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CONSPECTUS: Due to hierarchic nature of biomolecular systems, their computational
modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are
used to address long-time dynamics of large systems. Here, we review recent developments
and applications of CG modeling methods, focusing on our methods primarily for proteins,
DNA, and their complexes. These methods have been implemented in the CG
biomolecular simulator, CafeMol.
Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one
CG particle on average. For proteins, each amino acid is represented by one CG particle.
For DNA, one nucleotide is simplified by three CG particles, representing sugar,
phosphate, and base. The protein modeling is based on the idea that proteins have a
globally funnel-like energy landscape, which is encoded in the structure-based potential
energy function. We first describe two representative minimal models of proteins, called
the elastic network model and the classic Go̅ model. We then present a more elaborate
protein model, which extends the minimal model to incorporate sequence and context
dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo’s group that was tuned
to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs.
Protein−DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded
volume terms for nonspecific cases.
We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our
CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions
can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin
dynamics.
Next, we present four examples of applications. First, the classic Go̅ model was used to emulate one ATP cycle of a molecular
motor, kinesin. Second, nonspecific protein−DNA binding was studied by a combination of elaborate protein and DNA models.
Third, a transcription factor, p53, that contains highly fluctuating regions was simulated on two perpendicularly arranged DNA
segments, addressing intersegmental transfer of p53. Fourth, we simulated structural dynamics of dinucleosomes connected by a
linker DNA finding distinct types of internucleosome docking and salt-concentration-dependent compaction.
Finally, we discuss many of limitations in the current approaches and future directions. Especially, more accurate electrostatic
treatment and a phospholipid model that matches our CG resolutions are of immediate importance.

1. INTRODUCTION

One of the long-term challenges in computational chemistry is
to accurately model structures, dynamics, and functions of
complex molecules, such as soft matter and biological
molecules. Major success therein was achieved by multiscale
approaches.1 At the finest level, chemical reactions are treated
by quantum chemical calculations. Conformational changes of
flexible molecules and intermolecular assemblies have been
addressed by classical molecular-mechanics molecular dynamics
(MD) simulations. Longer time-scale dynamics of larger

molecular complexes have been approached by coarse-grained
(CG) simulations.
Currently, CG simulations seem to be established to a lesser

extent than the former two. This is primarily because there are
inherently diverse formulations of the CG models; the average
number of atoms that are grouped together, solvent−water
treatment, and so on are all varied in different CG models.
Moreover, deriving CG models, we often need to give priority
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to reproduce some properties, such as thermodynamics,
structures, or specific experiments, which often sacrifices others.
The choice of priority is dependent on what we want to know
from the simulation.
Given these, here we review recent developments and

applications of CG modeling methods for biomolecular
systems, primarily proteins, DNA, and their complexes,
focusing on those we have been studying over years. These
methods have been implemented in the CG biomolecular
simulator, CafeMol.2 The primary purpose of this Account is to
provide concise yet reasonably self-explanatory descriptions of
these methods and software, together with a few representative
applications. For many other types of CG modeling methods
and softwares, refer to recent excellent reviews3−9 and in
particular Table 1 in ref 10.

2. COARSE-GRAINED MOLECULAR DYNAMICS
First, we set the resolution in our CG model such that ∼10
non-hydrogen atoms are grouped into one CG particle on
average (Figure 1A). In practice, for proteins, each amino acid

is represented by one CG particle located at its Cα position.
For DNA, one nucleotide is simplified by three CG particles,
representing sugar, phosphate, and base. The solvent molecule
is not explicitly treated; instead, the solvent effect is implicitly
taken into account via effective potential energy between CG
particles.
The basic idea in our protein modeling is that proteins have

evolved their sequences so that their interactions are minimally
frustrated at their native structures.11,12 This leads to the idea
that proteins have globally funnel-like energy landscape.13 The
structures and interactions in the native state of proteins are
sequence specific. Thus, these interactions should be primarily
realized by the side chain interactions. When we use the Cα CG
models, however, these side chain interactions cannot be fully
reproduced. To compensate these interactions in the Cα CG
models, we need the native-structure-based model where the

potential energy function is explicitly biased to the reference
native structure.10

We also note that there are two goals in the development of
CG models.14 The first goal is to make it “as simple as possible,
but not simpler”, after Einstein’s epigram. With its simplicity,
one can easily see what is in the model and what is not, from
which one can obtain crisp insights. The other goal is to make
them as accurate as possible, which is more standard in general
modeling methods. Here, we describe both types of
approaches.
All the models described below are implemented in

CafeMol2 (See http://www.cafemol.org for updates).

2.1. As Simple As Possible: Minimal Modeling

We begin with an extremely simple model of proteins, the
elastic network model of proteins first proposed by Tirion,15

which is defined by

∑| = −
<

V R R k r r( ) ( )
ij s t r r

ij ijENM 0
, . .

,0
2

ij c (1)

where rij is the distance between the ith and jth particles. Often,
a CG particle represents an amino acid located at its Cα
position. The rij,0 is the corresponding distance at the native
(reference) structure R0 (the meaning of subscript 0 is the same
throughout the paper). The k represents the elasticity and is
usually a uniform value independent of amino acids. The
summation is taken over amino acid pairs that are physically “in
contact” in R0. The precise definition of “in contact” can vary
but, in a simple treatment, uses a threshold distance, rc, between
the two amino acids. The elastic network model has been
broadly applied to predict native fluctuations and conforma-
tional changes in giant biomolecules.16−18 Many of its
extensions and applications can be found in ref 19.
One clear limitation of the elastic network model is that, due

to its harmonic nature, it cannot approximate large-amplitude
motions including local and global unfolding. A class of protein
models that allow break of the harmonic bonds in the elastic
network potential are often called Go̅ models after seminal
lattice models of similar idea.20,21 Go̅ models have widely been
used in studies of protein folding as well as protein function
that involves large-amplitude motions.22−26 Here, we write
down the potential energy function of the classic Cα Go̅ model
proposed by Clementi, Nymeyer, and Onuchic,22
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where θi is the ith virtual angle made by two consecutive virtual
bonds and ϕi is the ith dihedral angle defined by three
consecutive virtual bonds. In the energy function, the first,
second, and third terms represent restraint potentials for virtual
bond lengths, virtual bond angles, and virtual dihedral angles,

Figure 1. Schematics of coarse-grained (CG) protein and DNA
models. (A) The atomistic (left) and a CG (right) representation of a
protein−DNA complex. The protein is Sso7d (purple) and dsDNA
(cyan and green) contains 12 bps. (B) A schematic view of the CG
dsDNA model, 3SPN.2C. Each nucleotide is modeled by sugar (S),
phosphate (P), and base (B). Three types of base−base interactions
are denoted; base stacking (bstk), base pairing (bp), and cross stacking
(cstk).
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respectively. The fourth term is the nonlocal contact potential
that stabilizes amino acid pairs, where the summation is
restricted to amino acid pairs that are in proximity at the
reference structure. The last term represents a generic excluded
volume effect. The coefficients k and ε are parameters that
modulate weights among these terms.
Similar modeling can be done for nucleic acids and protein−

nucleic acid complexes.4,16,27

2.2. As Accurate As Possible

While minimal CG modeling has been successful in many
applications, it also revealed clear limitations in accuracy. These
limitations motivated us to improve the model. A promising
way is to make it a higher resolution model. In fact, an atomistic
Go̅ model has proven to be useful.28 If we go further, however,
the model becomes closer to standard atomistic molecular
mechanics, which diminishes the merit of CG modeling, that is,
speed. Alternatively, here we seek to improve the accuracy as
much as possible, while retaining the resolution.
One caveat in the classic Go̅ model, eq 2, is local interactions

being too stiff; the bond-angle and dihedral-angle potential
energy terms restrain these angles around the reference values.
In reality, potential energies of both angles should have at least
two distinct energy minima that correspond to α-helix and β-
strand/loop. Restraining to one angle value is particularly
problematic when (parts of) proteins are flexible or disordered.
To overcome this limitation, we introduced a generic flexible
local potential, Vloc

flp(R) as the inverse Boltzmann statistical
potentials,29 which do not rely on any reference structure,

∑ ∑θ
θ

ϕ= −
|

− |θ
ϕV R k T
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( )
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ln ( )
i

i

i i
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where Pθ(θi|i) (Pϕ(ϕi|i)) is the angle (dihedral-angle)
probability distribution dependent on the residue type of the
ith amino acid (and partly the type of (i+1)th amino acid).
Parameters kB and T are the Boltzmann constant and the
temperature, respectively. The denominator in the first term
comes from Jacobian determinant for bond angles. As a generic
knowledge-based approach, we used the probability distribution
of the corresponding angle obtained from a loop-structure
library that was collected from the Protein Data Bank (PDB).
As a more-accurate approach specific to a target protein, we can
conduct atomistic MD simulations for short fragments of the
target, from which we can generate the probability distribu-
tions. This tailor-made flexible local potential applied to the
p53 N-terminal disordered region showed a more accurate
ensemble than the generic PDB knowledge-based potential.29

Another limitation in the classic Go̅ model of proteins is a
uniform parameter εgo in the native contact potential. On
looking into the allosteric conformational change between two
structures, we found that contacts specific to one structure tend
to be clearly weaker than those common in the two
structures.30 To discriminate them in the CG model, we
generalized the contact strength to be sequence- and context-
dependent.30 The newly introduced nonuniform parameters
were determined by the multiscale algorithms, based partly on
the atomic interaction estimated by the AMBER force field in
the reference structure and also on the fluctuation-matching
protocol.31 Including this generalization as well as the flexible
local potential, we defined the atomic interaction-based CG
model, version 2+ (AICG2+)32,33 as
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The third and fourth terms represent the structure-based-angle
and dihedral-angle potentials, respectively. The parameters W
define widths of the Gaussian. The fourth term was originally
represented by the distance ri,i+3 in the AICG2 model, which
turned out to generate, albeit rarely, quasi-mirror-image
misfolded structures. This problem was solved by rewriting
this term in terms of the corresponding dihedral angles, ϕi, in
the AICG2+ model.33 In the fifth term, nonuniform parameters
εgo,ij, which are tuned by multiscale algorithms, depend on the
sequence. RNA that can fold to tertiary structures was modeled
in a somewhat similar way.34

The AICG2+ model is superior to the elastic network model
and the classic Go̅ model in accuracy of predictions of small
fluctuations in the native state, allosteric conformational change
direction, and folding pathway ensembles.30,32 As an example,
in Figure 2A, we compare the AICG2+ model and the atomistic
model in terms of the root-mean-square fluctuations of each
residue in protein G. The atomistic simulation was performed
for 50 ns with AMBER force field ff99SB and TIP3P. The
correlation coefficient between the AICG2+ and atomistic
simulation results was 0.86. Interestingly, for the same protein,
the correlation coefficient between atomistic simulation results
with explicit and implicit water models (a GBSA model) was
0.85, implying that the AICG2+ model is as accurate as the
GBSA implicit solvent atomistic model in terms of the small
fluctuations around the native state. We note that the
computational cost of the AICG2+ model and the classic Go̅
model is nearly the same.
Next, we briefly discuss the last term in eqs 2 and 4, the

excluded volume term. As far as reference structure-based
interactions dominate the system, as in the case of protein
folding simulations, the excluded volume term, which is the
non-native interaction, does not play important roles, by design.
Thus, results are insensitive to the parameter d in this term. On
the other hand, when generic, that is, non-structure-based,
protein−protein or protein−DNA interactions play major roles,
this excluded volume parameter, which controls the accessible
distance between the molecules, is important. To address the
excluded volume parameter, we estimated nonstructure-based
protein−protein interaction energy, which contains a hydro-
phobic, an electrostatic (described below), and the excluded
volume interactions, ∑0.2(d/rij)

12. Starting from the native
complex structure, we shifted the relative position along one-
dimensional coordinate δ (δ = 0 is the native, while δ > 0 (δ <
0) corresponds to the dissociation (the collapse)) and
calculated the intermolecular energy. Figure 2B depicts the
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result for uracil−DNA glycosylase (blue in the inset cartoon)
and its inhibitor complex (red) (PDB ID 2J8X), where d ≈ 4.5
Å would be optimal to have the energy minimum δmin closest to
zero. Indeed, a statistical survey over 251 protein−protein
complexes suggested that d ≈ 4.5 Å is a good choice for
interprotein excluded volumes (Figure 2C).
For DNA, we have employed a series of CG models

developed in de Pablo’s group, which take three CG particles
per nucleotide.35−38 This resolution seems to match that of CG
protein models described above. The first model was reported
in 2007,35 which was updated to 3SPN.1,36 and to 3SPN.237

and its variant 3SPN.2C38 (Figure 1B). Here, we briefly
describe the 3SPN.2C model.
The 3SPN.2C model uses three CG particles per nucleotide,

representing the phosphate (P), sugar (S), and base (N). The
potential energy function is written as
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Here, the first and the second terms are for virtual bonds and
virtual angles, respectively. The third term stabilizes backbone
dihedral angles at their reference values, while the fourth term
weakly biases to the reference values for all the dihedral-angles.
Note that the reference structure, R0, is not the straight B-type
DNA but takes sequence-dependent curved B-type DNA
generated by the software 3DNA.39

The rest in eq 5 represents nonlocal interactions. The fifth to
seventh terms are for base−base interactions, each representing
the base stacking (Vbstk), the cross-base stacking (Vcstk), and the
base pairing (Vbp) (Figure 1B for the definition of three base−
base interactions). Both in 3SPN.2 and 3SPN.2C, these
interactions are modeled as angle-dependent attractive
potentials. For example, Vbstk takes the form,

∑= +V u r f u r( ) ( )ij ij ij ijbstk
rep

filter
attr

where uij
rep(rij) and uij

attr(rij) are repulsive and attractive parts of
Morse potential, respectively. The coefficient f filter in the
attractive part is an angle-dependent filter that depends on the
angle defined by stacking bases and a neighboring particle. The
filter f filter takes the maximum value when the angles are close to
those in the reference structures and smaller otherwise. The
angle dependence makes the base-stacking sensitive to local
geometry of the stacking bases, which is crucial to make dsDNA
rigid and single-stranded DNA flexible. The base-pairing and
cross-base-stacking interactions take the same form although
the precise forms of f filter and parametrization are rather
different. See the original paper for more details.37

The eighth term in eq 5 is the electrostatics, modeled by the
Debye−Hückel theory40 as

∑
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T C

q q
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4 ( , )

e
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i j
r

ij
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where ε(T,C) is the dielectric constant that depends on the
temperature and solvent ionic concentration, qi is the charge of
ith particle, and λD is the Debye length, which controls ionic
screening depending on the solvent salt concentration. The last
term in eq 5 is a generic excluded volume term.
Protein−protein as well as protein−DNA intermolecular

interactions can be modeled in multiple ways. We often divide
the intermolecular interactions into either specific or non-
specific although many interactions may fall in between these
two limits. Usually, nanomolar order dissociation constants are
interpreted as specific. Specific interactions can simply be
modeled via structure-based contact potentials such as the fifth
term in eq 4. The coefficients εgo,ij can be modeled either based
on atomistic force fields or by high-throughput experimental
data represented by the position−weight matrix for protein−
DNA interactions.41

Nonspecific protein−protein interactions contain two major
contributions; hydrophobic interactions and electrostatic
interactions. In CafeMol, we estimate hydrophobic interactions
as an empirical nonadditive potential that measures buriedness
of amino acids.2

The electrostatic interactions are usually modeled by the
Debye−Hückel model, eq 6, where determination of the
charges for every CG particle is of crucial importance. In many
early protein modeling efforts, we used either +1e, 0, or −1e
charge for amino acids based on the standard pKa values. Note
that while charged amino acids carry their charge at the termini
of their side chains, our CG modeling contains only Cα

Figure 2. Accuracy in CG protein models. (A) The root-mean-square
fluctuations (RMSF) around the native state in protein G (PDB ID
2IGD) at 300 K calculated by atomistic (open circles) and AICG2+
(red curve) MDs. (B) The protein−protein interaction energy as a
function of displacement δ with three excluded volume parameters, d,
for uracil−DNA glycosylase (blue in the inset cartoon) and its
inhibitor complex (red) (PDB ID 2J8X). Of the three d’s, the shift at
the energy minima |δmin| is the smallest with d = 4.5 Å. (C) Of the 251
protein−protein complexes tested, the numbers of complexes that
satisfy |δmin| < threshold are plotted against d for three thresholds = 1.5
(red), 1.0 (green), and 0.5 (blue) Å.
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coordinates. Thus, the simple integer charge assignment could
be relatively poor. To overcome this issue, we recently
proposed the RESPAC method.42 This method derives from
the RESP method broadly used in the partial charge
determination in atomistic force field. For a given protein, we
first compute the reference electrostatic potential around the
protein by the Poisson−Boltzmann equation with the atomistic
model. Then, a set of partial charges of CG amino acids are
determined to minimize the difference between the Debye−
Hückel-based CG and the reference atomic electrostatic
potentials.42

There are different natures of electrostatic interaction
between protein−DNA and DNA−DNA interactions. DNA−
DNA electrostatic interactions are highly repulsive in short-
range and thus do not involve direct atomic contacts. Thus,
counterion condensation shields bare charges. In 3SPN.2 and
3SPN.2C models, a charge of −0.6e was assigned for the
phosphate groups in DNA−DNA interaction. On the other
hand, for protein−DNA interactions, we are normally
interested in short-ranged attractive interactions in which
counterion condensation may not occur. Thus, a charge of −1e
for the phosphate group of DNA might be reasonable. We will
discuss this issue in section 3.2, again.
2.3. Mapping Time Scales

We employ, by default, the standard Langevin equation for CG
particles, ri,
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∂

∂
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as the equation of motion. Here mi is the mass of ith CG
particle and γ is the friction constant. The random noise vector,
ξi, has its element ξi,μ being the Gaussian white noise with the
mean and variance,
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This fluctuation−dissipation relation guarantees that the system
converges to the canonical ensemble at the temperature T.
With this form, the hydrodynamic effect is ignored.
One of the most frequently asked questions (not easy to

answer, though) for CGMD simulation is about the time scale.
Unfortunately, it depends on the target molecules and the
quantity we look into. In the past, we mapped the time scale
case-by-case.
If we literally calculate the time scale using the Langevin

equation, masses of CG particles, and the spring constants for
virtual bond stretching, the single MD step corresponds to ∼10
fs. Compared with atomistic MD, one can use ∼10 times longer
time step with Cα-based CGMD. This can be understood
because the CG effective mass for the bond stretching is
approximately 100 times as large as that in the atomistic MD
and the period of oscillation scales as the square root of the
mass.
Next, we discuss the time scale mapping with the longer time

scales for larger motions, conformational dynamics of allosteric
proteins. In a recent study on adenylate kinase, we looked into
conformational relaxation dynamics with the principal
component analysis.43 For the largest-fluctuation mode,
principal component 1, the decay times in the autocorrelation
function were computed by fully atomistic MD and by CGMD
simulations. By comparing these two time scales, we estimated
that the single MD step corresponds to ∼1 ps. Notably, in this
CGMD simulation, we used a small friction constant, γ = 0.02,
which is 2 orders of magnitude smaller than that estimated
from water viscosity. This may partly explain the difference
from the microscopic mapping.
In another context, we addressed the time scale mapping

from the diffusion coefficient of protein domains. For globular
molecules, we can roughly estimate the diffusion coefficient by
the Einstein−Stokes equation. Separately, we estimate the
diffusion coefficient from CGMD simulations that used γ =
0.02. Comparison between these two estimates gives a time
scale mapping. In the case of p53 core domain, the single MD

Figure 3. Kinesin stepping in CGMD simulations. (A) The simulation scheme for one ATP hydrolysis cycle based on a traditional hand-over-hand
model. The blue and red rhombuses are the kinesin head A and head B, respectively. The cyan and pink strings near the heads are the neck-linkers.
Two heads dimerize at the coiled-coil regions drawn as blue and red bars. The “T” and “D” stand for ATP and ADP bound on kinesin heads,
respectively. The light green and green ellipsoids correspond to the αβ-tubulins. The neck-linker state is indicated by either dock or undock. The
affinity to tubulin is indicated by either on (strong affinity) or off (no affinity). Our simulation consists of four phases defined by the combination of
states of two heads. (B) Representative snapshots in the CGMD simulation. The color scheme is the same as panel A. (C) A representative time
course of the coordinate along which kinesin proceeds. The positions of head A are drawn in blue, head B in red, and the root of coiled-coil helix in
orange. The vertical dotted lines indicate boundaries of four phases. The green triangles at the bottom indicate the times when snapshots in panel B
are taken.
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step corresponds to ∼1 ps (Terakawa and Takada, Sci. Rep.
2015, 5:17107, DOI: 10.1038/srep17107).

3. APPLICATIONS

3.1. Molecular Machines: Two-Headed Kinesin

The first example of the application is a molecular motor,
kinesin. Kinesin represents a family of ATP-driven molecular
motors that proceed along microtubules. The conventional
kinesin forms a homodimer where the two-ATPase domains are
connected by the coiled-coil regions. It is known to proceed 8
nm per ATP hydrolysis by the hand-over-hand mechanism
(Figure 3A). One ATP-cycle corresponds to one stepping of a
head: Starting from the two-head bound state (the top in
Figure 3A), the rear head (blue) detaches from tubulins
(green) (the second cartoon), followed by its diffusive motions
(the third) and attachment to the 16 nm forward binding site
(the bottom). Here, assuming a particular chemical pathway
shown in Figure 3A, we performed simulations of this one ATP
cycle with CafeMol (see Kanada et al.44 for more detail; watch
Movie S1). The purpose here is to exemplify that we can
emulate molecular motors at work rather easily by our CGMD
method.
The simulation system contained eight protein subunits:

Dimeric kinesin molecules (head A and head B) that moved
dynamically and three copies of tubulin αβ dimers that were

fixed as a single protofilament of microtubule aligned along the
z-axis (Figure 3A). All the proteins were modeled by the classic
Go̅ model.
To emulate conformational changes of dimeric kinesin upon

chemical reactions in the simulations, we employed the
switching-Go̅ model, where reference structures in the Go̅
model are switched at certain time steps. Each head has three
states characterized by the neck-linker docking (docked or
undocked) and by the tubulin binding (on or off): “dock/on”,
“undock/on”, and “undock/off”. The reference structure for the
“dock/on” state was generated by superimposing the crystal
structure for the neck-linker docked dimeric kinesin (PDB ID
3KIN) into the complex structure of single-head kinesin:
KIF1A bound on tubulins (PDB ID 2HXF). The energy
function for “undock/on” state was constructed just by deleting
the native-contact interactions of the neck-linker with others.
The energy function for “undock/off” state was made by
deleting the interchain native-contact interaction between the
kinesin head and tubulins from the “undock/on” state. The
parameters used are the default values in CafeMol, except the
strengths of the kinesin−tubulin interaction, which were
calibrated based on kinesin experiments.
The simulation starts with the phase 1, where the heads A

and B are bound to tubulin and take the “dock/on” state and
“undock/on” state, respectively. Both heads as well as the

Figure 4. Nonspecific protein−DNA interactions. (A) The reference and initial structures of a DNA-binding protein Sso7d and the 12 bp dsDNA
(PDB ID 1BBX). Positively (negatively) charged amino acid residues are colored blue (red). The two strands of DNA are colored cyan and green.
(B) Probability for Sso7d residues to form contacts (<7.0 Å) with DNA in the simulations with qP = −1.0e. Inset, protein residues are shown in
colors according to their contact probabilities. (C) Representative time series of the distance between centers of mass of Sso7d and DNA in CGMD
simulations with different values of phosphate charges (qP = −0.6e, − 0.8e, and −1.0e) in protein−DNA interactions. The shadowed regions
represent the snapshots with d < 30 Å, which are considered as the bound state. (D) The logarithm of the simulated association constant (Ka, in the
unit of M−1) of Sso7d-DNA binding is shown as a function of the phosphate charge. The horizontal green line indicates the experimental Ka value.
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coiled-coil rapidly fluctuated around their preset positions. We
depict a snapshot (Figure 3B) and the time course of z-
coordinate along which the kinesin proceeds (Figure 3C). After
phase 1, we switched the state of the head A to the “undock/
off” state. As a result, head A started diffusive motions around
the initial position (phase 2, Figure 3B,C, Movie S1). Then, we
switched the state of the head B to the “dock/on” state,
emulating the ATP binding to the head B. Head A and the
coiled-coil region moved forward with large fluctuation (phase
3, Figure 3C). Finally, we switched the state of head A to the
“undock/on” state, emulating the ADP release from head A.
Head A stochastically moved back and forth between 8 and 16
nm forward regions, before landing on the binding site located
at the 16 nm forward position (phase 4, Figure 3C). Although
further analysis is necessary, the current simulation illustrates
the potential power of CGMD for studying molecular
machines.

3.2. Protein−DNA Interactions: Nonspecific Binding of
Sso7d to DNA

The second example is nonspecific protein−DNA binding.
Nonspecific interactions play important roles in DNA pack-
aging45 and in maintenance of genomic architecture.46 Even for
many DNA binding proteins that recognize specific target DNA
sequences, they also interact nonspecifically with other DNA
sequences in their search processes.47,48 Nonspecific protein−
DNA interactions are dominated by electrostatics. Proteins
often have positively charged motifs that approach negative
phosphate groups of DNA.
Here, we studied the interactions between a small nonspecific

DNA-binding protein Sso7d and 12 base-pair (bp) double
stranded (ds) DNA (Figure 4A). We employed the AICG2+
model for protein, eq 4,33 and the 3SPN.2C model for DNA, eq
5,38 with all the default parameters. We included the excluded
volume term and the electrostatic interactions, eq 6, as
intermolecular interactions. Note that in the 3SPN.2C DNA

model, the phosphate charge within the dsDNA interaction is
set to qP = −0.6e, taking the counterion condensation effect
into account.38 As mentioned in section 2.2, an attractive
protein−DNA interaction is primed as a short-ranged direct
contact, where the counterion may not stay between the
molecules. We investigate an optimal value of phosphate
charges in the protein−DNA electrostatic interactions.
For this purpose, we performed CGMD simulations in which

Sso7d binds to DNA with different phosphate charge values
(qP), ranging from −0.6e to −1.0e (Figure 4C,D). For proteins,
we used simple integer charges for amino acids. We then
calculated the association constant (Ka) using the Scatchard
equation: r/[L] = (n − r)Ka where r is the average number of
bound Sso7d per DNA molecule, [L] is the free Sso7d
concentration, and n is the number of binding sites on DNA.
Comparing with experimental results,49 we found that qP ≈
−1.0e gives the most accurate description of the Sso7d−DNA
electrostatics (Figure 4D). Additionally, we analyzed the DNA
contact probability for each amino acid residue in the
simulations with qP = −1.0e (Figure 4B). The residues that
contact DNA in the simulation with high probability localized
at the protein−DNA interface in the NMR structure.49

For better accuracy, one can use partial charges of amino
acids determined by the RESPAC method, which remains as a
future challenge. Interestingly, for DNA, even if we use the
RESPAC protocol, we obtain partial changes of −1e for the
phosphate groups and zero for sugars and bases.

3.3. Transcription Factor Dynamics on DNA: Roles of
Intrinsically Disordered Regions of p53

The third example is a multifunctional transcription factor, p53,
near two perpendicularly aligned dsDNAs. As a transcription
factor, p53 needs to scan genomic DNA sequence, while
searching its target position. In the search process, it has been
suggested that transcription factors sometimes transit from one
DNA segment to another in a monkey-bar fashion. Recently,

Figure 5. p53 intersegmental transfer realized in CGMD simulations. (A) Representative snapshots from a representative trajectory. A
homotetrameric full-length p53 (colored) is simulated on two dsDNA segments that are perpendicularly aligned and frozen (gray). p53 is composed
of five distinct domains: disordered N-terminal domain (NTD; blue), core domain (Core; green), flexible linker region (Linker; yellow),
tetramerization domain (TET; orange), and disordered C-terminal domain (CTD; red). The p53 initially placed on the lower DNA (i) accomplishes
intersegmental transfer to the upper DNA via two intermediate states ii and iii in which p53 binds both of the DNA segments. (B) The number of
contacts between p53 CTDs and DNA segments from the same trajectory as panel A (red, contacts with the “initial” segment; green, contacts with
the “final” segment). In the inset (log-plot), the transfer event is magnified. (C) The number of transfer events versus the distance between two
DNA segments. The number of events decreases as two segments are separated away from each other. (D) Probability of each domain to contact
(the minimal distance is less than 10 Å) the final segment in intermediate states.
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this intersegmental transfer for p53 was investigated by a
CGMD simulation similar to ours.50 Here, we extended their
work further with CafeMol.
In the simulation set, two dsDNA segments are placed in a

perpendicular arrangement and frozen for simplicity. A
homotetrameric full-length p53 is placed on one DNA segment
(Figure 5A(i)) initially. Protein p53 contains three intrinsically
disordered regions, the N-terminal domain, the linker, and the
C-terminal domain, each of which plays some important
biological roles; p53 was modeled with AICG2+, in which
domains that lack any reference structures are represented by
flexible local potentials. The dsDNA was modeled by 3SPN.148

with the default parameters in CafeMol. Interaction between
p53 and DNA is purely electrostatics approximated by the
Debye−Hückel theory, in addition to the excluded volume
term.
During 108 time steps in the trajectory, we observed multiple

times of intersegmental transfer of p53 (Figure 5A for
representative snapshots and Figure 5B for a time series;
watch Movie S2). Repeating the simulations with different
distances between the two DNA segments, we found that the
frequency of the transfer decreases with the distance (Figure
5C). During the sliding along the initial DNA segment, the
tetrameric p53 primarily uses its disordered C-terminal tails for
the interaction with DNA. Interestingly, our previous study
showed that, of the four C-terminal tails, only one-to-three tails
interacted with DNA for most of the time near physiological
salt concentrations,48 which means that one-to-three C-
terminal tails are free from the initial DNA. In the intermediate
state of the intersegmental transfer, p53 grabbed the final DNA
segment predominantly with these free C-terminal domains,
which is reminiscent of the fly casting mechanism,51 and
subdominantly with its core domain (Figure 5D).

3.4. Chromatin/Nucleosome Structures: Dinucleosome

The last example is on chromatin/nucleosome structures.
Eukaryotic genome is stored as hierarchical chromatin
structures, of which the basic unit of folding is a nucleosome.
A nucleosome consists of a core histone octamer and ∼147 bp
dsDNA that are wrapped 1-3/4 turns around the histones. The
chromatin structure regulates DNA replication and gene
expression. Recently, we performed CGMD simulations of a
single nucleosome to investigate the partial and global
unwrapping of DNA from the histone and the role of histone
tails in the unwrapping.52 Here, extending that work, we briefly
report dinucleosome simulation results.
Histone proteins were modeled by the classic Go̅ model, eq

2, for the core and by the flexible local potential, eq 3, for the
histone tails, while DNA was approximated by 3SPN.1 model.
We imposed protein−DNA interactions made of a structure-
based contact potential and the Debye−Hückel model, eq 6, for
electrostatics. For nucleosomes, we used an X-ray crystal
structure (PDB ID 1KX5) as the reference. Two nucleosomes
were connected by 25 base pair dsDNA. We performed 108

time step simulations at 300 K at the NaCl concentrations 100,
200, and 300 mM, repeating 10 times for each. The obtained
structural ensemble contains a broad range of structures.
We plot representative time courses (Figure 6A) and the

histogram (Figure 6B) of the distance between two
nucleosomes (also watch Movie S3). We found that the
distance, on average, increases with the salt concentration since
the internucleosome electrostatic attraction mediated by
histone tails is weakened by salt. The ensemble at 100 mM

contained a stacked state (left in Figure 6C) as a minor and a
partially stacked state (middle in Figure 6C) as the major
populations. Interestingly, the stacked state seems to be
stabilized primarily by histone H4 tails sandwiched between
two nucleosome cores. At higher salt concentrations (200 and
300 mM), a side-to-side arranged state (right in Figure 6C)
becomes a major state.

4. CONCLUDING REMARKS: FUTURE DIRECTIONS
Although useful, our current approach has many limitations
that can be overcome in future. Here, we discuss some of the
points.
The Debye−Hückel model for electrostatics is a rather poor

approximation for strongly charged systems, such as protein−
DNA complexes. First, although the theory relies on series
expansion for low ionic concentration, the physiological salt
concentration is not so low. Second, local counterion
concentration around highly charged molecules, which is a
priori unknown, can be much higher than the bulk ionic
concentration, which corresponds to the experimental measure-
ment. Third, the Debye−Hückel model cannot represent
solvation by divalent ions, which often has great impact to
DNA conformations. One way to improve accuracy of
counterion effect is to use explicit ions (still using an implicit
water model), which has been exploited in refs 53−55. To
account for a heterogeneous dielectric environment around
charged molecules, the generalized Born modeling developed in
atomistic force fields could be extended to CG models. The
generalized Born model is attractive especially when it is
combined with the solvent accessible surface area model, the
latter of which is known to be very accurate in Cα CG
models.56

Related to this, one hot issue may be modeling of sequence-
specific protein−DNA interactions, given the recent expansion
of high throughput data by next-generation sequencing
technology, such as protein-binding microarrays (PBMs)57

and HT-SELEX.58 These experiments lead to the position−

Figure 6. Structural dynamics of dinucleosome. (A) Representative
time courses of the distance between the center of mass of two
nucleosomes, d12, at varying NaCl concentrations (100 (blue), 200
(green), and 300 (red) mM). (B) Histogram of the distance between
two nucleosomes at each salt concentration sampled from the second
halves of 10 runs of 108 MD steps. (C) Three characteristic structures
of dinucleosomes: the stacked state (left), the partially stacked state
(center), and the side-to-side state (right). The d12 and salt
concentration given are in parentheses. Histone cores are in cyan,
while histone tails are colored as H2A green, H2B red, H3 purple, and
H4 blue. Phosphates, sugars, and bases of DNA are in red, yellow, and
blue, respectively.
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weight matrix. To take advantage of these big data, we need to
develop experimental-data-driven modeling of sequence-
specific protein−DNA interactions.
Another missing element in our current modeling is a

phospholipid model that matches resolutions of our protein
and DNA models, perhaps with five or six CG particles per
phospholipid. Although numerous good CG models for
membrane have been developed,5 most of them employ
somewhat higher resolution with >10 CG particles per
phospholipid. Few others employed lower resolution with
approximately three CG particles, which, geometrically, do not
approximate amphiphilic interactions between proteins and
lipids. Given the molecular architecture of phospholipids,
accurately modeling one phospholipid with five or six beads is
challenging.
Another promising direction to extend CafeMol is to

introduce slightly higher resolution than that used here. In
fact, putting one bead to the side chain center is a popular way
of coarse graining. For giant molecular complexes, one may
employ a hybrid-resolution modeling where some portion of
the system uses two beads and another part uses one bead per
amino acid.
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Advanced Coarse-Grained Nucleosome Core Particle Model for
Computer Simulations of Nucleosome-Nucleosome Interactions
under Varying Ionic Conditions. PLoS One 2013, 8 (2), e54228.
(56) Fraternali, F.; Cavallo, L. Parameter Optimized Surfaces
(POPS): Analysis of Key Interactions and Conformational Changes
in the Ribosome. Nucleic Acids Res. 2002, 30 (13), 2950−2960.
(57) Berger, M. F.; Philippakis, A. A.; Qureshi, A. M.; He, F. S.;
Estep, P. W.; Bulyk, M. L. Compact, Universal DNA Microarrays to
Comprehensively Determine Transcription-Factor Binding Site
Specificities. Nat. Biotechnol. 2006, 24 (11), 1429−1435.
(58) Zhao, Y.; Granas, D.; Stormo, G. D. Inferring Binding Energies
from Selected Binding Sites. PLoS Comput. Biol. 2009, 5 (12),
e1000590.

Accounts of Chemical Research Article

DOI: 10.1021/acs.accounts.5b00338
Acc. Chem. Res. 2015, 48, 3026−3035

3035

http://dx.doi.org/10.1021/acs.accounts.5b00338
http://pubs.acs.org/action/showLinks?crossref=10.1080%2F08927020600612221&coi=1%3ACAS%3A528%3ADC%252BD28XntFWgu7Y%253D&citationId=p_41_1
http://pubs.acs.org/action/showLinks?pmid=11601854&crossref=10.1006%2Fjmbi.2001.5037&coi=1%3ACAS%3A528%3ADC%252BD3MXnsFGjt7o%253D&citationId=p_31_1
http://pubs.acs.org/action/showLinks?pmid=15450299&crossref=10.1016%2Fj.jsb.2004.01.005&coi=1%3ACAS%3A528%3ADC%252BD2cXmvFCkt70%253D&citationId=p_21_1
http://pubs.acs.org/action/showLinks?pmid=15450299&crossref=10.1016%2Fj.jsb.2004.01.005&coi=1%3ACAS%3A528%3ADC%252BD2cXmvFCkt70%253D&citationId=p_21_1
http://pubs.acs.org/action/showLinks?pmid=21059937&crossref=10.1073%2Fpnas.1001163107&coi=1%3ACAS%3A528%3ADC%252BC3cXhsFaju7bK&citationId=p_69_1
http://pubs.acs.org/action/showLinks?pmid=16879983&crossref=10.1016%2Fj.jsb.2006.05.006&coi=1%3ACAS%3A528%3ADC%252BD28XhtFKmtrfE&citationId=p_59_1
http://pubs.acs.org/action/showLinks?pmid=16879983&crossref=10.1016%2Fj.jsb.2006.05.006&coi=1%3ACAS%3A528%3ADC%252BD28XhtFKmtrfE&citationId=p_59_1
http://pubs.acs.org/action/showLinks?pmid=19997485&crossref=10.1371%2Fjournal.pcbi.1000590&citationId=p_76_1
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.2431804&coi=1%3ACAS%3A528%3ADC%252BD2sXis1CgsLw%253D&citationId=p_49_1
http://pubs.acs.org/action/showLinks?pmid=21943426&crossref=10.1016%2Fj.bpj.2011.08.003&coi=1%3ACAS%3A528%3ADC%252BC3MXht1ejtLnM&citationId=p_39_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct4007162&coi=1%3ACAS%3A528%3ADC%252BC2cXjtVaqsQ%253D%253D&citationId=p_56_1
http://pubs.acs.org/action/showLinks?pmid=10518512&crossref=10.1073%2Fpnas.96.21.11698&coi=1%3ACAS%3A528%3ADyaK1MXmvVCqtbo%253D&citationId=p_29_1
http://pubs.acs.org/action/showLinks?pmid=23418426&crossref=10.1371%2Fjournal.pone.0054228&coi=1%3ACAS%3A528%3ADC%252BC3sXjtlCmt7c%253D&citationId=p_73_1
http://pubs.acs.org/action/showLinks?pmid=9665172&crossref=10.1038%2F836&coi=1%3ACAS%3A528%3ADyaK1cXks1entbw%253D&citationId=p_63_1
http://pubs.acs.org/action/showLinks?pmid=12930962&crossref=10.1093%2Fnar%2Fgkg680&coi=1%3ACAS%3A528%3ADC%252BD3sXmvVWrsLo%253D&citationId=p_53_1
http://pubs.acs.org/action/showLinks?pmid=6347038&crossref=10.1146%2Fannurev.bb.12.060183.001151&coi=1%3ACAS%3A528%3ADyaL3sXksVyquro%253D&citationId=p_26_1
http://pubs.acs.org/action/showLinks?pmid=6347038&crossref=10.1146%2Fannurev.bb.12.060183.001151&coi=1%3ACAS%3A528%3ADyaL3sXksVyquro%253D&citationId=p_26_1
http://pubs.acs.org/action/showLinks?crossref=10.1016%2FS0969-2126%2800%2900126-X&coi=1%3ACAS%3A528%3ADC%252BD3cXivFSisro%253D&citationId=p_60_1
http://pubs.acs.org/action/showLinks?pmid=16567655&crossref=10.1073%2Fpnas.0509642103&coi=1%3ACAS%3A528%3ADC%252BD28XjslaqurY%253D&citationId=p_33_1
http://pubs.acs.org/action/showLinks?pmid=16567655&crossref=10.1073%2Fpnas.0509642103&coi=1%3ACAS%3A528%3ADC%252BD28XjslaqurY%253D&citationId=p_33_1
http://pubs.acs.org/action/showLinks?pmid=19254530&crossref=10.1016%2Fj.bpj.2008.09.061&coi=1%3ACAS%3A528%3ADC%252BD1MXnvVerurc%253D&citationId=p_50_1
http://pubs.acs.org/action/showLinks?pmid=20192781&crossref=10.1146%2Fannurev.biophys.093008.131258&coi=1%3ACAS%3A528%3ADC%252BC3cXotFKjs7w%253D&citationId=p_23_1
http://pubs.acs.org/action/showLinks?pmid=20192781&crossref=10.1146%2Fannurev.biophys.093008.131258&coi=1%3ACAS%3A528%3ADC%252BC3cXotFKjs7w%253D&citationId=p_23_1
http://pubs.acs.org/action/showLinks?pmid=21307307&crossref=10.1073%2Fpnas.1018983108&coi=1%3ACAS%3A528%3ADC%252BC3MXivFGktb4%253D&citationId=p_40_1
http://pubs.acs.org/action/showLinks?pmid=10801360&crossref=10.1006%2Fjmbi.2000.3693&coi=1%3ACAS%3A528%3ADC%252BD3cXivFGjt7s%253D&citationId=p_30_1
http://pubs.acs.org/action/showLinks?pmid=12878726&crossref=10.1073%2Fpnas.1632476100&coi=1%3ACAS%3A528%3ADC%252BD3sXmtlykt7c%253D&citationId=p_20_1
http://pubs.acs.org/action/showLinks?pmid=12878726&crossref=10.1073%2Fpnas.1632476100&coi=1%3ACAS%3A528%3ADC%252BD3sXmtlykt7c%253D&citationId=p_20_1
http://pubs.acs.org/action/showLinks?pmid=26262925&crossref=10.1371%2Fjournal.pcbi.1004443&citationId=p_68_1
http://pubs.acs.org/action/showLinks?pmid=23459019&crossref=10.1371%2Fjournal.pcbi.1002907&coi=1%3ACAS%3A528%3ADC%252BC3sXkt1WmsLk%253D&citationId=p_58_1
http://pubs.acs.org/action/showLinks?pmid=16998473&crossref=10.1038%2Fnbt1246&coi=1%3ACAS%3A528%3ADC%252BD28XhtFyqtL%252FL&citationId=p_75_1
http://pubs.acs.org/action/showLinks?pmid=16998473&crossref=10.1038%2Fnbt1246&coi=1%3ACAS%3A528%3ADC%252BD28XhtFyqtL%252FL&citationId=p_75_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct300361j&coi=1%3ACAS%3A528%3ADC%252BC38XhtV2gtrzN&citationId=p_48_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fct300361j&coi=1%3ACAS%3A528%3ADC%252BC38XhtV2gtrzN&citationId=p_48_1
http://pubs.acs.org/action/showLinks?pmid=20525782&crossref=10.1093%2Fnar%2Fgkq498&coi=1%3ACAS%3A528%3ADC%252BC3cXotVSqt7s%253D&citationId=p_38_1
http://pubs.acs.org/action/showLinks?pmid=25002491&crossref=10.1073%2Fpnas.1402768111&coi=1%3ACAS%3A528%3ADC%252BC2cXhtFCnsrfM&citationId=p_45_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja305369u&coi=1%3ACAS%3A528%3ADC%252BC38XhtFOis73E&citationId=p_62_1
http://pubs.acs.org/action/showLinks?pmid=15749822&crossref=10.1073%2Fpnas.0408314102&coi=1%3ACAS%3A528%3ADC%252BD2MXksVKgtbg%253D&citationId=p_35_1
http://pubs.acs.org/action/showLinks?pmid=25362344&crossref=10.1063%2F1.4897649&coi=1%3ACAS%3A528%3ADC%252BC2cXhvVemsbvL&citationId=p_52_1
http://pubs.acs.org/action/showLinks?pmid=25362344&crossref=10.1063%2F1.4897649&coi=1%3ACAS%3A528%3ADC%252BC2cXhvVemsbvL&citationId=p_52_1
http://pubs.acs.org/action/showLinks?pmid=14607121&crossref=10.1016%2Fj.jmb.2003.09.047&coi=1%3ACAS%3A528%3ADC%252BD3sXos1Cht70%253D&citationId=p_32_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevLett.94.078102&coi=1%3ACAS%3A528%3ADC%252BD2MXhslarsbg%253D&citationId=p_22_1
http://pubs.acs.org/action/showLinks?crossref=10.1103%2FPhysRevLett.94.078102&coi=1%3ACAS%3A528%3ADC%252BD2MXhslarsbg%253D&citationId=p_22_1
http://pubs.acs.org/action/showLinks?system=10.1021%2Fja065531n&coi=1%3ACAS%3A528%3ADC%252BD2sXlsFyj&citationId=p_67_1
http://pubs.acs.org/action/showLinks?pmid=26049424&crossref=10.1063%2F1.4914328&coi=1%3ACAS%3A528%3ADC%252BC2MXlt1Cgurk%253D&citationId=p_57_1
http://pubs.acs.org/action/showLinks?pmid=12087181&crossref=10.1093%2Fnar%2Fgkf373&coi=1%3ACAS%3A528%3ADC%252BD38XlsFCqsb4%253D&citationId=p_74_1
http://pubs.acs.org/action/showLinks?pmid=21338609&crossref=10.1016%2Fj.jmb.2011.01.059&coi=1%3ACAS%3A528%3ADC%252BC3MXksFKls7Y%253D&citationId=p_64_1
http://pubs.acs.org/action/showLinks?crossref=10.1017%2FCBO9780511754869&citationId=p_54_1
http://pubs.acs.org/action/showLinks?pmid=22753508&crossref=10.1073%2Fpnas.1201807109&coi=1%3ACAS%3A528%3ADC%252BC38Xhsl2ktb%252FM&citationId=p_44_1
http://pubs.acs.org/action/showLinks?pmid=22003125&crossref=10.1073%2Fpnas.1109594108&coi=1%3ACAS%3A528%3ADC%252BC3MXhsVOktLjE&citationId=p_61_1
http://pubs.acs.org/action/showLinks?pmid=22003125&crossref=10.1073%2Fpnas.1109594108&coi=1%3ACAS%3A528%3ADC%252BC3MXhsVOktLjE&citationId=p_61_1
http://pubs.acs.org/action/showLinks?crossref=10.1063%2F1.1314868&coi=1%3ACAS%3A528%3ADC%252BD3cXnslOms7w%253D&citationId=p_34_1
http://pubs.acs.org/action/showLinks?pmid=24116642&crossref=10.1063%2F1.4822042&coi=1%3ACAS%3A528%3ADC%252BC3sXhsFOlsLbJ&citationId=p_51_1

