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Back propagation and gradient descend
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x=1
w1=0.1 w2 w2=-0.2

h1
w3=-0.1 = o

z1 = w1x+ b1

h1 = �(z1)

b1=0

z2 = w2h1 + b2

h2 = �(z2)

z3 = w3h2 + b3

h3 = �(z3)

h2 h3
b2=0.1 b3=0.2

Compute h1,h2,h3 using Relu : please spend 5 minutes on this

Forward pass
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b1=0

z2 = w2h1 + b2
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z3 = w3h2 + b3
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Now we put in real numbers

h2 h3
b2=0.1 b3=0.2

z1 = 0.1*1+0 = 0.1 
h1 = 0.1

z2 = -0.2*0.1+0.1 = 0.08 
h1 = 0.08

z3 = -0.1*0.08+0.2 = 0.192 
h3 = 0.192
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Backward pass, compute all the gradients
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0.08

h3= 
0.192b2=0.1 b3=0.2

z1 = 0.1 z2 = 0.08 z3 = 0.192
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Backward pass, compute all the gradients

h2 h3
b2=0.1 b3=0.2

Please spend 2 minutes 
to compute gradients for 
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Local minimum problem
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show playground XOR example
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Good solution example
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Local minimum examples
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1.Stochastic gradient descend 
2.Adam method, momentum

Strategies for overcoming 
local minimum problem
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cost surfaces are different for different data sets
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cost surfaces are different for different data sets
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cost surfaces are different for different data sets
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cost surfaces are different for different data sets
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x y

0.97 2.0

0.016 0.025

0.87 1.4

0.70 1.5

0.11 0.19

0.023 0.048

0.65 1.4

0.27 0.55

0.21 0.40

0.087 0.19

X YW

Use the loss function  

L(w|x,y) = sum (yi - wxi)^2 

✤ Randomly choose 3 data points {x,y} 
✤ Plot L(w|x,y) versus w 
✤ Repeat the above several times

Overlay your plots



Minibatch gradient descend
~x
y

features

labels

batch 1 batch 2 batch 3 batch 4

all these data are slightly different
cost surfaces are different for different data sets

batch size = 10 in this example
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weights and bias
co

st

weights and bias

co
st

weights and bias

co
st

weights and bias

co
st

batch 1

batch 2 batch 3 batch 437



iterations

co
st

batch 1 batch 2 batch 3 batch 4

Always remember to shuffle the data
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weights and bias

co
st

batch 1
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weights and bias

co
st

batch 2
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weights and bias

co
st

batch 2

41



weights and bias

co
st

batch 3
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weights and bias

co
st

batch 3
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weights and bias

co
st

batch 4
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Stochastic gradient descend
~x
y

features

labels

use batch size = 1 for stochastic gradient descend
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Adam optimisation
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Adam optimisation

average the gradient direction over the past

move in the direction with “constant” step size
47



Signs of trouble 
always look at cost versus iterations plots

iterations

co
st

Cost not decreasing 
looks like a local minimum

iterations
co

st
Cost decrease over slowly 
looks like at very flat region 

of cost surface
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Signs of trouble 
always look at cost versus iterations plots

iterations

co
st

Cost actually increasing 

Please check for a bug in your code!!
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Vanishing gradient problem
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https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning
51

https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning
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Strategies to overcoming vanishing gradient problem 

short-cuts (residual net) 

these will be covered later in the course
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62

Lets play a game
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You guess a number, if it is a ‘good’ 
number, I pay you $1, else you pay me $1.

I have a hidden rule to define what is a 
good number. . . 



64

Of course I am not telling you my rule

What you can know if you keep buying 
until you find out the rule 

We can assume that my rule does not 
change
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9931 
8937

1728 
5952 You winYou lose

Guess what is my rule write on the board
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9931 
8937

1728 
5952 You winYou lose

Guess what is my rule 
•.odd/even 
•.prime *** 
•.>6000 
•.div3 
•.last 2 digit even 
•.div12 
•.include 3 -> bad 
•.sum digit <=21 
•.have 2 as a digit 
•.first 2 digit is prime
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9931 
8937 
6222 
0328 
1002

1728 
5952 
0064

You winYou lose
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9931 
8937 
6222 
0328 
1002

1728 
5952 
0064

You winYou lose

Guess what is my rule, type in the chat please 
• .odd/even - eliminate 
• .prime - eliminated 
• .>6000 - eliminated 
• .div3  
• .last 2 digit even - eliminated 
• .div12  
• .include 3 -> bad - eliminated 
• .sum digit <=21 - eliminated 
• .have 2 as a digit - eliminated 
• .first 2 digit is prime 
• Contains 2^6 



Fundamental problem of Neural Networks
Data space and data manifold
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What is ‘wrong’ with this data set?
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height and weight example

height 
(cm)

weight 
(kg)

120cm 200cm

40kg

90kg



72

What is ‘wrong’ with this data set?



73

hypothetical data

x1

x2
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how to draw the decision boundaries?

x1

x2



75

how to draw the decision boundaries?

x1

x2
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is this a better boundary?

x1

x2
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how do you classify the blue point?

x1

x2
(a) Black 
(b)Red 
(c) unknown
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how to draw the decision boundaries?

x1

x2
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its a cat!
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Closely related problem 

how to design the architecture? 

more layers always better?
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87

try this network, run with 
(1) relu 
(2) tanh 
(3) sigmoid 
(4) linear
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Neural network are universal approximations 
(under some conditions)

http://neuralnetworksanddeeplearning.com/chap4.html

A good reference, read and ask 
if you don’t understand anything

Is there a contradiction between 
universal approximation theorem 

and 
problems with neural network?
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x

f(x)
Actual Predicted

x

This is ok, the problem is the data
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x

f(x)
Actual Predicted

x

This is ok, the problem is the data
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x

f(x)
Actual Predicted

x

Problem #1: insufficient data
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x

f(x)
Actual Predicted

x

Problem #2: you define the data space wrongly

function only defined 
in this range
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Auto-encoders
Concept of latent spaces, 

data representation spaces, 

data manifolds
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What is the geometric interpretation of vector dot products?

Draw on the board, these vector dot products

x1 x2 y1 y2 x.y 

0.01 1.51 0.11 0.99

1.83 1.41 0.96 0.28

0.70 0.93 0.94 -0.34

0.81 1.17 0.0 1.00

1.12 0.04 1.00 1.7

1.71 1.41 0.95 0.30

0.62 1.29 -0.5 0.86

0.56 1.60 0.80 0.60

0.26 0.86 -1 0

1.94 1.94 0.5 1
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What is the geometric interpretation of matrix vector products?

0.3 -1.2
2.6 0.7
-0.5 -0.2

0.6
-1.2

0.7 0.4
-0.6 1.3
1.5 -1.4

0.6
-1.2

-0.2 2.1
-1.1 0.1
0.3 0.5

0.6
-1.2
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What is the geometric interpretation of matrix vector products?

0.3 -1.2
2.6 0.7
-0.5 -0.2

0.6
-1.2

0.7 0.4
-0.6 1.3
1.5 -1.4

0.6
-1.2

-0.2 2.1
-1.1 0.1
0.3 0.5

0.6
-1.2

ReLU

ReLU

(
( (ReLU

)
) )


