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ABSTRACT To date, a number of p53-derived
peptides have been evaluated in vitro for their ability
to inhibit the carcinogenic p53–mdm2 interaction.
Design of second-generation nonpeptidic compounds
requires the reduction of large peptide structures
down to small molecules maintaining the proper spa-
tial arrangement of key functional groups. Molecular
modeling software exists that can predict and rank
intermolecular interactions from the p53–mdm2 com-
plex crystal structure. Such analyses can yield a phar-
macophore model suitable as a search query for a 3D
chemical database to generate new lead compounds.
As preliminary validation of this methodology, the
Hydropathic INTeractions (HINT) program has been
used to generate noncovalent interaction measure-
ments between reported peptide inhibitors and mdm2.
Quantitative structure–activity relationships were de-
veloped expressing peptide activity as a linear combi-
nation of hydropathic descriptors. In general, HINT
measurements accurately modeled the effects of even
single-atom alterations of the p53–peptide structure
on activity, accounting for 70–90% of variation in
experimental inhibition constants. These results sur-
passed those of a recently described molecular dynam-
ics-based approach and required significantly less
computation time. In conclusion, the HINT program
can be integrated into the drug design cycle for next-
generation p53–mdm2 complex inhibitors with confi-
dence in its ability to simulate this noteworthy pro-
tein–protein interaction. Proteins 2001;45:169–175.
© 2001 Wiley-Liss, Inc.
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INTRODUCTION

The interaction between the tumor suppressor protein
p53 and the mouse double minute-2 (mdm2) oncoprotein is
of significant interest in the field of molecular oncology.
Although most clinically detected tumors demonstrate
mutations in one or both p53 alleles, a number of cancers,
particularly of the glia, bone, and soft tissues, have
wild-type p53 and overexpressed mdm2.1–7 Investigation
over the last decade has shown that mdm2 inhibits p53’s
ability to act as a transcription factor by binding to and
concealing its N-terminal transactivation domain.8,9 Re-
cently, a number of reports have suggested that mdm2 can
also act as a ubiquitin ligase, targeting p53 for proteolytic

digestion.10–12 The x-ray crystal structure13 of mdm2
bound to an N-terminal-derived p53 peptide presents a
means for rationally designing an inhibitor of this onco-
genic protein-protein interaction. The most potent inhibi-
tors identified to date are short peptides spanning portions
of the p53 transactivation domain sequence.14 Although
some of these compounds contain unnatural amino acids,
they would all presumably have poor oral bioavailability
and require intravenous administration. To overcome these
pharmacokinetic shortcomings, the search is on for smaller
nonpeptidic compounds with similar potency.15

One approach to generate lead compounds is to use
three-dimensional (3D) chemical database searches to
identify compounds able to mimic the portions of the p53
molecule crucial for binding to mdm2. An important first
step of the process is defining this p53 “pharmacophore.”
Throughout this article, discussions of structure–activity
relationships treat the p53 protein as a ligand that binds
to its receptor, mdm2. Both site-directed mutagenesis and
phage display have been employed to measure the effects
of p53 mutation on mdm2 binding. As seen in the crystal
structure, the N-terminal portion of p53 forms an amphi-
pathic a-helix, which inserts its hydrophobic face (Phe19,
Trp23, and Leu26) into a deep groove in mdm2. Much has
been written about the importance of these residues,
especially how mutation at even one of these positions
significantly reduces the ability of p53 to bind to mdm2.16,17

Up to now, such experiments have guided selection of
better polypeptide template structures only. There is a
paucity of data that can direct the molecular paring of
complete amino acid structures down to small molecule
peptidomimetics. It is within this realm that molecular
modeling tools have a major advantage, as one can gain
insight into the possible effects of even single-atom alter-
ations more easily in silico than in vitro. But for molecular
simulation to be trusted, it is essential that computational
tools be able to model existing experimental structure–
function data accurately.

One computational tool in current favor for analyzing
protein–protein interactions is the HINT (Hydropathic
INTeractions) program (eduSoft, LC). Unlike other simula-
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tion tools, HINT uses the empirically derived octanol:
water partition coefficient fragment rules of Hansch and
Leo18 to measure the full range of electrostatic and hydro-
phobic interactions.19 These are classified into favorable
(hydrogen bond, acid–base, hydrophobic) and unfavorable
(acid–acid, base–base, hydrophobic–polar) interactions.
As solute behavior in partitioning experiments is an
entropic as well as an enthalpic process, HINT calcula-
tions encode more complete thermodynamic information
than do most molecular mechanics-based programs. Solva-
tion–desolvation effects are also incorporated into the
model, implicitly via the fragment constants, and explic-
itly by hydrophobic–polar interactions.

The total intermolecular HINT score is determined by
evaluating the following formula:
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where n1 and n2 are the numbers of atoms in the interact-
ing species, a is the hydrophobic atom constant, S is the
solvent accessible surface area, T is a logic function that
maintains the proper sign signifying attractive or repul-
sive interactions, R is an interatomic distance-dependent
scaling function, r is a Lennard-Jones van der Waals
potential function, and i and j are indices for each pair of
interacting atoms.

A host of recent publications have shown the power of
HINT in quantitating protein–protein,20,21 protein–li-
gand,22–25 and protein–DNA26,27 interactions. A few groups
have performed regression analyses to relate HINT scores,
whether total or by interaction class, to experimental free
energy or activity (e.g., Kd or IC50) values, achieving
impressive cross-validated coefficients of determination in
many cases.28–30 HINT measurements have also been
integrated into comparative molecular field analyses
(CoMFA) and fitness functions for docking and virtual
screening.31–35

This article presents preliminary evaluation of the HINT
program for measuring the p53–mdm2 interaction and for
developing predictive QSAR models for inhibitor activity.
Three separate data sets are examined. The p53 mutagen-
esis data of Lin et al.16 features measurements of residual
mdm2 binding as a percentage of binding observed with
wild-type p53.4 Böttger et al. created a truncation series
based on their best phage display-derived peptide inhibi-
tor to map the prerequisites for activity.36 An additional
series of compounds were then synthesized by Novartis,
incorporating unnatural amino acids to increase binding
contacts.14 For two of the three data sets, an r2 value of
$0.9 is achieved; the other, a function of a single hydro-
pathic descriptor, has an r2 value of .0.7. Although the
data sets explored in this article are small (9, 12, and 6
compounds), the HINT program shows promise as a compu-
tational part of the drug design cycle for p53–mdm2
interaction blocking agents.

MATERIALS AND METHODS

All molecular modeling was performed on a Silicon
Graphics (SGI) Indigo2 IMPACT 10000 workstation, run-

ning IRIX version 6.5. Unless otherwise noted, software
packages were utilized with default settings. Coordinate
files for the p53–mdm2 complexes (human p53–human
mdm2 and human p53–Xenopus laevis mdm2) were ob-
tained from the Protein Data Bank37 (www.rcsb.org) using
accession codes 1YCR and 1YCQ, respectively. Protein
structures were visualized with InsightII, version 98.0
(Molecular Simulations). Mutant p53 sequences were cre-
ated with the InsightII Biopolymer module, which at-
tempts to maintain as many x side-chain torsional angles
as possible in the mutant residue. Hydrogen atoms were
next added to the molecule, assuming a pH of 7.4 and
charged termini. For unnatural amino acid substitutions,
a-aminoisobutyric acid (Aib) is an available amino acid
type within InsightII, and 1-aminocyclopropanecarboxylic
acid (Ac3c) was created by forming a bond between the
a-methyl groups of Aib. Phosphonomethylphenylalanine
(Pmp) was formed by replacing the hydroxyl oxygen of
tyrosine with carbon, adding side-chain hydrogens to
make a terminal methyl group, and attaching a phosphate
group so it was oriented toward Lys94 of mdm2.

To allow the protein structure to relax from the muta-
tions, which presumably can introduce unfavorable steric
or electrostatic repulsive forces, a two-step minimization
process (100 steps of steepest-descent minimization, fol-
lowed by conjugate-gradient minimization to an energy
gradient of 0.05 kcal mol21 Å21) with the CVFF force field
was applied to each structure. HINT version 2.30I func-
tions as an add-on module executed from within the
InsightII program. HINT scores for the p53–mdm2 interac-
tion of each native or mutant structure were generated as
follows. First, both mdm2 and p53 were partitioned in
order to assign logP values to all atoms. For mdm2, the
amino acid dictionary method was employed; as the data
sets for p53-related peptides include compounds contain-
ing unnatural amino acids not defined in the HINT
dictionary file, p53–peptide partitions were explicitly calcu-
lated. HINT calculations employed an e2r distance func-
tion with a steric term of 50. HINT table parameters
restricted inter-atomic interactions to those within a dis-
tance cutoff of 6 Å and having a minimum score of 10
interaction units. HINT tables were imported into Excel
98 (Microsoft) to sort and subtotal tabulated interactions
by interaction type. Partial least-squares multiple linear
regression analysis with leave-one-out validation was per-
formed using the Molecular Spreadsheet module of SYBYL
version 6.5 (Tripos).

RESULTS
Generation of Human p53–mdm2 Complex With
Crystallographic Waters

The 2.6-Å crystal structure of the human p53–mdm2
complex (PDB accession 1YCR) was determined by molecu-
lar replacement using the 2.3 Å Xenopus laevis complex
structure (1YCQ) as the search model.13 Because of its
lower resolution, bound crystallographic waters for the
human complex were undefined. In general, the two
p53–mdm2 structures are extremely similar. Superposi-
tion of the two complexes according to a sequence align-
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ment (Fig. 1), using backbone atoms for nonconserved
mdm2 residues and all atoms for conserved mdm2 and p53
residues, yielded a root-mean-square (RMS) distance of
1.39 Å over 1,372 atom pairs (Fig. 2). To approximate a
solvated human p53–mdm2 complex for subsequent mu-
tant simulations, waters from the X. laevis structure were
then copied into the human structure.

Correlation of Partial HINT Scores With p53
Mutagenesis Data

Lin et al.16 synthesized a large variety of mutant p53
proteins with single, double, triple, and six-site mutations
in residues located in the N-terminal transcriptional acti-
vation domain.4 Each of these mutants was compared with
wild-type p53 for residual binding to the mdm2 protein
through the use of immunoprecipitation experiments with
radiolabeled p53 and mdm2. Table I shows the experimen-
tally determined percentage change in mdm2 binding, as
well as the changes observed in partition coefficient and

HINT scores from molecular simulation. Predicted percent-
age change values are also listed with residual values to
show the effectiveness of the model. Only mutations that
were reflected in the crystal structure (residues 17–29)
were modeled. In addition, the Pro27 3 Tyr mutant was
not modeled, as major alterations in backbone tradition-
ally defy most prediction methodologies. The regression
equation is as follows:

D% mdm2 binding 5 23.857 1 ~12.474 z D log P!

2 ~0.285 z Dbase–base! 1 ~0.937 z Dhydrophobic!

r2 5 0.90, n 5 9, s 5 25.04, qLOO
2 5 0.76, P , 0.01

The fit of modeled to experimental data is shown in Figure 3.

Truncation Series Based on Phage-Display-Derived
Peptide 16MPRFMDYWEGLN27

Lane et al. used an enzyme-linked immunosorbent
assay (ELISA)-based format to evaluate mdm2-binding
peptides discovered through phage display.36 Briefly, mi-
crotiter plates were coated with mdm2 and probed with a
combination of full-length p53 and increasing concentra-
tions of synthetic peptides. Bound p53 was then measured
with an anti-p53 antibody and enzyme-linked secondary
antibody. The IC50 value was determined as the peptide
concentration at which the peroxidase signal was one-half
that of the peptide-free control. The most potent peptide
reported, 16MPRFMDYWEGLN27, had an IC50 of 300 nM,
compared with 9.5 mM for the wild-type sequence,
16QETFSDWKLLP27. To attempt to elucidate the source of
the 30-fold increase of potency, a series of truncated
6–11mers of the phage-display peptide was synthesized
and tested in the same assay system. Of the 27 peptides in
the series, 21 spanned regions that could be completely
modeled; in turn, only 12 of these had precisely deter-
mined IC50 values. The relevant data for these compounds
is listed in Table II. Analysis of the data set yielded the
following regression equation:

pIC50 5 0.455 1 ~0.006 z hydrophobic!

r2 5 0.71, n 5 12, s 5 0.67, qLOO
2 5 0.59, P , 0.001

The fit of modeled to experimental data is shown in Figure 4.

Series of Peptides Including Unnatural
Amino Acids

In a further round of peptide optimization, Garcı́a-
Echeverrı́a et al.14 attempted to replace residues appar-
ently not responsible for direct p53–mdm2 contacts with
a,a-disubstituted amino acids a-aminoisobutyric acid (Aib)
and 1-aminocyclopropanecarboxylic acid (Ac3c). These al-
terations were correctly predicted to stabilize the helical
orientation of the peptide inhibitor and improve potency.
In addition, the researchers recognized that the crystallo-
graphic model of the p53–mdm2 complex suggested that
there were two potential avenues to incorporate additional
binding contacts. First, a phosphonomethyl group was
added onto Tyr22 to form a salt-bridge with Lys94 of
mdm2. Also, by modifying Trp23 to a 6-chloro derivative,

Fig. 1. Alignments of mdm2 and p53 sequences from the two
p53–mdm2 complex structures in the Protein Data Bank. For mdm2
sequences, identical residues are shaded.

Fig. 2. Superposition of two p53–mdm2 complex structures, based on
1372 atom pairs. The Xenopus laevis mdm2–human p53 structure is
shown in white/gray; the human mdm2–human p53 structure is in red. For
clarity, mdm2 is represented as a backbone ribbon trace, while p53 has all
heavy atoms rendered.
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van der Waals contacts with the hydrophobic groove of
mdm2 could be achieved. These approaches were validated
by IC50 data from the aforementioned ELISA-based test,
as shown in Table III.

Hydropathic descriptors allowed a high degree of predic-
tion, as shown in the following regression equation:

pIC50 5 1.040 1 ~0.003 z hydrogen-bond!

1 ~0.003 z hydrophobic!

r2 5 0.95, n 5 6, s 5 0.38, qLOO
2 5 0.81, P 5 0.01

The fit of modeled to experimental data is shown in Figure 5.

DISCUSSION

Recently, Massova et al.38 used a significantly more
computationally intensive molecular dynamics (MD)-
based approach to simulate the effects of p53 mutation on
mdm2 binding. In what was termed “computational ala-
nine scanning,” each residue of the p5316–29 peptide was
individually mutated to alanine. The simulated free en-
ergy of binding (DGbinding) of each mutated structure was
subtracted from that of the native structure to yield a
DDGalanine3X for each residue. A strongly negative DDG
reflected a mutation deleterious for p53–mdm2 complex
formation, a positive DDG, one favorable for binding.

In addition to their truncation series referenced above,
the Lane group had also undertaken the systematic replace-
ment of each position of their phage-display peptide with

all 19 other amino acids in order to determine the number
of mutations allowed (reflected by an IC50 increase by no
more than threefold). As a demonstration of the validity of
their simulation data, Massova et al., compared their DDG
values with the residue replacement data. This analysis
showed overall a qualitative relationship, where residues
in the wild-type human p53 sequence with highly negative
DDGalanine3X values matched up with residues in the
phage-display peptide that permitted one or no mutations.
Computational alanine scanning demonstrated signifi-
cantly negative DDG values for Phe19 and Trp23, but only
a marginally negative score for Leu26, similar to what was
seen with Leu22. None of the other residues showed
significant DDG (positive or negative). As a result, this
simulation method is unable to explain, even qualitatively,
striking differences in mutational tolerance, e.g., why
position 16 in the phage-display peptide tolerates replace-
ment with 18 of the 19 other amino acids, while position 21
tolerates only 5 such mutations. The simulation data of
Massova et al., can be used only to suggest molecular
modification on well-studied residues 19 and 23 and
provides very few data on the structural requirements for
the regions spanning and linking these residues.

In contrast, the HINT-based QSAR equations presented
here more accurately model how a variety of structural
changes large and small made to the p53 transactivation
domain affect its ability to bind to mdm2. The mutant p53
proteins designed by Lin et al. were chosen to test for the
effects of charge inversion (e.g., Glu 3 Lys) and loss of
hydrophobicity (e.g., Trp 3 Ser). The relatively high
cross-validated r2(qLOO

2 ) indicates that the hydropathic
terms from the HINT model can in general predict cor-
rectly the relative contributions of p53 residues with a
moderate degree of robustness. In addition to the hydropho-
bic residues Trp23, Leu26, and Leu22, mutations of which
induced significant losses in experimental binding, two
mutations (Lys24 3 Thr and Glu28 3 Lys) led to large
increases in binding. Lin et al. do not posit any reasons
why such mutations are so favorable for p53–mdm2 com-
plex formation. In the p53–mdm2 crystal structure, Lys24
is oriented away from the intermolecular junction into
bulk solvent. In agreement with this fact, the tabulated
output of the HINT program does not report any interac-
tions between Lys24 and any residue of mdm2. So how
does this mutation induce such a change in the protein–

Fig. 3. Plot of predicted versus experimental percentage change in
percentage binding to mdm2 for a series of full-length p53 mutants. A line
of equality is drawn to show the distribution of points around a perfect
correlation.

TABLE I. Effect of p53 Mutation on mdm2 Binding*

Mutant D%mdm2 Pred. D%mdm2 DHINTtotal DLogP DBase–base DHydrophobic

Wild-type 0 24 0 0 0 0
E17K/D21H 220 3 22313 4.903 366 53
L22Q 244 225 614 22.934 62 35
W23S 278 294 2482 21.701 180 219
L22Q/W23S 298 277 2322 24.635 13 212
K24T 81 86 442 2.450 258 46
L25Q/L26H 261 277 2286 24.264 94 7
E28K 62 27 2811 2.655 209 61
E17K/D21H/E28K 278 275 21553 7.558 684 32

*Hydropathic indices have been normalized by subtracting the relevant wild-type indices to create difference values.
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protein interaction? Exhaustive examination of the HINT
table reveals that as a result of the mutation, a number of
additional hydrophobic interactions are predicted, particu-
larly between p53 and Met62 of mdm2. Specifically, the
terminal methyl group of this residue is repositioned to
better interact with the backbone and side-chain atoms of
Phe19 and Ser20. Furthermore, an intramolecular HINT
calculation for the p53 peptide (data not shown) indicates
that the hydroxyl group on the threonine mutation might
add an additional strong hydrogen bond with the backbone
oxygen of Ser20, further buttressing the helical conforma-
tion shown to be important for good binding.14 One would
think that the wild-type Lys24 could provide such a
hydrogen bond. However, as the HINT table shows for the
wild-type peptide, the more bulky lysine may not be able to
adopt the interatomic distance and angle constraints for
strong hydrogen bonding. It is interesting to note that the
phage-display selected peptide reported by the Lane group
contains the equivalent of a Lys24 3 Glu mutation.
According to the HINT intramolecular analysis, a stabiliz-
ing Glu247 Arg18 salt-bridge occurs.

Though the truncation data series was the largest
studied, model building yielded the lowest cross-validated
r2 of ;0.6. It is interesting to note that such a level of
prediction was achieved via a single hydropathic descrip-
tor. At a significance level of 0.05, there are four outliers;
removal of these outliers increases the r2 from 0.71 to 0.88.
In order to identify the source of the outliers, the hydropho-

bic interactions were separated by a participating p53
residue (Fig. 6).

As compared with the mutants of Lin et al.,16 the
peptide truncation series led to significantly divergent
postminimization structures. This was reflected in the
large changes in by-residue hydrophobic interaction scores
that occurred between peptides with a single amino acid
difference. For example, 18RFMDYWE24 and 18RFMDY-
WEG25 would appear to be extremely similar, yet the
hydrophobic interaction contribution of Phe19 in the former
peptide is double that of the latter. Similarly, Tyr22
maintains a fairly modest but constant contribution in all
the peptides, except for 19FMDYWEGL,26 where it is
negligible. The peptides may have behaved so differently
in the minimization procedure as key residues, when no
longer shielded by adjacent amino acids, may have been
subjected to more long-range nonbonded interactions,
causing increased mobility. Although not predicted by the
minimization procedure, a few of these truncations may
actually lead to non-helical secondary structures. This
model may not have the best statistical power, but it is far
superior to one in which the minimized structure of the
longest peptide, 17PRFMDYWEGLN27 is used to compute
the hydrophobic scores for all other peptides (data not
shown).

The set of unnatural peptides studied by Garcı́a-
Echeverrı́a et al. presents a means of evaluating HINT’s
recognition of more subtle changes in amino acid struc-
ture. The stabilization of the helix with the incorporation
of the Ac3c residue at position 25 also adds a hydrophobic
interaction with mdm2’s Leu54. HINT predicts that the
phosphonomethylphenylalanine at position 22 will accept
hydrogen bonds from the side-chains of Gln71, Gln72, and
His73. Although acid–base contacts did not serve as a
statistically significant predictor of activity, the salt-
bridge between the phosphate and Lys94 is itemized in the
HINT table. Addition of electron-withdrawing groups at
the 6-position of Trp23 leads to additional hydrophobic
contacts, as proposed by the authors. Garcı́a-Echeverrı́a et
al. also observed that similar substitution at the 5-position
failed to produce any changes in potency. HINT analysis of
5-Me or 5-Cl compounds shows negligible alterations in
interaction scores (data not shown).

TABLE II. Phage-Display Truncation Series

Sequence IC50 (mM) pIC50 Pred. pIC50 HINTTotal HH

RFMDYW 120 3.92 3.98 1048 610
PRFMDYW 40 4.40 3.72 1065 565
RFMDYWE 140 3.85 4.77 274 747
PRFMDYWE 25 4.60 4.44 101 689
RFMDYWEG 110 3.96 4.38 946 680
FMDYWEGL 2 5.70 5.82 659 928
PRFMDYWEG 150 3.82 3.91 1198 598
RFMDYWEGL 0.7 6.15 5.46 1060 866
FMDYWEGLN 13 4.89 6.08 1676 973
PRFMDYWEGL 0.1 7.00 6.19 974 992
RFMDYWEGLN 0.55 6.26 6.42 1451 1033
PRFMDYWEGLN 0.2 6.70 6.08 1458 974

Fig. 4. Plot of predicted versus experimental pIC50 values for the
truncation series of a phage-display-derived peptide. A line of equality is
drawn to show the distribution of points around a perfect correlation.
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CONCLUSIONS

In conclusion, HINT interaction data can be used for
correctly modeling existing experimental data describing
structure–function relationships of the p53–mdm2 interac-
tion. This preliminary validation of the HINT method
provides the justification for using HINT to define essen-
tial atoms within the side-chains of Phe19, Trp23, and
Leu26, a putative p53 “pharmacophore.” HINT analysis of
the native p53–mdm2 interaction predicts that only the
terminal three carbons of the phenyl ring of Phe19 are
important. Similarly, only the phenyl portion of the Trp23

indole side-chain along with the hydrogen-bond donor
indole nitrogen is necessary. In Leu26, only the terminal
side-chain isopropyl group participates in interactions.
These atomic elements, the centroids defined by the phe-
nyl rings, and the distances and angles between the atoms,
are all parameters to incorporate into the 3D database
search model (Fig. 7). Our future work will involve the
evaluation of compounds that meet these criteria as inhibi-
tors of the p53–mdm2 interaction.
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