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Characterization of the structural ensembles of
p53 TAD2 by molecular dynamics simulations
with different force fields†

Yanhua Ouyang, Likun Zhao and Zhuqing Zhang *

Intrinsically disordered regions (IDRs) or proteins (IDPs), which play crucial biological functions in

essential biological processes of life, do not have well-defined secondary or tertiary structures when

isolated in solution. The highly dynamic properties and conformational heterogeneity of IDPs make them

challenging to study with traditional experimental techniques. As a powerful complementary tool for

experiments, all-atom molecular dynamics simulation can obtain detailed conformational information on

IDPs, but the limitation of force field accuracy is a challenge for reproducing IDP conformers. Here, we

compared five empirical all-atom force fields AMBER03, AMBER99SB-ILDN, CHARMM27, OPLS-AA/L and

CHARMM36m in modeling the conformational ensembles of wild-type peptide TAD2(41–62) from the human

p53 tumor suppressor. Our results show that for the model peptide, the newest force field CHARMM36m

produces more expanded coil ensemble followed by AMBER99SB-ILDN; CHARMM27 displays a predominant

propensity for a helical structure; whereas OPLS-AA/L exhibits a apparent preference for a b-sheet structure

and yields the most compact conformation. In the comparison of the simulated dimensions with theoretical

prediction and the back-calculated chemical shifts with experimental measurements, AMBER99SB-ILDN gives

a more consistent agreement than the other force fields. In addition, the region from residues 47 to 55,

which commonly forms an amphipathic a-helix upon binding target proteins according to experimental

observation, could form a helical structure with a different probability population in our simulations with

different force fields. This implies that the binding process might be conducted by, or partly by ‘‘conformation

selection’’ for this peptide. This work indicates that force field development for modeling general IDPs

accurately has a long way to go, and more detailed experimental data of IDPs are also in demand.

Introductions

Intrinsically disordered proteins (IDPs) or intrinsically disordered
regions (IDRs) in structured proteins are estimated to make up
approximately one-third of proteins encoded in the human
genome.1–3 IDPs lack stable well-defined three-dimensional struc-
tures when isolated under physiological conditions, but play
crucial biological functions in cellular processes including
transcription and translation regulation, signaling transduction,
protein phosphorylation and intracellular phase separation.4 Many
IDPs are associated with various human diseases ranging from
cancer to neurodegenerative diseases.3 The flexible feature of IDPs
provides the advantage that many of them can bind with particular
or various target molecules to perform their physiological func-
tions. The binding process is deemed to be coupled folding and

binding, by conformation selection or induced fitting or both
through a ‘‘fly-casting’’ mechanism.5 Compared with folded
proteins, IDPs usually have more polar, charged and fewer
hydrophobic amino acids in their sequences, as well as high
conformational heterogeneity, which leads to the concept of
a conformational ensemble proposed to understand their
structure–function relations.

Characterizing the conformational ensembles of IDPs
accurately is crucial for understanding their functions but quite
challenging both experimentally and computationally. In
experimental techniques, nuclear magnetic resonance (NMR),
small-angle X-ray scattering (SAXS), as well as single-molecule
fluorescence resonance energy transfer (smFRET) have been
intensively applied in IDP studies, but the observables are
usually ensemble-averaged over the interconverting conforma-
tions of IDPs, and their heterogeneous features are difficult to
detect. In aspect of simulations, a variety of computational
methods, in particular atom-level molecular dynamics (MD)
simulations, have been increasingly applied to reproduce the
conformational ensembles of IDPs due to the fact that atomic
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detailed information could be presented. However, atom-level
MD simulations have two shortcomings: being time-consuming
for sampling adequate conformations and limitation of force
field accuracy. For the former, the rapid development of
computing hardware facilities and sampling algorithms6,7 have
significantly alleviated the time scale limitation of simulations.
For the latter, the classic force fields have been verified to be
accurate enough in the application of folded proteins with a
well-defined native structure.8,9 However, it has been questioned
whether they could be transferable to an IDP system since a
number of reports have indicated that the simulated unstructured
protein ensembles in an explicit solvent are usually much more
compact than those in experimental observations.10–15 In recent
years, considerable attention has been focused on improving the
force fields for IDPs.12,16–22 The modifications include the
optimization of backbone or sidechain torsion parameters,
such as ff99IDPs19 and ff14IDPSFF;17 the optimization of water
model, such as TIP4P-D;23 or combining both strategies.12

Recently, the residue-specific force field RSFF121 and its new
version RSFF2+,20,22 which includes statistical coil information
based on protein data bank (PDB), have been reported to obtain
a more rational prediction for IDPs. In addition, the newest
developed force field termed CHARMM36m,16 by refining the
backbone CMAP potential derived from reweighting the calcu-
lation and a better description of specific salt bridge inter-
actions, has been validated in both several model folded
proteins and IDPs. In fact, whether or not these modified force
fields are universal for general IDPs, as well as for folded
proteins, is still unknown. Here we compared five force fields
ranging from traditional force fields to the newest one by
characterizing the conformational ensembles of peptide p53
TAD2 and evaluated these force fields’ performance by compar-
ing them with related theoretical predictions and experimental
results.

Tumor suppressor p53 is a transcription factor, which
has been found to regulate many processes related to DNA
repair, cell cycle arrest, senescence, apoptosis, autophagy and
metabolism.24,25 The full-length p53 consists of an N-terminal
transactivation domain (TAD), followed by a proline-rich region
(PRR), the central DNA-binding domain (DBD), the tetramer-
ization domain (TET), and the C terminal regulation domain
(CT).24 The free TAD is intrinsically disordered, and usually
divided into two ill-defined subdomains, TAD1 (residues 1–40)
and TAD2 (residues 40–61),24 both of which have been found to
bind various targets in their functional performance. Experimental
measurements reveal that in bound complexes, an amphipathic
helix forms frequently in both TAD1 and TAD2.26–35 Furthermore,
a recent study shows that TAD2 can form an extended string-like
conformation with the human TFIIH subunit p62 PH domain.36

The investigation on the structural features and dynamics of TAD1
and TAD2 is of great significance not only for revealing the
functional mechanism of protein p53, but also for understanding
of the general structure–function relationship of IDPs on account
of their typicality. In the report of Mittal and coworkers, the NMR
data of the p53 TAD1 fragment (residues 15–29) are consistent
with those of full-length p53 TAD,75 which means that the

sub-domain interactions between TAD1 and TAD2 might not be
significant. In this work, we used TAD2 of protein p53 as a
model peptide in our atomic molecular simulations, and
compared its target-free simulated conformational features
with the theoretically predicted values, as well as the experi-
mental NMR measurements of free p53 TAD (1–73)69 and its
bound conformations in complexes.

In the five selected force fields, AMBER03,37 CHARMM2738

and OPLS-AA/L39 have been extensively applied in the study of
globular proteins,40 such as protein folding41 or drug design;42

AMBER99SB-ILDN has been reported to present a better
prediction in a couple of IDP studies;43–45 the newest developed
CHARMM36m was reported to improve the accuracy both in
conformational sampling for IDPs and in stability prediction
for the studied model folded proteins.16 Our work suggests
that for the peptide p53 TAD2, AMBER99SB-ILDN generates
conformations more in line with theoretical prediction, as
CHARMM36m produces much more extended coil conformations
and the other force fields exhibit more compact structures. On
comparing the back-calculated chemical shifts with data from
NMR experiments, it indicates that AMBER99SB-ILDN gives a
more consistent result for p53 TAD2. This work will offer useful
guidance for further improving the accuracy of force fields
for IDPs.

Models and methods

In this work, five force fields—AMBER03,37 CHARMM2738

OPLS-AA/L,39 AMBER99SB-ILDN46 and CHARMM36m,16 were
selected for comparison. Except CHARMM36m, which was
combined with the CHARMM-modified TIP3P water model,
the classical TIP3P water model47 was used in simulations with
the other force fields. All the simulations were performed with
GROMACS 5.0.2, and the structure schematics were presented
by PYMOL. An extended conformation of human wild-type p53
TAD2 (41DDLMLSPDDIEQWFTEDPGPDE62), was built by the
tleap program in the AmberTools15 package.48 To get random
conformations as initial structures for simulations, a short 4 ns MD
simulation was performed at 600 K (with the AMBER99SB-ILDN
force field and TIP3P water model). The initial structures for all the
simulations were taken from this high temperature trajectory
randomly. The periodic rhombic dodecahedral box was used for
solvating p53 TAD2 with a box vector length of 7.5 nm, within
which around 9700 water molecules were added, as well as 9 Na+ to
keep the simulated system neutralized. The Particle Mesh Ewald
(PME)49 was used for long-range electrostatic interactions with a
real-space cutoff of 10 Å, and the same cutoff distance was adopted
for van der Waals interactions. The bond lengths with hydrogen
atoms were constrained by the LINCS algorithm.50 For each
simulation, after energy minimization by the steepest descent
algorithm, a short NVT simulation for 200 ps and a NPT simulation
for 1 ns were performed at 300 K for pre-equilibration. Then a 1020 ns
NVT productive simulation was performed. The V-rescale algorithm51

and Parrinello–Rahman barostat52 were adopted to keep the
temperature at 300 K and the pressure at 1 bar for the NVT and
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NPT simulations. The time step in all the simulations was set as
2 fs, and simulated data were saved every 2 ps. For each force
field, to obtain enough sampled conformations, three indepen-
dent conventional molecular dynamics (CMD) simulations with
different initial structures were performed, and the trajectory of
the final 1 ms in each simulation was used for analysis.

In the present work, to confirm the sampling adequacy
of conventional molecular dynamics (CMD) simulations, we
performed a replica-exchange molecular dynamics (REMD)
simulation for p53 TAD2 using the AMBER99SB-ILDN force
field, with a total of 67 temperature replicas ranging from 270 K
to 500 K. Adjacent replica exchanges were attempted every 2 ps
and the mean exchange acceptance probability was above 0.2.
After discarding the beginning 20 ns for each replica, the
productive 200 ns trajectories were collected for analysis. The
comparison of the conformation distribution between CMD
(using the conformations sampled from all three independent
trajectories) and REMD (using conformations sampled at 300 K) is
shown in Fig. S1 (ESI†). The distribution of the radius of gyration
(Rg), as well as the averaged secondary structure element analysis,
indicate that the sampling of CMD is rational and adequate,
in accordance with the energy landscape of the intrinsically
disordered peptides being relatively flat, with multifunnel
energy minima separated by lower-energy barriers.53 In the
present work, we used the sampled conformations from a total
of 15 ms CMD simulations, 3 ms from three independent
trajectories for each force field, for analysis.

Most of the analysis work was done using GROMACS
software and in-house tools. Clustering was carried out by
gmx_cluster based on the GROMOS algorithm54 in GROMACS,
with a backbone RMSD cutoff of 0.4 nm at a time interval of
30 ps for each system. The DSSP algorithm55 was used to
analyze secondary structure content. Contact order (CO)56 was
calculated for each saved conformation based on the definition
in ref. 56 and residue contact was defined as the distance
between any pair of heavy atoms in two amino acids within
a cutoff of 0.45 nm separated by more than 3 residues. The
end-to-end distance (Ree) was defined as the distance between
the first and the last Ca atoms. To compare with experimental
NMR data, calculated chemical shifts and residual dipolar
couplings (RDCs) were conducted with the SPARTA+57 and
PALES58 programs respectively, using the coordinates saved
every 500 ps from the simulations with each force field because
the different time intervals 50 ps, 100 ps, 200 ps, and 1000 ps
presented similar results.

Results and discussion
The dimensions of p53 TAD2 with different force fields

In order to characterize the average dimension of p53 TAD2
conformational ensembles generated by the five force fields, we
firstly analyzed the distribution of the radius of gyration Rg and
the end-to-end distance Ree, as shown in Fig. 1A and B, respectively.
This indicates that the simulated peptide dimensions depend
strongly on the force field. Both figures show that CHARMM36m

produces the most extended conformations, which is followed by
AMBER99SB-ILDN, then CHARMM27. Ensembles simulated with
AMBER03 and OPLS-AA/L exhibit much more compact structures
than the others and both have two evident peaks located at Rg

smaller than 1 nm. The two-dimensional probability distribution of
conformational ensembles in Fig. 1C also indicates multiple
populated regions for the AMBER03 and OPLS-AA/L force fields.
Meanwhile, CHARMM36m and AMBER99SB-ILDN produce more
heterogeneous conformations than the other three force fields
due to much wider populated regions. The decoupling of Rg

and Ree, which was proposed to explain the inconsistency in
results measured from small-angle X-ray scattering (SAXS) and
single-molecule Forster resonance energy transfer (smFRET)
respectively,59,60 is observed in our simulations with AMBER03,
AMBER99SB-ILDN and CHARMM27 for p53 TAD2. To compare
the average separated sequence length between two contact residues,
we plotted the conformational distribution using contact order
(CO)56 and Rg as order parameters, as shown in Fig. S2 (ESI†). It
shows that a larger fraction of local contacts are observed in the
simulations with CHARMM36m (around more than 50% of all
sampled conformations are extended without any contact) with
small CO values, while more long-range contacts are detected in
simulations with OPLS-AA/L and AMBER03, consistent with the
observations from Ree measurements.

Fig. 1 Comparison of dimensions. (A) Distributions of radius of gyration
Rg. (B) Distributions of end-to-end distance Ree. (C) Two-dimensional
probability distribution as a function of Rg and Ree for the five force fields.
(D) Measured Rg as a function of residue number Nres. The black filled and
semi-filled points present data from SAXS experimental measurements
published in ref. 59. The red filled points come from the experimental
measured data of ACTR,65 Ash1,64 Histain5,66 NHE1,65 Nup15363 and RS.14

The green, blue, magenta, grey and cyan filled circle points denote the
simulated average Rg with AMBER03, AMBER99SB-ILDN, CHARMM27,
OPLS-AA/L and CHARMM36m, respectively. The black line and grey band
show the power-law relationship67 function Rg = R0 � Nn with R0 = 1.927 Å
and n = 0.598 � 0.028.
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Most IDPs have more polar and charged residues than
folded proteins in their sequences,61 therefore they are con-
sidered to possess more extended conformations.62 An increas-
ing number of SAXS experimental measurements have been
reported for numerous peptides recently. Here, we collected the
Rg values of a couple of peptides14,59,63–66 from SAXS measure-
ments and fitted them with the power-law relation Rg B Nn

from polymer model, where N denotes the residue number of
peptide and n represents the scaling factor. The black and red
filled points in Fig. 1D indicate that, like unfolded proteins,67

the sizes of various IDPs can also roughly be described by the
self-avoiding random walk (SARW) model,67 since the shaded
grey region corresponding to the value of n as 0.598 � 0.028,
covers most of the experimental data. The mean size, Rg, of the
sampled conformations for the peptide p53 TAD2, is shown as a
different colored circle filled point for each of the five force
fields in Fig. 1D. For this peptide with 22 residues, the
theoretically estimated Rg value is around 1.122–1.334 nm.
Overall, Fig. 1D shows that the force field CHARMM36m
probably produces conformations much more extended,
while AMBER03, OPLS-AA/L and CHARMM27 might generate
conformations too compact. Conformations sampled with
AMBER99SB-ILDN might be more rational than those from
other force fields referring to the blue filled circle point covered
by the shaded gray region of the theoretical relationship in Fig. 1D.
This implies that although a number of studies suggest the classical
force fields usually sample more collapsed conformations,11–14,68 for
the peptide p53 TAD2, AMBER99SB-ILDN and the TIP3P water
model might possibly produce rational dimensions, and this
needs more experiments to validate it. In the meantime, the new
modified CHARMM36m has been improved for several model
IDPs,16 but the results shown here indicate more efforts may still
be needed for force field development for general IDPs.

Conformational ensemble analysis

To characterize the structural properties of p53 TAD2, we
compared the secondary structure content analysis of the
ensembles obtained by simulations with different force fields.
Fig. S3 (ESI†) shows the secondary structure assessment for all
trajectories with the DSSP algorithm.55 For each force field, one
independent trajectory may show distinct structural properties
from another one, therefore, we combined all three trajectories
for statistical analysis, since the sampled conformations from
all of them could be comparable with those from REMD as
validated by AMBER99SB-ILDN (see ‘‘Models and methods’’
section). Like the chain dimension, the secondary structure
content also displays an apparent difference with the studied
five force fields for the peptide p53 TAD2, as shown in Fig. 2.
Firstly, it reveals that coil is the largest fraction in simulations
with all five force fields, especially for CHARMM36m. The
conformational ensemble using CHARMM27 has a much larger
fraction of a-helix than the other force fields, reaching to almost
40%. Besides, in the ensemble simulated with OPLS-AA/L, more
bend and b-sheet contents, and almost no a-helix are detected,
although the standard deviation of b-sheet content displays a
slightly larger value. Structures obtained by both AMBER03 and

AMBER99SB-ILDN have a small fraction of a-helix, as well as a
little larger fraction of turn and bend.

To further investigate the specific location of every secondary
structure element in the sequence, the secondary structure
propensity for each amino acid was statistically calculated
based on the simulations with each studied force field. Fig. 3A
reveals that the helical structures are mainly located in the region
from residue 47 to 56 in ensembles sampled with CHARMM27,
AMBER03 and AMBER99SB-ILDN. In fact, this region has been
reported to form an a-helix in many complex structures when p53
TAD2 binds with other partners.26,29,31,32 The population of the
preexisting bound conformations in free-state ensemble is essential
for determining the binding mechanism of IDPs. A more detailed
discussion will be presented in the next section. The comparison of
other secondary structure propensity with studied force fields for
each residue is shown in Fig. S4 (ESI†), in which the b-sheet is only
shown in simulations sampled with OPLS-AA/L apparently, and
located in the regions of residues 43–47 and 52–56; the turn regions
detected in ensembles with both AMBER03 and AMBER99SB-ILDN
are located around residues from 42 to 45 and from 47 to 56, partly
consistent with experimental measurements;69 the coil occupies
almost all residues in structures sampled with CHARMM36m.
Although an evident distinction is revealed in the secondary
structure propensity for specific residues with the five force fields,
the Root Mean Square Fluctuation (RMSF) shown in Fig. 3B
(taking the averaged conformation as a reference structure,
which was obtained from no less than 90% of the whole
sampled conformations, by clustering based on backbone
RMSD with a cut off around 7 Å) demonstrates that for most
force fields, the residue region from 45–58 shows a relatively
lower mobility compared with N- and C-termini, and those
residues with CHARMM27 present the lowest RMSF values,
which means the structures that they formed in simulations are
quite stable.

In a previous study70 on b-hairpin folding of the nuclear
factor erythroid 2-related factor 2 (Nrf2), a transcription factor
regulating the expression of genes responsive to oxidative
stress, it was observed that CHARMM27 and OPLS-AA/L were
heavily biased towards a-helical and bend conformations,
respectively. Additionally, earlier MD simulations of peptides
including Ab and short polyalanine, also revealed that AMBER03

Fig. 2 The averaged fraction of residues assigned to different types of
secondary structure elements based on the DSSP algorithm.55 The standard
deviation was obtained based on the average values of three independent
trajectories for each force field. 3-Helix indicates 310-helix in this plot.
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and CHARMM27 (CHARMM22 + CMAP) tended to over-stabilize
helical structures,43,71,72 and OPLS-AA/L yielded the most compact
structures in modeling the intrinsically disordered Ab peptide.73

Moreover, in another investigation using several intrinsically dis-
ordered peptides as model systems, Rauscher et al. systematically
compared couples of force fields, and concluded that force field
was a stronger determinant of secondary structure content than
peptide sequences.14 In this work, using p53 TAD2 as a model
peptide, our simulations reveal similar trends, which indicates
that OPLS-AA/L favors b-sheet structures, CHARMM27 tends to
over-stabilize a-helix, AMBER03 and AMBER99SB-ILDN also prefer
to generate a-helix but with a smaller propensity than CHARMM27;
the new improved CHARMM36M produces more coil conforma-
tions. To determine whether or not these are general features of
these force fields, more investigations on different type of IDPs and
folded proteins may need to be performed.

The conformation clustering analysis shown in Fig. 4
presents more visualized structural details for the simulated
ensembles of the peptide p53 TAD2. Using the backbone RMSD
cutoff value of 0.4 nm, the total occupancies of the top
six clusters for AMBER99SB-ILDN, AMBER03, CHARMM27,
OPLS-AA/L and CHARMM36m are 65.10%, 36.33%, 74.85%,
86.86% and 61.87%, respectively. Consistent with the secondary
structure analysis (Fig. 2), clusters obtained with CHARMM27
possess an obviously large fraction of helical structure. Whereas,
those with OPLS-AA/L are distinctively occupied by a large number
of b-sheet conformations, both AMBER03 and AMBER99SB-ILDN

force fields produce a medial population of helical structure, and
simulations with CHARMM36m predominantly exhibit expanded
coil structures. From the whole point of view based on the
occupancy of each cluster in Fig. 4, AMBER99SB-ILDN produces
more heterogeneous conformations than the other force fields.
The plotted Ramachandran map based on free energy profiles in
Fig. S5 (ESI†) gives more conformational details. This indicates
that except for the structural features mentioned above, conforma-
tions sampled with the newly developed force field CHARMM36m
present a low population of left-handed a-helix (defined as 301 o
j o 1001 and 71 o c o 671) as was reported,16 meanwhile
exhibiting much more polyproline II conformations (901 o j o
�201 and 501 o c o 1801), a left-handed helix that is found
extensively distributed in disordered proteins/peptides.74

Comparison with experimental measurements

NMR chemical shifts measured on different nuclei are sensitive
to chemical environment, which is determined by the special
structure of proteins, and thus may provide independent
information on the conformational ensembles. In this work,
we calculated the chemical shifts Ha and HN of p53 TAD2 based
on our simulated trajectories, by using the widely applied
software SPARTA+, and compared them with experimental
NMR monitored values69 to assess the five force fields’ perfor-
mance. According to the report of Mittal and coworkers, the
NMR data of the p53 TAD fragment (residues 15–29) are
consistent with those of full-length p53 TAD.75 Here, we also
use the available experimental data of free p53 TAD (1–73)69 for
comparison, assuming that the fragment TAD2 that we studied
also has the same NMR chemical shifts. The simulated values
from five studied force fields were plotted against experimental
data as shown in Fig. 5. The predicted Ha chemical shifts of the
sampled ensembles agree well with experimental ones, weakly
depending on force field. However, the deviations between the
calculated and experimental HN chemical shifts are much

Fig. 3 Characteristic of each residue of p53 TAD2 in simulations. (A) Helix
occupancy of each residue based on the DSSP algorithm.55 The standard
deviation was obtained based on the average values of three independent
trajectories for each force field. Helix here includes a-helix, p-helix and
310-helix. (B) Root mean square fluctuation (RMSF) of each residue in
simulations with five force fields, taking the averaged conformation of no
less than 90% of the whole samples (obtained by clustering with the
backbone RMSD cutoff at around 7 Å) as a reference structure.

Fig. 4 Representative cartoon schematics for the top populated six
clusters from simulations with five force fields, along with the percentage
occupancy of the corresponding cluster. The cutoff of backbone RMSD is
0.4 nm for all force fields. The structures are colored from blue to red
gradually for the peptide from N-termini to C-termini.
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larger than Ha and the differences among force fields are
distinct. The standard deviations of HN chemical shifts calculated
from the averaged values of three independent trajectories are also
a little larger than those of Ha. To quantify to what extent the
simulation results can match experimental measurements, we
calculated the RMS difference and Pearson’s Correlation Coeffi-
cient (PCC) between simulated data and experimental ones, which
are shown in Table 1. By evaluating both the Ha and HN chemical
shifts, it shows, apart from CHARMM36m giving a slightly smaller
RMS difference for chemical shifts of HN, generally, AMBER99SB-
ILDN presents a better agreement with NMR measurements,
showing a relatively lower RMS difference and a slightly higher
Pearson’s Correlation Coefficient.

We also attempted to calculate the Residual Dipolar
Couplings (RDCs), which provide long-range interaction information
and are highly sensitive to solution conditions such as medium

alignment, to evaluate the studied force fields by comparing with
experimental data. RDCs were back-calculated using both stPales
and bestFit modules in PALES program.58 We found that the
predicted RDCs using both modules based on simulated ensembles
with all force fields are in poor line with experimental RDCs25

(Fig. S6, ESI†), with RMS differences larger than 5 and PCC values
reaching almost random for all force fields. Earlier studies for
unstructured protein systems also reported a similar poor correla-
tion between calculated and experimental RDCs.10,14 Therefore,
efforts for developing more accurate predictors for RDCs are needed.

Many studies have revealed that a lot of IDPs can interact
with other proteins and fold a specific structure in the bound
complex, and they may form transient local secondary structures
in target-free state although mainly intrinsically disordered. The
pre-existing transient secondary structure might determine the
association mechanism when IDPs bind to their targeted partners
to perform biological functions, but it is quite challenging to detect
this experimentally. For full length p53 TAD, it has been proposed
that target-free p53 TAD might form two nascent turns in TAD2
(residue 40–44 and 48–53).69 Meanwhile, the continuity of
sequential dNN NOEs has been detected in two regions, near
residues 39–45 and 48–55 of p53 TAD2, which implies that
these two regions have a helical propensity in the free-state.
Furthermore, a couple of investigations revealed that p53 TAD2
can form a stable amphipathic a-helix structure on binding to
its targets.26,29,31–33 One exception has been reported that TAD2
binds to human TFIIH subunit p62 PH domain through a different
conformation—an extended string-like structure.36 In our simula-
tions with AMBER03, AMBER99SB-ILDN and CHARMM27 force
fields, to more or less extent, the sampled conformations exhibit
helix or turn conformations, as discussed above.

To investigate whether p53 TAD2 has probably already
formed the target-binding conformation in its free state, we
adopted two different TAD2 complex structures observed in experi-
ments, with the PDB ID codes 2GS032 and 2RUK36 (top panels of
Fig. 6), as reference structures, to analyze RMSD based on Ca from
the simulations with the five studied force fields. The RMSD values
with time evolution are shown in the middle panels in Fig. 6. In
the complex of yeast tfb1 PH domain (PDB ID 2GS0), residues
47–55 of p53 TAD2 form a short a-helix. The bottom panel of
Fig. 6A presents that the total occupancies of the simulated
conformations with RMSD o 2.5 Å are 13.25%, 21.13%, 64.09%,
0.02% and 0.49% for the force field AMBER03, AMBER99SB-ILDN,
CHARMM27, OPLS-AA/L and CHARMM36m, respectively. In fact,
the clusters shown in Fig. 4 and secondary structure propensity
analysis shown in Fig. 3 and Fig. S4 (ESI†), have exhibited that the
a-helix formed in the simulations with force field AMBER03,
AMBER99SB-ILDN and CHARMM27 mainly locates in this region.
AMBER99SB-ILDN, which may be the more rational force field for
p53 TAD2 based on the predicted dimensions mentioned above, as
well as the comparison of chemical shifts in this study, produces
conformations with around 21% of pre-existing a-helix, which
implies that p53 TAD2 might adopt a conformational selection
mechanism to bind its target, or maybe with a combination of
conformational selection and induced fit. On the other hand,
when aligned to the extended string-like conformation in complex

Fig. 5 Calculated (A) Ha and (B) HN chemical shifts based on sampled
conformations and experimental measured data.69 For each residue, the
standard deviation was obtained based on the average values of three
independent trajectories for each force field.

Table 1 The Pearson Correlations Coefficient (PCC) and RMS difference
between the calculated Ha and HN chemical shifts and experimentally
measured data69

Force field

Ha chemical shifts HN chemical shifts

RMS difference PCC RMS difference PCC

AMBER03 0.095 0.912 0.372 0.195
AMBER99SB-ILDN 0.094 0.936 0.235 0.713
CHARMM27 0.121 0.885 0.278 0.445
OPLS-AA/L 0.151 0.906 0.265 0.150
CHARMM36m 0.111 0.870 0.209 0.522
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with PDB ID 2RUK (top panel of Fig. 6B), nearly all RMSD values
are higher than 3 Å. Taking RMSD o 4 Å, the total occupancies for
each force field are also very low as shown in the bottom panel of
Fig. 6B. Only AMBER99SB-ILDN produces a fraction of conforma-
tions larger than 1%. Although CHARMM36m force field could
sample more extended conformations, the occupancy indicates
that the sampled structures are not much like those in the complex.
Therefore, for this situation, the binding process might be con-
ducted by binding induced folding.

Taken together, by comparing the simulations with reported
experimental data for p53 TAD2, we found that among the five
force fields studied here, simulations with AMBER99SB-ILDN
are more in line with experimental results. The target-free
sampling simulations could provide a possible binding mechanism,
while more association kinetics investigations both in experiments
and in theoretical simulations are required to uncover the
mechanism of this basic process.

Conclusions

Intrinsically disordered proteins have increasingly been realized to
play a crucial role in many essential biological processes, ranging
from molecular signaling to the formation of membraneless
organelles. Obtaining accurate descriptions of IDPs by means of
MD simulations is significant but quite challenging due to the
limitation of force field accuracy. Here, we used five atomistic force
fields to perform molecular dynamics simulations to characterize
the conformational features of p53 TAD2. Our results demonstrate

that the simulated structural features of p53 TAD2 are sensitive to
force field: CHARMM36m produces a most expanded coil ensemble;
CHARMM27 tends to over-stabilize helical structure; OPLS-AA/L
exhibits a strong preference for b-sheet structure and yielded the
most compact conformations. According to the theoretical power-
law relationship of Rg versus peptide length,67 for p53 TAD2, most
force fields studied here exhibit rather collapsed conformations
except the newest CHARMM36m and AMBER99SB-ILDN, the
latter presenting a structural dimension more close to the
theoretically predicted value. The clustering analysis indicates
that AMBER99SB-ILDN could also generate more hetero-
geneous conformations than the other force fields. Furthermore,
the comparison of the calculated chemical shifts with experi-
mental NMR data implies that the conformations sampled with
AMBER99SB-ILDN could provide a slightly more accurate predic-
tion than those of the other force fields. On average, among the
five investigated force fields, AMBER99SB-ILDN might be a more
suitable one for simulating the peptide p53 TAD2, although earlier
reports stated that AMBER99SB-ILDN with TIP3P model yielded
overly collapsed IDP structures for other peptides.68,76 This
suggests that the force field might perform differently depend-
ing on the peptide sequences. Computational investigations of
more sequences and more experimental studies are necessary
for evaluating the performance of a force field.

As a force field is defined by potential energy functions and
the corresponding parameters to describe bonded and non-
bonded interactions between particles in a modeled system, the
differing performance of the five contemporary force fields for
protein in this study, should arise from the description forms
and parameters for various interactions. In fact, the stability of
a protein force field, is supposed to be transferable between folded
protein and IDPs because of the same type of interactions.77 In
recent protein force field improvements, particularly for IDPs,
optimizations of backbone or side chain torsion parameters17,19

have been conducted to balance the propensity of sampled
secondary structure. Meanwhile, including CHARMM36m, the
rational water model and water–protein interactions have
increasingly been recognized to be of significance.12,16,23,77

Besides, more elaborate models, such as the atomic polarizable
effect,78 as well as many-body interactions which have been sug-
gested to be non-negligible in protein folding,79 may improve the
prediction accuracy. Furthermore, not only the sampled conforma-
tions, but also intra-chain dynamics should also be considered.80

Further studies on improving the force field by taking these
fundamental elements into account would provide more insight
into understanding the structure–function relationship of IDPs.
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Fig. 6 Comparison of sampled conformations with those in complexes.
(A) Top: Cartoon structure of p53 TAD2 (green)/yeast tfb1 PH domain
(orange) complex (PDB code 2GS0). Middle: Time evolution of Ca RMSD
(residues 47–55) of p53 TAD2 referenced to the bound structure. Bottom:
The percentage occupancy of conformations with RMSD o 2.5 Å for
simulations with each force field. (B) Top: Cartoon structure of the p53
phosphorylated TAD2 (green)/p62 PH domain (orange) complex (PDB
code 2RUK). Middle: Time evolution of Ca RMSD (residues 41–62) of p53
TAD2 referenced to the bound-state structure. Bottom: The percentage
occupancy of conformations with RMSD o 4 Å for simulations with each
force field. In the two middle panels, ‘‘1e + 06/0’’ in the x-axis means the
end of the former 1 ms trajectory and the beginning of the latter trajectory.
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