernel was
employed for the SVM. The RF consists of an ensemble of 25 decision trees, allowed to grow
up to a depth of 5 using the entropy criterion. The implementation employed the python
library scikit-learn [31]. For both approaches, four features (TBV, ET, LHFR and TEWL)
were used as inputs. Features were normalized between 0 and 10. Various combinations of
these features were explored to determine the combination that yields the highest accuracy.
“Balanced” mode was enabled to account for data balancing during the model training [31].
This mode adjusts the weights given to each sample to be inversely proportional to the class
frequency in the training data, which was similar to balancing the data in each severity class
during training.

All the analyses were performed in a six-fold validation fashion. Patients were split into
two groups (training and validation) in a stratified manner. Since we had limited datasets, we



did not have testing datasets. Among the 23 healthy subjects, 6 subjects did not have TEWL
values. Therefore, the number of samples used in this ML analysis consists of 53 AD and 17
healthy subjects. 80% of patients from each AD severity were assigned as training data and
20% of patients belonging to each AD severity were assigned to validation data.

2.6 Deep Learning (DL) Models
2.6.1  Network Architecture

Our CNN model consists of nine layers as shown in Figure 2. It is made of five alternating
repeated convolutional layers and max-pooling layers followed by five fully-connected (FC)
layers to reduce the model complexity [32]. The inputs to the models were 3D LF and HF
RSOM images, with a shape of 424 x 64 x 64, stacked together, resulting in a size of 2 x 424
x 64 x 64. The first layer in the model contains 64 convolutional filters of size 3 x 3 x 3 with
a stride of 2 x 2 x 2. ReLU (Rectified Linear Unit) activation was applied and was followed
by a max-pooling layer as shown below. A softmax was used as the activation function for
the output layer.

We trained two CNN models: (i) using only LF and HF 3D RSOM images (without
handcrafted features and (ii) using LF and HF 3D RSOM images with handcrafted features
(TBV, ET, LHFR and TEWL). For the second CNN models trained with handcrafted
features, the four features were concatenated at the bottleneck layer as shown in Figure 2. All
features were normalized between 0 and 10 to improve CNN model stability and modeling
performance.
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Fig. 2. Figure shows the CNN architecture that was trained to classify 3D RSOM images. Low and high frequency of
RSOM images were stacked together, resulting in an input size of 2 x 424 x 64 x 64. Images underwent a series of
convolutional (Conv) and max-pooling (MP) layers for feature extraction. ET (epidermis thickness), TBV (total
blood volume), LHFR (low and high frequency ratio), and TEWL (transepidermal water loss) were added at the
bottleneck layer.

2.6.2 Data Augmentation and Balancing

Similar to the ML experiment, CNN analyses were carried out in a six~fold validation fashion.
In each fold, data augmentation was performed to balance the data in each severity class. The
data augmentation was performed in the training and validation data sets at the patient-level
to avoid information leakage [33, 34].

The size of 3D RSOM images was 500 x 150 x 250 initially with an axial resolution of 7
um and a lateral resolution of 30 um. We first cropped away the blank regions in 3D RSOM
images, which did not contain any skin information, resulting in a fixed-size of 424 x 150 x
250. All 3D RSOM images were checked carefully to ensure the resultant cropped 3D RSOM
images covered the dermal and epidermal layers. We performed a data augmentation process,



as shown in Figure 3, including flipping (left-right and front-back) and rotating the 3D image
stack about the z-axis (45° 90°, 135° and 180°). Then, we cropped regions with fixed-size
equal to 424 x 64 x 64 pixels from the rotated or flipped images. 64 x 64 pixels were
carefully chosen to include sufficient information for the CNNs model to extract adequate
features. Limited by GPU memory, we could only use a cropped region as big as 424 x 64 x
64 pixels in our analysis. This cropping process was repeated until the number of samples in
each severity class matched (refers to next paragraph for details). The same cropping was
done on both HF and LF images and cropped regions were used as a pair during the training
process.

- 5L
flip . crop 3 o 5
left-right ;regions | i 3
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Fig. 3. Data Augmentation Process: To generate a sample, the original 3D RSOM images were rotated about the z-
axis or flipped left-right or front-back and a small region of fixed size 424 x 64 x 64 was randomly cropped from the
rotated or flipped image.

Table 1 shows the number of cropped regions per patient for one of the cross-validation
datasets using 3D RSOM images as input to train the model (23 healthy and 53 AD patients).
In the healthy vs. AD analysis, we performed data augmentation and balancing as described
above until we had ~200 training samples and ~20 validation samples in each severity class.
For example, in Table 1A, we have 15 mild AD patients, five regions were randomly cropped
after rotating and flipping the patient’s HF and LF 3D RSOM images giving a total of 75
cropped regions for the mild category. A similar number of regions were augmented for
patients with moderate and severe AD conditions giving a total of 210 augmented regions for
AD condition (mild, moderate and severe classes), which were comparable to the total
number of augmented regions for the healthy subjects (209 regions). Similar data
augmentation was performed for validation data and mild vs. moderate-severe analyses. The
details of the total number of regions cropped are shown in Table 1.

Table 1. Table shows the number of patients in every group, the number of cropped regions per patient and
total number of samples generated at the end of the augmentation process (stated in the total number of
cropped regions column) for training and validation data sets. The table shows one of the cross-validation fold.

(A) Healthy vs. Atopic Dermatitis Analysis

Training Data Validation Data
Severity Num. of Num. of Total Num. of Num. of Total
Patients Cropped Num. of Patients Cropped Num. of
Regions per  Cropped Regions per  Cropped
Patients Regions Patients Regions
Mild 15 5 75 4 1 4
Moderate 20 3 60 6 1 6
Severe 6 12 72 2 1 6
Healthy 19 11 209 4 5 20

(B) Mild vs. Moderate-Severe Analysis




Training Data Validation Data

Severity Num. of Num. of Total Num. of Num. of Total
Patients Cropped Num. of Patients Cropped Num. of
Regions per  Cropped Regions per  Cropped
Patients Regions Patients Regions
Mild 15 5 225 4 5 20
Moderate 20 5 100 6 2 12
Severe 6 18 108 2 5 10

2.6.3 Model Training and Evaluation

The network was trained for 200 epochs with learning rate 1x10-5, learning rate decay of
0.05 and learning step decay of two with Adam optimizer. The batch size was set to be four.
All computations were carried out on a Linux workstation with Intel (R) Core (TM) 17-4790
CPU with 3.6 GHz clock speed, 16 GB RAM and a GeForce GTX TITAN X. It took
approximately 9 min for one epoch and a total of 30 hours to train the model using the above-
mentioned workstation. Tensorflow 1.12 [35] implementation was used in our study. Three
CNN models were trained using different combinations of inputs.

The first CNN model trained used only LF and HF 3D RSOM images (23 healthy and 53
AD cases) as inputs. The second CNN model trained used 3D RSOM images, and three
features (TBV, LHFR, and TEWL) added at the bottleneck layer (Fig. 2). The third CNN
model used 3D RSOM images and four features (ET, TBV, LHFR, and TEWL). For the
second and third analyses, 6 cases out of the 23 healthy cases did not have complete feature
information, making the number of samples to be 53 AD and 17 healthy cases. Validation
data was used to evaluate the models’ prediction accuracy. Since one patient would have
more than one sample due to the cropping pipeline, majority voting was performed to
determine the final prediction for that patient. If there is a patient without a final prediction
due to having an equal number of prediction outcomes, one additional sample was randomly
cropped from the 3D RSOM images and evaluated to obtain the final prediction.



3. Results

Table 2 tabulates the average and standard deviation of the validation accuracy of RF, SVM
and CNN for six-fold cross-validation results. Figure 4 shows the confusion matrices for the
three models evaluated on validation datasets. The confusion matrices shown are for models
that yielded the highest validation accuracy as reported in Table 2.

In healthy vs. AD analysis, CNN achieved the highest performance among the three
models, giving a validation accuracy of 97%, using all four features. However, when using
only LF and HF 3D RSOM images, CNN yielded only 48% validation accuracy in classifying
healthy vs. AD condition. Adding three handcrafted features (TBV, LHFR and ET) to the
model increased the validation accuracy to 94%. The performance of CNN was further
improved by 3% when TEWL was added to the model, achieving 97% accuracy. For ML
models, RF performed better than SVM in all the analyses performed for different
combinations of features.

In mild vs. moderate-severe analysis, RF gave the highest accuracy of 65% in severity
score prediction among all three models using all four features. SVM model, on the other
hand, showed a validation accuracy of 59% when TBV, LHFR, and ET were used. Lastly,
CNN exhibited slightly lower accuracy at 56% in predicting severity compared to RF and
SVM, using 3D RSOM images and three handcrafted features derived (TBV, LHFR, ET)
from RSOM images as inputs.

Table 2. Validation accuracy for two analyses using three models with specified inputs to the models. Values

shown are average and standard deviation for six-fold cross-validation. The highest validation accuracy for

each particular model is shown in bold. TBV: Total Blood Volume, LHFR: Low High Frequency Ratio, ET:
Epidermis Thickness, TEWL: Transepidermal water loss measured from VapoMeter.

Inputs to Model Validation Accuracy
Model 3D Features derived from RSOM Health)-r VS. Mild vs.
RSOM TBV LHFR ET TEWL Atopl.c ‘ Moderate-
Dermatitis Severe
4 v 4 0.81£0.08 0.63+0.12
RF v v 4 v 0.92+£0.07 0.65=+0.09
v 4 4 0.91+0.06 0.59=+0.14
v v v 0.77+0.08  0.59 £0.12
SVM v v 4 v 0.82+0.11 0.58=+0.18
v v v 0.86+0.10 0.49+0.18
4 0.48=+0.13 0.47+0.16
CNN v v v v 0.94+0.10 0.56=+0.17
v v 4 v 4 0.97+£0.04 0.54=+0.27




a) (i) RF: Healthy vs Atopic Dermatitis a) (ii) RF: Mild vs Moderate-Severe
Prediction Prediction
Healthy Eczema Mild Mod-Sev
‘ég Healthy | 3.0£0.6 0.3+£0.5 %5: Mild 13+£09 | 1.8+£0.7
5 &l Eozema | 07409 | 9.0+08 S | Mod-Sev | 12+0.7 | 45+1.0
Inputs :TBV+LHFR+ET+TEWL Inputs :TBV+LHFR+ET+TEWL

Accuracy : 0.92 £ 0.07 Accuracy : 0.65 = 0.09

b) () SVM: Healthy vs Atopic Dermatitis b) (i) SVM: Mild vs Moderate-Severe
Prediction Prediction
Healthy Eczema Mild Mod-Sev
% g Healthy | 3.2+0.4 02+0.4 % —:‘5' Mild 23+£05 0.8+04
5 E| Eozema | 17411 | 80+1.1 & & Mod-Sev | 28+1.3 | 2.8+1.1
Inputs :TBV+LHFR +TEWL Inputs :TBV+LHFR+ET

Accuracy : 0.86+0.10 Accuracy : 0.59+0.12

¢) () CNN: Healthy vs Atopic Dermatitis ©) (ii)  CNN: Mild vs Moderate-Severe
Prediction Prediction
Healthy Eczema Mild Mod-Sev
% g| Healthy | 3305 | 00£00 ‘% 5 Mild | 23+08 | 0.8+0.8
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Inputs :RSOM +TBV + LHFR+ET+TEWL Inputs :RSOM +TBV + LHFR + ET

Accuracy : 0.97 + 0.04 Accuracy : 0.56 +0.17

Fig. 4. Confusion Matrix for all models in the two analyses. The confusion matrices shown is generated using the
model that yielded the highest validation accuracy as reported in Table 2. Values shown are mean and standard
deviation for six-fold cross-validations. Inputs are the images/features used to train the model. RF: Random Forest,
SVM: Support Vector Machine, CNN: Convolutional Neural Networks, TBV: Total Blood Volume, LHFR: Low
High Frequency Ratio, ET: Epidermis Thickness, TEWL: Transepidermal Water Loss.

Figure 5 shows the representative RSOM images that were correctly and wrongly
classified by CNN in the analyses of healthy vs. AD conditions. While the structural
differences between healthy and AD conditions are apparent, the moderate AD condition that
was wrongly classified as healthy may have similar structural features to the healthy case,
such as the absence of capillary loops, and intact epidermis. Figure 6 shows the representative
RSOM images that were wrongly classified by CNN in the analysis of mild vs. moderate-
severe AD conditions. In other words, the mild AD case was classified as a moderate-severe

AD case and vice versa.



Analysis 1: Healthy vs Atopic Dermatitis
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Fig. 5. Representative RSOM cross-sectional images of correctly and wrongly classified by CNN in the experiment
of classifying healthy vs. AD condition.

Analysis 2: Mild vs Moderate-Severe Atopic Dermatitis
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Fig. 6. Representative RSOM cross-sectional images of wrongly classified samples by the CNN in the experiment of
classifying mild vs. non-mild AD (moderate-severe) conditions.

4. Discussion

In recent years, there have been a number of studies deploying deep learning for skin disease
classification. These studies applied deep learning on dermoscopic images [27, 36, 37] but not
on 3D optoacoustic images. In this paper, we deploy deep learning for classification of 3D
RSOM images.

Using a small data set (76 patients), we could achieve a better diagnostic accuracy
compared to the model by Liu et al. which was trained on a large data set (~16 k dermoscopic
images) [38]. Using RSOM images, we were able to boost the model’s performance with a
smaller data set. These results suggested that the ML model’s performance could be largely
affected by the data information presented to the model. As data labeling is a laborious task
for preparing large data sets of medical imaging for ML, highly efficient models on small data
sets can be a boon in timely analyses [39-41].

We extended our work based on previous studies on RSOM image analysis. In the current
study, we adopted the ML model to classify different AD severity conditions — mild vs.
moderate-severe condition, which was not performed in the past. Furthermore, we performed
comprehensive ML training and predictive validation analyses, where we did cross-validation
for the generalization of our model. It is particularly important to obtain more reliable results
especially when the datasets are small. Our cross-validation results showed that CNNs had
higher prediction accuracies than RF and SVM, with an accuracy of 97%, achieving 11%
improvement over SVM, in classifying healthy and AD conditions [18].

Using all four handcrafted features, traditional ML models such as RF and SVM could
achieve a diagnostic accuracy of 92% and 86% in classifying healthy and AD condition,



respectively (refers to Table 2). When raw 3D RSOM images were added to the pipeline
using CNN, the diagnostic accuracy was improved to 97% and the model demonstrated more
stability in prediction compared to RF and SVM, judging from the low standard deviation.
This suggested that the CNN model indeed extracted useful features from 3D RSOM images,
which aided in enhancing the CNN’s diagnostic accuracy. Even though CNN showed very
high diagnostic accuracy in classifying healthy and AD conditions, it did not achieve similar
performance in classifying mild vs. moderate-severe AD conditions. The CNN’s highest
diagnostic accuracy for mild vs moderate-severe AD classification was 56%. A similar
prediction accuracy was observed in RF and SVM, where the average diagnostic accuracy
was ~60%.

From Figure 5, the RSOM cross-sectional images for healthy and AD cases were visibly
distinguishable. CNN model thus was able to extract useful features in classifying healthy and
AD cases even though the datasets were small. For the mild vs. moderate-severe AD
conditions, using both raw 3D RSOM images and handcrafted features did not improve the
CNN model’s accuracy as what we had observed in the healthy vs. AD classification. We
believe this was because it is challenging to differentiate between mild and moderate-severe
AD RSOM images, as shown in Figures 5 and 6. There are several reasons for the erroneous
classification in Figure 6. Firstly, since pathological and physiological features form the basis
for determining the severity of AD in this study, any deviation in the features will affect the
CNN’s prediction accuracy. Notably, the mild representative case in Figure 6 exhibited a
TEWL value of 31 g/m’h, far higher than that of severe AD cases. Similarly, the TEWL value
of the moderate representative case in Figure 6 was lower than that of healthy subjects,
possibly rendering the wrong classification of the case to be ‘mild’. Secondly, if the structural
features of the RSOM images are lost due to skin barrier dysfunction in severe AD cases, the
feature quantification is challenging since the boundary between epidermis and dermis region
is not delineated. As in the severe case in Figure 6, the ET calculation yields a value of 148
um, similar to that of healthy subjects which leads it to be wrongly classified. The limited
amount of training data further adds to the difficulty resulting in inaccurate classification for
validation data set. As shown in Table 1, there are a total of 41 AD and 19 healthy subjects in
our data set for classifying healthy vs AD cases. However, to predict mild vs moderate-severe
AD subjects, fewer samples are available including 15 mild AD subjects and 26 moderate-
severe AD subjects. The limited number of samples is another reason for why classification
of mild AD vs moderate-severe AD subjects is harder. CNN models in general require many
more samples in order to learn to extract useful features for classification. Retraining the
model with a larger data set will mitigate this problem.

During ML training, data balance between classes (e.g. healthy vs. disease) is important to
ensure the number of samples from both classes is similar. It is particularly important to
perform data splitting at the patients-level to avoid potential data leakage from training data to
validation data [38]. We have successfully developed a CNN-based pipeline, which include
data preparation, data augmentation and model training to recognize various AD severity
conditions using raw 3D RSOM images, and handcrafted features. This CNN-based pipeline
thus will handle the data splitting at patient-level and is not limited only to skin AD disease
classification. It is designed in a modularized manner and has the flexibility to be applied for
classification of other skin inflammatory diseases such as rosacea, and psoriasis and other 3D
optoacoustic images such as optical coherence tomography, multispectral optoacoustic
tomography and multispectral optoacoustic mesoscopy. We have shared our code in
https://github.com/davidc9320sg/rsom-dermatitis-cnn/.

It is crucial to diagnose AD severity accurately to monitor the treatment response and plan
effective clinical care for patients. We successfully proposed an optimal network architecture
suitable for 3D optoacoustic images for AD conditions classification, which can be used as an
objective evaluation tool for assessing AD conditions in clinics. At the current state, our CNN
model is unable to achieve desirable diagnostic accuracy in classifying mild vs. moderate-




severe AD conditions. One reason could be that the AD severities were determined from
SCORAD scoring which was subjected to inter- and intra-observational variability, the
accuracy may therefore suffer from discrepancies from the SCORAD results. While
SCORAD or EASI takes into account the presentation and frequency of AD symptoms, the
subsurface inflammation physiology of the skin was out of the scoring framework. With the
naked eye, it may be possible to observe that superficial symptoms are improved overtime
with treatment, but inflammation may persist under the skin that can significantly impact the
way we classify the disease severity. With more data collected and consensus among multiple
diagnoses for each patient, the model can be re-trained using the current framework as a
baseline to further enhance its accuracy.

There are several limitations in this study. Firstly, the size of the data set was small (76
patients) and the population was mainly Asian cohort. Through an on-going collaboration, we
are aiming to expand this study by including patients with lower Fitzpatrick scores (I-II).
Secondly, the size of the cropped sample was set at 64 x 64 pixels due to our insufficient
GPU memory. A larger cropped sample might aid in improving CNN models since it
provides more information to the CNN model.

The AD classification model in this paper can be an adjunctive diagnostic tool to aid in
clinical decisions, especially in differentiating between mild and non-mild AD severities. As
even clinicians with experience in optoacoustic images may face challenges to interpret the
RSOM images, our classification model aims to classify AD severity with higher sensitivity
by extracting features from volumetric vascular structure in 3D RSOM images rather than
one-plane imaging features. This proposed pipeline provides the foundation for an Al-aided
AD diagnosis and treatment platform.

5. Conclusion

To conclude, we have evaluated the performance of three ML models in classifying AD
conditions using 3D RSOM images, handcrafted features derived from RSOM images and
transepidermal water loss. Our results showed that CNN models yield the highest accuracy
(97%) in classifying healthy vs. AD conditions while RF achieve the highest accuracy (65%)
in classifying mild vs. moderate-severe AD conditions. This is the first study to classify AD
severity using 3D RSOM images. We developed a pipeline to prepare 3D RSOM images for
training a CNN model and showed that the use of raw RSOM voxel values can be
advantageous over handcrafted features. Our method can easily be extended to other
inflammatory skin diseases such as rosacea and psoriasis.
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