Welcome to BS6207 2021
 Lee Hwee Kuan

An Innovative Way to Learn and Teach Deep Learning

* We all learn together - sharing sessions
* Students are expected to learn most techniques online by themselves
\% What is the use of this course?
- This course provides concepts and understandings that cannot be easily self-learned
- This course provides the real life experience for doing deep learning
- This course teaches you how to think in different ways
\because Always bring your laptop, we do coding in class
* If you want to get my attention, call me by my first name "Hwee Kuan", you can call me "Dr Lee" or "Prof Lee" if you want me to ignore you

Sharing sessions

If we categorize people into those with technical skills and those who can explain their ideas, there are 4 combinations.
1.Those who have no skills \& cannot explain their ideas
2.Those who have skills \& cannot explain their ideas
3.Those who have no skills \& can explain their ideas
4.Those who have skills \& can explain their ideas

Sharing sessions

1.Those who have no skill \& cannot explain their ideas These people may be beggars
2.Those who have skills \& cannot explain their ideas These people are good servants
3.Those who have no skill \& can explain their ideas These people are the bosses
4.Those who have skills \& can explain their ideas

These people are the masters

Sharing sessions

We aim to have students to present something in front of the class.

Presentations will be on:
1.Assignment solutions
2.Project solutions

Be sure to run through your presentation with a few peers. Acknowledge their help in your presentation.

I teach the whole package

* Communication skills
* Teamwork
* Decision making and scientific methods
* Technical skills

An Innovative Way to Learn and Teach Deep Learning

A previous student told me that she/he was attending my class to only learn about deep learning, not expecting to learn other soft skills and learn how to be a good person.

Historical notes
on
neural networks and deep learning

Historical notes

Warren McCulloch (neurophysiologist), Walter Pitts (mathematician)

Donald O. Hebb Strengthening of connection between neurons
Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: Wiley and Sons.

Bernard Widrow, Marcian Hoff Single layer and multilayer neural nets. ADALINE and MADALINE
An adaptive "ADALINE" neuron using chemical "memistors"
Seppo Linnainmaa While gradient descend algorithm dates back much earlier,
1970 Seppo contributed to the modern idea of back propagation
Linnainmaa, Seppo (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 6-7.

George Cybenko Universal approximation theorem, sigmoid function
Cybenko, G. (1989) "Approximations by superpositions of sigmoidal functions", Mathematics of Control, Signals, and Systems, 2 (4), 303-314

Kurt Hornik Universal approximation theorem, more general function
Kurt Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks", Neural Networks, 4(2), 251-257

'Contemporary’ history of neural nets

1974 Paul Werbos, Backpropagation1980Kunihiko Fukushima, Neocogitron which inspired Convolutional NeuralNetworks
1985 Hilton \& Sejnowski, Boltzmann Machine1986Paul Smolensky, Harmonium, later known as Restricted Boltzmann MachineMichael I. Jordan Recurrent Neural Network
1990
Yann LeCun, LeNet - convolutional neural net
2006 G. Hinton, Deep Belieft Net, layer wise pretraining
2009 Salakhutdinov \& Hinton, Deep Boltzmann Machines
2012 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdin, Dropout

'Contemporary' history of neural nets

2014 Ian Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative Adversarial Networks

2015 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Network

2015 Nicolas Papernot et al, Adversarial Deep Learning

2016 Shaoqing Ren et al, Region Proposal Network

2017 David Silver et al, Alpha-Go Zero

2018 SMA Eslami et al, Generative Query Network

Our world versus computer world

$23684184 \times 4729472=112013685070848$

Our world versus computer world

What makes Deep Leaning so good?

can this thing think?

can it think?

http://img.webmd.com/dtmcms/live/webmd/consumer_assets/ site_images/articles/image_article_collections/anatomy_pages/ brain2.jpg?resize=646px:*\&output-quality=100

(B)

(C)

(D)

can this thing think?

With millions of connections, it started to "think"

How do we get from molecules (proteins) to cell and then to life?

proteins
How Life Emerges from Parts in a Eukaryote Cell

Individual
parts

The individual parts are arranged into a structure

Emergent behavior results

Duscram by Thwisk ort

How do we get from molecules (proteins) to cell and then to life?

proteins

Locations of Somatic Stem Cells

http://learn.genetics.utah.edu/content/stemcells/quickref/somaticstemcells.jpg

Life exhibits complexity

https://www.pinterest.com/sattele/termite-mound/
http://img.ev.mu/images/reportages/I88/520x342/09.jpg

How extreme can life become?

How extreme can emergent behaviour become?
very extreme indeed
some life forms on earth evolved the ability to control the behaviour of another life form!

Ophiocordyceps sinensis冬虫草

S\＄10－50 per piece

http://microbewiki.kenyon.edu/index.php/ Ophiocordyceps_sinensis

INFECTION OF HOST INSECT BY OPHIOCORDYCEPS SINENSIS

How to make a zombie ant

Ophicocodyceps unlateralls, a fungus found in the tropical rainforests of Thaland, suntwes by conteoling carponter ants.

1. INFECTION

The foraging carpenter ant walks through an area of rainforest floor infested with microscopic spores dropped by a mature fungus. The spore excretes an enzyme that eats through the ant's exterior shell.

2. DEATH GRIP

After two days, the ant leaves its tree colony and climbs down to a spot where humidity and temperature are optimal for the fungus to grow. The ant crawls onto a stem or the underside of a leaf and bites into its main middle vein so it won't fall. Then it dies.

3. FUNGAL GROWTH

The fungus consumes the ant's internal organs, using its shell as a protective casing. The fungus' main stem, called a stroma, erupts from the back of the

4. "KILLING ZONE"

The mature fungus releases spores from its stroma. The spores fall to the ground creating a 10-square-feet "killing zone" which will attack new ants.

EMERGENT 150 FEET

CANOPY 100 FEET

MM Colony 85 EETI

UNDERSTOMT 50 FEET

Cordyceps

https://www.youtube.com/watch?v=XuKjBIBBAL8

How extreme can machines become?

are we able to make a machine that is as complex as the most primitive life known to us?

How to learn Deep Learning

If you only know how to drive, you can go far
If you have money and get a sport car, you can go far very fast

You don't have to know how to build a car

"Deep Learning" is free and they go fast
using them is as easy as driving a car

But there is a problem!!
...even if you have the data!

To go to great places, you need to know where to go
No point going fast but go in circles you need to know the route

You need to know if your car is ok or is breaking

The computer always give you an output is it correct?

Different levels of understanding Deep Learning

There are those who do not know what they are doing. Their computational results are unreasonable

There are those who know how to get some good results but cannot explain them

There are those who understand what is going on with their experiments. Able to explain their results

There are those who can combine different methods to create new things in Deep Learning

There are those who can fundamentally change Deep Learning research

Very basic

lets get everyone on the same level sorry if this seems too simple to some of you

Lets play a game. . .

Training set

Testing set

Training set

Testing set

Case of prostate cancer diagnosis

Age	Prostate Specific Antigen (a blood test reading)	Got Prostate Cancer
59	$4.9 \mathrm{ng} / \mathrm{mL}$	Yes
72	$3.9 \mathrm{ng} / \mathrm{mL}$	Yes
45	$6.0 \mathrm{ng} / \mathrm{mL}$	Yes
47	$3.2 \mathrm{ng} / \mathrm{mL}$	No
39	$3.9 \mathrm{ng} / \mathrm{mL}$	No
89	$3.5 \mathrm{ng} / \mathrm{mL}$	Yes
61	$5.5 \mathrm{ng} / \mathrm{mL}$	Yes
62	$2.1 \mathrm{ng} / \mathrm{mL}$	No
49	$3.4 \mathrm{ng} / \mathrm{mL}$	No
95	$3.1 \mathrm{ng} / \mathrm{mL}$	Yes
67	$4.3 \mathrm{ng} / \mathrm{mL}$	Yes
49	$3.8 \mathrm{ng} / \mathrm{mL}$	$?$
58	$4.3 \mathrm{ng} / \mathrm{mL}$	$?$
88	$4.1 \mathrm{ng} / \mathrm{mL}$	$?$
31	$2.1 \mathrm{ng} / \mathrm{mL}$	$?$

Age	Prostate Specific Antigen (a blood test reading)	Got Prostate Cancer
45	$6.0 \mathrm{ng} / \mathrm{mL}$	Yes
61	$5.5 \mathrm{ng} / \mathrm{mL}$	Yes
59	$4.9 \mathrm{ng} / \mathrm{mL}$	Yes
67	$4.3 \mathrm{ng} / \mathrm{mL}$	Yes
72	$3.9 \mathrm{ng} / \mathrm{mL}$	Yes
89	$3.5 \mathrm{ng} / \mathrm{mL}$	Yes
95	$3.1 \mathrm{ng} / \mathrm{mL}$	Yes
39	$3.9 \mathrm{ng} / \mathrm{mL}$	No
49	$3.4 \mathrm{ng} / \mathrm{mL}$	No
47	$3.2 \mathrm{ng} / \mathrm{mL}$	No
62	$2.1 \mathrm{ng} / \mathrm{mL}$	No
49	$3.8 \mathrm{ng} / \mathrm{mL}$	$?$
58	$4.3 \mathrm{ng} / \mathrm{mL}$	$?$
88	$4.1 \mathrm{ng} / \mathrm{mL}$	$?$
31	$2.1 \mathrm{ng} / \mathrm{mL}$	$?$

Age	Prostate Specific Antigen (a blood test reading)	Got Prostate Cancer
45	$6.0 \mathrm{ng} / \mathrm{mL}$	Yes
61	$5.5 \mathrm{ng} / \mathrm{mL}$	Yes
59	$4.9 \mathrm{ng} / \mathrm{mL}$	Yes
67	$4.3 \mathrm{ng} / \mathrm{mL}$	Yes
72	$3.9 \mathrm{ng} / \mathrm{mL}$	Yes
89	$3.5 \mathrm{ng} / \mathrm{mL}$	Yes
95	$3.1 \mathrm{ng} / \mathrm{mL}$	Yes
39	$3.9 \mathrm{ng} / \mathrm{mL}$	No
49	$3.4 \mathrm{ng} / \mathrm{mL}$	No
47	$3.2 \mathrm{ng} / \mathrm{mL}$	No
62	$2.1 \mathrm{ng} / \mathrm{mL}$	No
49	$3.8 \mathrm{ng} / \mathrm{mL}$	No?
58	$4.3 \mathrm{ng} / \mathrm{mL}$	borderline?
88	$4.1 \mathrm{ng} / \mathrm{mL}$	Yes?
31	$2.1 \mathrm{ng} / \mathrm{mL}$	No?

Prostate cancer prediction

Supervised learning framework input space image,
blood pressure,

Supervised learning framework

black / white

Supervised learning framework
input space image,

input: a point in input space

The decision boundary

The decision boundary

The decision boundary

The decision boundary

Animation @ playground search for "playground tensorflow"

introduction

Different functionalities of applet

Epooh
000,000
Loarning ra:c
0.03
Activation
Roguarization
Rogularzaton rate
Proolem typo
ReLU
None
Classification

FEATURES
Which properties
do you went to
feed in?

answer

answer

question

answer

question

answer

answer

Epoch	Learning rate		Activation		Regular				Problem type	
004,480	0.003	\checkmark	ReLU	\checkmark	None	-	0	\checkmark	Classification	\checkmark

question

answer

Epoch	Lea'ning rate		Activaton		Reguar		Regularization rate		Problen type
001,916	0.01	*	Rel U	\checkmark	None	*	0	*	Classification

answer

Epoch	Learning rete		Activatio		Regular				Froblem type	
000,919	0.01	-	Rel U	*	None	-	0	\checkmark	Classification	\checkmark

FEATURES
Which properios
do you want to
reed in?
$\operatorname{Xix=}$
$\sin (X 1)$

answer - with sigmoid

question

Administrative Issues

Communications matters

Use whatsapp for communications. This is the fastest way to get response.

For private matters you can privately WhatsApp me.
Get course materials from: https://web.bii.a-star.edu.sg/~leehk/index.html

I need one class monitor, Tianyi
How do we want to do lecture? 2 hours on Fridays and 1 hr office 12-1pm on Wednesdays

General grading and expectations

F/E
There are those who do not know what they are doing. Their results are unreasonable

There are those who know how to get some good results but cannot explain them.

B
There are those who understand what is going on with their experiments. Able to explain their results.

There are those who know enough to combine

Adifferent methods and be creative in using Deep Learning

There are those who break the frontiers of Deep Learning research.

Grades

- Class participation: 20\%
- Assignments: 40\%
- Project: 40\%
- No exams. No quiz

Class participation 20\%

1% point for each question or comment asked in class

Class monitor will record

Assignments (10\% * 4 = 40\%)

- For each assignment
- It has multiple sub-tasks, including coding tasks
- You need to submit the answers, code and execution results. Everything in git hub, and one copy in NTULearn.
- All assignment report must have:
- Algorithm description in plain text, supplemented by equations if needed (3-4 marks)
- Code walk through, part-by-part of the code need to be explained (2-3 marks)
- Plots and results (1-2 marks)
- Explanation and interpretation of results (3-4 marks)

Final Project (40\%)

- Projects will be
- Submission deadline: pre-submission around week 7, final submission around week 10, to be confirmed
- Report deadline: around week 11, to be confirmed
- Assessment is based on the report (20\%) and presentation (20\%)
- All students will present their work in class
- One student per project submission. You are allowed discuss project solutions among students.
- No copying of source code, code everything yourself!

Final Project (40\%)

Report format: Strictly limited to 6 pages (figures and text font size >10) +1 page reference, any longer report will be rejected

Report template (40\%)

- Problem definition
- Highlights (new algorithms, insights from the experiments)
- Dataset pre-processing description
- Training and testing procedure
- Experimental study
- (clarity, model understanding, and highlights are important for the assessment)
- Presentation -> score (10\%)

Start your

oro ect

GRYV

Do not miss the deadline

30% grade deductions for within 1 week late submissions 60\% grade deductions for within 2 weeks late submissions no grade given for beyond 2 weeks late submissions

To be fair to everyone, request for late submission without grade deductions for emergency cases are to be done before week 9 , otherwise request will not be entertained

Questions?

5 minutes break

What we mean by "how do you compute"

It means code from scratch or write out all atomic operations on a document

How does pytorch compute average pooling? You answer should be, giving a clear example:

Average pooling with kernel size 2×2, stride $1 \times 1,1$ channel

$$
\begin{aligned}
& y 1=(x 1+x 2+x 4+x 5) / 4 \\
& y 2=(x 2+x 3+x 5+x 6) / 4 \\
& y 3=(x 4+x 5+x 7+x 8) / 4 \\
& y 4=(x 5+x 6+x 8+x 9) / 4
\end{aligned}
$$

All students create one GitHub project for all assignments and project submission

You also submit one copy in NTULearn for records

Forward Propagation

The network and information flow

Notation

Let $x \in \mathbb{R}^{d}$ be the input space
Let $y \in \mathbb{R}$ or $y \in \mathbb{N}$ be the label
Let $O \in \mathbb{R}$ be the output of the neural network

Simplest perceptron - linear activation function

$$
x \in \mathbb{R}
$$

$$
o=w x+b
$$

Simplest perceptron - rectilinear activation function $x \in \mathbb{R}$

$$
o=\operatorname{Re} L u(w x+b)
$$

Simplest perceptron - sigmoid activation function

$$
o=\frac{1}{1+\exp (-w x-b)}
$$

For more activation functions, check out https://en.wikipedia.org/wiki/Activation_function

Equation of straight lines: $x 1=m * x 2+c$

$$
0=m 1^{*} x 1+m 2^{*} x 2+c
$$

Equation of a plane :

Equation of a hyper-plane :

$$
0=m 1^{*} x 1+m 2^{*} x 2+m 3^{*} x 3+\ldots+m d^{*} x d+c
$$

Next to simplest

$$
\begin{array}{cc}
x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} & x_{1} \bigcirc \\
o=w_{1} x_{1}+w_{2} x_{2}+b & x_{2} \bigcirc
\end{array}
$$

Concept of level sets

Next to simplest

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
& o=\sigma\left(w_{1} x_{1}+w_{2} x_{2}+b\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
& o=\sigma\left(w_{1} x_{1}+w_{2} x_{2}+b\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
& o=\sigma\left(w_{1} x_{1}+w_{2} x_{2}+b\right)
\end{aligned}
$$

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
& o=\sigma\left(w_{1} x_{1}+w_{2} x_{2}+b\right)
\end{aligned}
$$

Next to simplest

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \\
& o=\sigma\left(w_{1} x_{1}+w_{2} x_{2}+b\right)
\end{aligned}
$$

Playground can verify this, please try playground with different activation functions

Stacked up

$$
o^{(1)}=w_{1}^{(1)} x_{1}+w_{2}^{(1)} x_{2}+b^{(1)}
$$

$$
o^{(2)}=w_{1}^{(2)} x_{1}+w_{2}^{(2)} x_{2}+b^{(2)}
$$

Stacked up

Stacked up

Stacked up

$$
\begin{aligned}
& h^{(1)}=w_{1}^{(1)} x_{1}+w_{2}^{(1)} x_{2}+b^{(1)} \\
& h^{(2)}=w_{1}^{(2)} x_{1}+w_{2}^{(2)} x_{2}+b^{(2)} \\
& o=w_{1}^{(3)} h^{(1)}+w_{2}^{(3)} h^{(2)}+b^{(3)}
\end{aligned}
$$

Stacked up with general activation function

$$
\begin{aligned}
h^{(1)} & =\sigma\left(w_{1}^{(1)} x_{1}+w_{2}^{(1)} x_{2}+b^{(1)}\right) \\
h^{(2)} & =\sigma\left(w_{1}^{(2)} x_{1}+w_{2}^{(2)} x_{2}+b^{(2)}\right) \\
o & =\sigma\left(w_{1}^{(3)} h^{(1)}+w_{2}^{(3)} h^{(2)}+b^{(3)}\right)
\end{aligned}
$$

Adding functions

If you add up enough "step" surfaces, are you able to form any functions?

neural network fingers activities

Activity one

Take out a piece of paper, draw patterns as shown

$$
x_{x}^{x} x
$$

$$
0_{0}^{0} 0
$$

Task: Cut (tear) with one straight line to completely separate the " X " and " O "

Activity two

Cut (tear) with one straight line!

Activity three

Cut (tear) with one straight line!

Activity four

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{X}} \mathrm{X}_{\mathrm{X}} \mathrm{XX}^{\mathrm{XX}}
\end{aligned}
$$

Cut (tear) with one straight line!

Activity two

Cut (tear) with one straight line!

Activity three

Cut (tear) with one straight line!

Manifold view of neural network

feed in
data
into
first
layer

https://www.pinterest.com/\{in/414260865705737484/

Function view of neural network

Follow the data point

$$
\left(x_{1}^{A}, x_{2}^{A}\right) \mapsto\left(h_{1}^{A}, h_{2}^{A}\right)
$$

Neighbourhoods relationship is conserved

$$
\left(x_{1}^{A}, x_{2}^{A}\right) \mapsto\left(h_{1}^{A}, h_{2}^{A}\right)
$$

$00-0-0000-$

$$
\begin{gathered}
h^{(1)}=\sigma\left(w_{1}^{(1)} x_{1}+w_{2}^{(1)} x_{2}+b^{(1)}\right) \\
h^{(2)}=\sigma\left(w_{1}^{(2)} x_{1}+w_{2}^{(2)} x_{2}+b^{(2)}\right) \\
o=\sigma\left(w_{1}^{(3)} h^{(1)}+w_{2}^{(3)} h^{(2)}+b^{(3)}\right)
\end{gathered}
$$

O

Some real life examples

courtesy of Connie Kou Khor Li

TA for this course years ago

The Angle Data

The XOR Data

The Ring Data

The Angle Data - ReLu

The Angle Data - Sigmoid

The Angle Data - Sigmoid

The Angle Data - Sigmoid

The Angle Data - Sigmoid

The Angle Data - Sigmoid

The Angle Data - Sigmoid 3 hidden nodes

The Angle Data - Sigmoid

The Angle Data - Sigmoid

The XOR Data - ReLU

The XOR Data - ReLU

The XOR Data - ReLU

The XOR Data - ReLU

The XOR Data - ReLU

The XOR Data - ReLU

The XOR Data - ReLU

The XOR Data - Sigmoid

The XOR Data - Sigmoid

The XOR Data - Sigmoid

The Ring Data - Sigmoid

how the manifold is being fold?

The Ring Data - Sigmoid

How about this network?

