Welcome to BS6207 2022
 Lee Hwee Kuan

Back propagation and gradient descend

import torch
from torchviz import make_dot
from torch.autograd import Variable

4
5
6
\qquad name \qquad $={ }^{\prime}$ \qquad main \qquad ':

13
14
a = Variable(torch,tensor([1.0]), requires_grad=True)
b = Variable(torch.tensor([1.0]),requires_grad=True)
c = Variable(torch.tensor([1.0]),requires_grad=True)
$x 0=$ Variable(torch.tensor([.5]),requires_grad=True)
17

19 \# updater step - first step
$\mathbf{x} 1=b * x 0+c$
$x 2=a * x 0 * x 1$ \# one step
22
23

name - \square
\qquad

15	$b=$ Variable(torch.tensor([1.0]),requires_grad=True)
16	$c=$ Variable(torch.tensor([1.0]), requires_grad=True)
17	$x 0=$ Variable(torch.tensor([.5]), requires_grad=True)

 \# upaater step - ifist step
 \(\mathrm{x} 2=\mathrm{a} * \mathrm{x} 0 * \mathrm{x} 1\) \# one step
 print_compute_tree('tree_ex' , x2)
 import torch
from torchviz import make_dot from torch.autograd import Vari

a = Variable(torch.tensor(11.0]),
$\mathrm{b}=$ Variable(torch.tensor([1.0]), requires_grad=True)
C = Variable(torch.tensor([1.0]),requires grad=True)
x0 = Variable(torch.tensor([.5]),requires_grad=True)
\# updater step - first step
$\mathrm{x} 1=\mathrm{b} * \mathrm{x} 0+\mathrm{c}$
x2 = a*x0*x1 \# one step
print_compute_tree('tree_ex' , x2)

Forward pass

$$
\begin{array}{r}
z_{1}=w_{1} x+b_{1} \\
h_{1}=\sigma\left(z_{1}\right) \\
z_{2}=w_{2} h_{1}+b_{2} \quad z_{3}=w_{3} h_{2}+b_{3} \\
h_{2}=\sigma\left(z_{2}\right)
\end{array}
$$

Compute h1,h2,h3 using Relu : please spend 5 minutes on this

Now we put in real numbers

$$
\begin{array}{r}
z_{1}=w_{1} x+b_{1} \\
h_{1}=\sigma\left(z_{1}\right) \\
z_{2}=w_{2} h_{1}+b_{2} \quad z_{3}=w_{3} h_{2}+b_{3} \\
h_{b}=\sigma\left(z_{2}\right)
\end{array}
$$

$z 1=0.1^{*} 1+0=0.1$
h1 $=0.1$
$z 2=-0.2^{*} 0.1+0.1=0.08$
$h 1=0.08$
$z 3=-0.1^{*} 0.08+0.2=0.192$
h3 $=0.192$

Backward pass, compute all the gradients
$z_{1}=w_{1} x+b_{1}$
$h_{1}=\sigma\left(z_{1}\right)$
(xis

$$
z 1=0.1
$$

$$
\begin{array}{r}
z_{2}=w_{2} h_{1}+b_{2} \\
\quad h_{2}=\sigma\left(z_{2}\right)
\end{array}
$$

$$
z_{3}=w_{3} h_{2}+b_{3}
$$

$$
h_{3}=\sigma\left(z_{3}\right)
$$

Backward pass, compute all the gradients

$$
\begin{aligned}
& \begin{array}{rrr}
z_{1}=w_{1} x+b_{1} & z_{2}=w_{2} h_{1}+b_{2} & z_{3}=w_{3} h_{2}+b_{3} \\
h_{1}=\sigma\left(z_{1}\right) & h_{2}=\sigma\left(z_{2}\right) & h_{3}=\sigma\left(z_{3}\right)
\end{array} \\
& \frac{\partial h_{3}}{\partial z_{3}}=1 \\
& \frac{\partial h_{3}}{\partial z_{2}}=\frac{\partial h_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \\
& \frac{\partial h_{3}}{\partial z_{1}}=\frac{\partial h_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}}=\frac{\partial h_{3}}{\partial z_{2}} \frac{\partial z_{2}}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}}
\end{aligned}
$$

Backward pass, compute all the gradients

$$
\begin{aligned}
& \begin{array}{rrr}
z_{1}=w_{1} x+b_{1} & z_{2}=w_{2} h_{1}+b_{2} & z_{3}=w_{3} h_{2}+b_{3} \\
h_{1}=\sigma\left(z_{1}\right) & h_{2}=\sigma\left(z_{2}\right) & h_{3}=\sigma\left(z_{3}\right)
\end{array} \\
& \frac{\partial h_{3}}{\partial z_{3}}=1 \\
& \frac{\partial h_{3}}{\partial z_{2}}=? \quad \frac{\partial h_{3}}{\partial z_{2}}=\frac{\partial h_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial z_{2}}=(1)(-0.1)(1)=-0.1 \\
& \frac{\partial h_{3}}{\partial z_{1}}=?=\frac{\partial h_{3}}{\partial z_{2}} \frac{\partial z_{2}}{\partial h_{1}} \frac{\partial h_{1}}{\partial z_{1}}=(-0.1)(-0.2)(1)=0.02
\end{aligned}
$$

Backward pass, compute all the gradients

$$
\begin{array}{rrr}
z_{1}=w_{1} x+b_{1} & z_{2}=w_{2} h_{1}+b_{2} & z_{3}=w_{3} h_{2}+b_{3} \\
h_{1}=\sigma\left(z_{1}\right) & h_{2}=\sigma\left(z_{2}\right) & h_{3}=\sigma\left(z_{3}\right)
\end{array}
$$

$$
\begin{array}{rlrl}
\frac{\partial h_{3}}{\partial w_{3}} & =\frac{\partial h_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{3}}=(1)(0.08)=0.08 & \frac{\partial h_{3}}{\partial z_{3}} & =1 \\
\frac{\partial h_{3}}{\partial w_{2}} & =\frac{\partial h_{3}}{\partial z_{2}} \frac{\partial z_{2}}{\partial w_{2}}=(-0.1)(0.1)=-0.01 & \frac{\partial h_{3}}{\partial z_{2}}=-0.1 \\
\frac{\partial h_{3}}{\partial w_{1}}=\frac{\partial h_{3}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{1}}=(0.02)(1)=0.02 & \frac{\partial h_{3}}{\partial z_{1}}=0.02
\end{array}
$$

Backward pass, compute all the gradients
$z_{1}=w_{1} x+b_{1}$

$$
z_{3}=w_{3} h_{2}+b_{3}
$$

$h_{1}=\sigma\left(z_{1}\right)$

$$
\begin{array}{r}
z_{2}=w_{2} h_{1}+b_{2} \\
h_{2}=\sigma\left(z_{2}\right)
\end{array}
$$

$$
h_{3}=\sigma\left(z_{3}\right)
$$

Please spend 2 minutes to compute gradients for

$$
\frac{\partial h_{3}}{\partial b_{3}}, \frac{\partial h_{3}}{\partial b_{2}}, \frac{\partial h_{3}}{\partial b_{1}}
$$

Local minimum problem

$$
\begin{gathered}
o_{i}=\sigma\left(w_{1} x_{1}+w_{2} x_{2}\right) \text { with } w_{2}=1 \\
\sigma(z)=\frac{1}{1+\exp (-z)} \\
C\left(w_{1}\right)=\frac{1}{n} \sum_{1}\left(y_{i}-o_{i}\right)^{2}
\end{gathered}
$$

$$
\begin{array}{cc}
o_{i}=\sigma\left(w_{1} x_{1}+w_{2} x_{2}\right) \text { with } w_{2}=1 & x_{1} \\
\sigma(z)=\frac{1}{1+\exp (-z)} & x_{2} \\
C\left(w_{1}\right)=\frac{1}{-}>\left(y_{i}-o_{i}\right)^{2} &
\end{array}
$$

$$
\begin{array}{ll}
o_{i}=\sigma\left(w_{1} x_{1}+w_{2} x_{2}\right) \text { with } w_{2}=1 & x_{1} \\
\sigma(z)=\frac{1}{1+\exp (-z)} & x_{2} \\
C\left(w_{1}\right)=\frac{1}{-} \sum_{\left(y_{i}-o_{i}\right)^{2}}
\end{array}
$$

show playground XOR example

Good solution example

Local minimum examples

Strategies for overcoming local minimum problem

1.Stochastic gradient descend
2.Adam method, momentum

$$
\begin{gathered}
o_{i}=\sigma\left(w_{1} x_{1}+w_{2} x_{2}\right) \text { with } w_{2}=1 \\
\sigma(z)=\frac{1}{1+\exp (-z)} \\
C\left(w_{1}\right)=\frac{1}{n} \sum_{i}\left(y_{i}-o_{i}\right)^{2} \\
\times x^{\mathrm{N}} 0_{0}
\end{gathered}
$$

cost surfaces are different for different data sets

$$
\begin{gathered}
o_{i}=\sigma\left(w_{1} x_{1}+w_{2} x_{2}\right) \text { with } w_{2}=1 \\
\sigma(z)=\frac{1}{1+\exp (-z)} \\
C\left(w_{1}\right)=\frac{1}{n} \sum_{i}\left(y_{i}-o_{i}\right)^{2} \\
\times x_{1}^{N} 0_{0}
\end{gathered}
$$

cost surfaces are diffełent for different data sets

$$
\begin{aligned}
& o_{i}=\sigma\left(w_{1} x_{1}+w_{2} x_{2}\right) \text { with } w_{2}=1 \quad x_{1} \bigcirc \quad w_{1}^{(1)} \\
& \sigma(z)=\frac{1}{1+\exp (-z)} \\
& C\left(w_{1}\right)=\frac{1}{n} \sum_{i}\left(y_{i}-o_{i}\right)^{2} \\
& x_{2} \bigcirc w_{2}^{(1)}
\end{aligned}
$$

cost surfaces are different for different data sets

$$
\begin{aligned}
& o_{i}=\sigma\left(w_{1} x_{1}+w_{2} x_{2}\right) \text { with } w_{2}=1 \quad x_{1} \bigcirc w_{1}^{(1)} \\
& \sigma(z)=\frac{1}{1+\exp (-z)} \\
& C\left(w_{1}\right)=\frac{1}{n} \sum_{i}\left(y_{i}-o_{i}\right)^{2} \\
& x_{2} \bigcirc w_{2}^{(1)}
\end{aligned}
$$

cost surfaces are diffeYent for different data sets

$$
\begin{aligned}
& o_{i}=\sigma\left(w_{1} x_{1}+w_{2} x_{2}\right) \text { with } w_{2}=1 \\
& \sigma(z)=\frac{1}{1+\exp (-z)} \\
& C\left(w_{1}\right)=\frac{1}{n} \sum_{i}\left(y_{i}-o_{i}\right)^{2} \\
& x^{\mathcal{N}} 0_{0}
\end{aligned}
$$

cost surfaces are diffeYent for different data sets

x	y
0.97	2.0
0.016	0.025
0.87	1.4
0.70	1.5
0.11	0.19
0.023	0.048
0.65	1.4
0.27	0.55
0.21	0.40
0.087	0.19

$x \xrightarrow{W}$

Use the loss function
$L(w \mid x, y)=\operatorname{sum}\left(y_{i}-w x_{i}\right)^{\wedge} 2$

* Randomly choose 3 data points $\{x, y\}$
* Plot L(w|x,y) versus w
* Repeat the above several times

Overlay your plots

Minibatch gradient descend

all these data are slightly different
cost surfaces are different for different data sets

weights and bias

batch 2

weights and bias

batch 3

weights and bias

batch 4

Always remember to shuffle the data

Stochastic gradient descend

use batch size $=1$ for stochastic gradient descend

Adam optimisation

Published as a conference paper at ICLR 2015

Adam: A Method for Stochastic Optimization

Diederik P. Kingma ${ }^{*}$
University of Amsterdam
dpkingma@uva.nl

Jimmy Lei Ba*
University of Toronto
jimmyopsi.utoronto.ca

Adam optimisation

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more cfficient (but less clear) order of computation. g_{t}^{2} indicates the elementwise
square $g_{\iota} \odot g_{\iota}$. Good default settings for the tested machine learning problems are $\alpha=0.001$,
$\beta_{1}=0.9, \beta_{2}=0.999$ and $\epsilon=10^{-8}$. All operations on vectors are element-wise. With β_{1}^{t} and β_{2}^{t}
we denote β_{1} and β_{2} to the power t.
Require: $\alpha:$ Stepsize
Require: $\beta_{1}, \beta_{2} \in[0,1):$ Exponential decay rates for the moment estimates
Require: $f(\theta):$ Stochastic objective function with parameters θ
Require: $\theta_{0}:$ Initial parameter vector
$m_{0} \leftarrow 0$ (Initialize $1^{\text {st }}$ moment vector)
$v_{0} \leftarrow 0$ (Initialize $2^{\text {nd }}$ moment vector)
$t \leftarrow 0$ (Initialize timestep)
while θ_{t} not converged do
$t \leftarrow t+1$
$g_{t} \leftarrow \nabla_{\theta} f_{t}\left(\theta_{t-1}\right)($ Get gradients w.r.t. stochastic objective at timestep t)
$m_{t} \leftarrow \beta_{1} \cdot m_{t-1}+\left(1-\beta_{1}\right) \cdot g_{t}$ (Update biased first moment estimate)
$v_{t} \leftarrow \beta_{2} \cdot v_{t-1}+\left(1-\beta_{2}\right) \cdot g_{t}^{2}$ (Update biased second raw moment estimate)
$\widehat{m}_{t} \leftarrow m_{t} /\left(1-\beta_{1}^{t}\right)($ Compute bias-corrected first moment estimate)
$\widehat{v}_{t} \leftarrow v_{t} /\left(1-\beta_{2}^{t}\right)($ Compute bias-corrected second raw moment estimate)
$\theta_{t} \leftarrow \theta_{t-1}-\alpha \cdot \widehat{m}_{t} /\left(\sqrt{\widehat{v}_{t}}+\epsilon\right)$ (Update parameters)
end while
return θ_{t} (Resulting parameters)

Signs of trouble always look at cost versus iterations plots

Cost not decreasing looks like a local minimum

iterations

Cost decrease over slowly looks like at very flat region of cost surface

Signs of trouble always look at cost versus iterations plots

Cost actually increasing
Please check for a bug in your code!!

Vanishing gradient problem

https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning

https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning

https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning

https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning

https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning

https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning

https://stats.stackexchange.com/questions/234891/difference-between-convolution-neural-network-and-deep-learning
input layer
hidden layer 1 hidden layer 2 hidden layer 3

$x \xrightarrow{w 1} v(\stackrel{w 2}{\longrightarrow} v 2 \xrightarrow{w 3} v 3=\mathbf{0}$

$$
\frac{\partial v_{3}}{\partial w_{3}}=\frac{\partial v_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{3}}=\sigma^{\prime}\left(z_{3}\right) v_{2}
$$

$$
\begin{aligned}
\frac{\partial v_{3}}{\partial w_{2}} & =\frac{\partial v_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{2}}=\sigma^{\prime}\left(z_{3}\right) w_{3} \frac{\partial v_{2}}{\partial w_{2}}=\sigma^{\prime}\left(z_{3}\right) w_{3} \sigma^{\prime}\left(z_{2}\right) v_{1} \\
\frac{\partial v_{3}}{\partial w_{1}} & =\frac{\partial v_{3}}{\partial z_{3}} \frac{\partial z_{3}}{\partial w_{1}}=\sigma^{\prime}\left(z_{3}\right) w_{3} \frac{\partial v_{2}}{\partial w_{2}}=\sigma^{\prime}\left(z_{3}\right) w_{3} \sigma^{\prime}\left(z_{2}\right) w_{2} \frac{\partial v_{1}}{\partial w_{1}} \\
& =\sigma^{\prime}\left(z_{3}\right) w_{3} \sigma^{\prime}\left(z_{2}\right) w_{2} \sigma^{\prime}\left(z_{1}\right) x \\
& =\sigma^{\prime}\left(z_{3}\right) \sigma^{\prime}\left(z_{2}\right) \sigma^{\prime}\left(z_{1}\right) w_{3} w_{2} x
\end{aligned}
$$

Strategies to overcoming vanishing gradient problem short-cuts (residual net)
these will be covered later in the course

Lets play a game

You guess a number, if it is a 'good' number, I pay you \$1, else you pay me $\$ 1$.

I have a hidden rule to define what is a good number. . .

Of course I am not telling you my rule

What you can know if you keep buying until you find out the rule

We can assume that my rule does not change

9931 8937
 You lose

1728 You win
5952

Guess what is my rule write on the board

9931 8937

Guess what is my rule
-.odd/even
-.prime ***
-.>6000

- div3
- last 2 digit even
- div12
- include 3 -> bad
- sum digit <=21
- have 2 as a digit
- first 2 digit is prime

1728
5952 You win

1728
5952 You win

Guess what is my rule, type in the chat please

- .odd/even - eliminate
- .prime - eliminated
- .>6000 - eliminated
- .div3
- .last 2 digit even - eliminated
- . div12
- include 3 -> bad - eliminated
- .sum digit <=21-eliminated
- .have 2 as a digit - eliminated
- first 2 digit is prime
- Contains 2^6

Fundamental problem of Neural Networks Data space and data manifold

What is 'wrong' with this data set?

height and weight example

height
(cm)

What is 'wrong' with this data set?

hypothetical data

how to draw the decision boundaries?

how to draw the decision boundaries?

is this a better boundary?

how do you classify the blue point?

how to draw the decision boundaries?

Closely related problem

how to design the architecture?

more layers always better?

try this network, run with
(1) relu
(2) tanh
(3) sigmoid
(4) linear

Neural network are universal approximations (under some conditions)

A good reference, read and ask if you don't understand anything
http://neuralnetworksanddeeplearning.com/chap4.html

Is there a contradiction between
universal approximation theorem and
problems with neural network?

Actual

Predicted

This is ok, the problem is the data

Actual

Predicted

This is ok, the problem is the data

Problem \#1: insufficient data

Actual

Predicted

Problem \#2: you define the data space wrongly

Actual

function only defined in this range

Predicted

Auto-encoders

Concept of latent spaces,
data representation spaces,
data manifolds

What is the geometric interpretation of vector dot products?

Draw on the board, these vector dot products

$x 1$	$x 2$	$y 1$	$y 2$	$x . y$
0.01	1.51	0.11	0.99	
1.83	1.41	0.96	0.28	
0.70	0.93	0.94	-0.34	
0.81	1.17	0.0	1.00	
1.12	0.04	1.00	1.7	
1.71	1.41	0.95	0.30	
0.62	1.29	-0.5	0.86	
0.56	1.60	0.80	0.60	
0.26	0.86	-1	0	
1.94	1.94	0.5	1	

What is the geometric interpretation of matrix vector products?

0.3	-1.2	0.6 2.6 0.7 -0.5 -0.2 -1.2

0.7	0.4	0.6 -0.6 1.3 1.5 -1.4 -1.2 ${ }^{2}$

-0.2	2.1		
-1.1	0.1		
0.3	0.5	\quad	0.6
:---:			
-1.2			

What is the geometric interpretation of matrix vector products?

