Man vs. Machine In Weiqi

Recent development in Weigi Machines (AlphaGo)

Li CHENG

31Marl6

A Tale about the Chess Machine

e Chess 1770

Ui aml LSS ndesbpuaialag Je W2

’l._ : R ilon -'l oo

TRE ACTOMATON CHESS PLATER,
Wolfgang von Kempelen, “the Turk”

A Tale about the Chess Machine

e Chess 1770

Wolfgang von Kempelen, “the Turk”

The REAL Chess Machine

* Deep Blue vs. Garry Kasparov 1997,3.5:2.5

Weiqi

Weiqi

amateur 1 234 56 Dan

]
b T |

20Kyu 15Kyu 10Kyu 543 21Kyu 1 Dan 9 Dan
professional

Go Programs

weak p strong

Weiqi

Rank Name ~~ Flag Elo
1 Ke Jie - R 3615
2 Google AlphaGo 3584
3 Park Jungwhan N ‘e R ESSA
4 lyama Yuta e 3534
5 Lee Sedol ‘@, 3518
6 ShiYue B 3512
7/ Kang Dongyun ‘e, 3506
8 Park Yeonghun e, 3506
9 Mi Yuting B 3504

10 Kim Jiseok ‘e, 3498

Elo-like rating From (http://www.goratings.org/)

Challenges of Weiqi Machines

Weiqi has 33%(about 10'7°) states vs. only
about 10%° atoms in the entire universe

Up to 361 legal moves

Long-term effect of a move may only be
revealed after hundreds of additional moves

Last mind-sports game to be conquered

Game Theory of Weiqi Machines

A two-player, perfect information, zero-sum game (weidq;,
chess, checker, ...)

From MDP-> symmetric alternating Markov (SAM) game

Two policies each for agent (black) and for opponent
(white)

Self-play policy: a policy used by both agent & opponent

Minimax optimal policy for SAM game: a self play policy
both maximizes agent’s value function and minimiz

opponent’s value function

| I

Game Tree Search of Weigi Machines

AlphaGo

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison!, Arthur Guez', Laurent Sifre', George van den Driessche’,

Julian Schrittwieser!, loannis Antonogloul, Veda Panneershelvam!, Marc Lanctot!, Sander Dieleman!, Dominik Grewe!
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach!, Koray Kavukcuoglu!,

Thore Graepel' & Demis Hassabis!

]

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-

1Google DeepMind, 5 New Street Square, London EC4A 3TW, UK. 2Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
*These authors contributed equally to this work.

484 | NATURE | VOL 529 | 28 JANUARY 2016

AlphaGo

An engineering feat (about 2-year time)

In fact, many underground efforts over many
years

AlphaGo vs. Lee Seedal (9-15 Mar 2016): 4-1,
Huge success, a real earthquake in Weiqi
community

17Marl6: South Korean govt. will invest 1
trillion won (USS0.86 Billion) in Al over next 5-
year

Three Pillars of AlphaGo

* (Monte Carlo) Tree Search or MCTS
* Reinforcement Learning (learning by self-play)

* Deep Learning (aka Deep Convolutional Neural
Network, or DCNN)

Sketch the Main Ideas

How AlphaGo Works

overview
a b
Rollout policy SL policy network RL policy network Value network Policy network Value network
Z
P- P, P, v o P, (@ls) vg (8)
8 .
-
ol
. . 2
Fy
o
9_)'
QO s
Human expert positions Self-play positions
Figure 1 | Neural network training pipeline and architecture. a, A fast the current player wins) in positions from the self-play data set.
rollout policy p, and supervised learning (SL) policy network p,, are b, Schematic representation of the neural network architecture used in
trained to predict human expert moves in a data set of positions. AlphaGo. The policy network takes a representation of the board position
A reinforcement learning (RL) policy network p, is initialized to the SL s as its input, passes it through many convolutional layers with parameters
policy network, and is then improved by policy gradient learning to o (SL policy network) or p (RL policy network), and outputs a probability
maximize the outcome (that is, winning more games) against previous distribution p (a|s) or P (a|s) over legal moves a, represented by a
versions of the policy network. A new data set is generated by playing probability map over the board. The value network similarly uses many
games of self-play with the RL policy network. Finally, a value network vy convolutional layers with parameters 6, but outputs a scalar value vg(s’)
is trained by regression to predict the expected outcome (that is, whether that predicts the expected outcome in position s'.

From AlphaGO'S 28Janl6 nature paper @ (http://www.nature.com/nature/journaI/v529/n7587/fu||/nature16961.htm|)

How AlphaGo Works

Supervised learning of policy networks

The SL network is a 13-layer CNN trained from 30m positions from
KGS server, to predict expert’s move

Final layer is a softmax layer outputs probability over all legal moves

Trained on randomly sampled (s,a) pairs, using SG to max likelihood
of selecting move a at state s:

Olog p (als)
oo

57% prediction accuracy with all input features, and 55.7% with
only board position and move history, vs. 44.4% from state-of-the-
arts

Ao ox

work
Poh]

| _Pol]

y SL policy netw
P P,
a
d &
3, &
uman expert positions

Hi

How AlphaGo Works

Reinforcement learning of policy networks

The RL policy networl pp starts with SL policy networkp,

It learn by self-playing between itself and a randomly
chosen previous version of itself

The reward of curr state s r(s) is obtained by playing
multiple games to end (roll-outs) and obtaining each time
either +1 (black win) or -1
Params of the policy at curr state is updated as

Olog pp(u, |s¢)

Apx Zt

ap
Evaluation of RL policy network is by sampling each move
asai~p,(-lst) at curr state s, .
It won over SL policy network 80% of the games R E% @

It won over Pachi (KGS 2D) 85% over 100,000 games \

Self-play positions

How AlphaGo Works

Reinforcement learning of value networks

Predict the outcome of curr state s played by policy p for
both players vi(s)=Elz(|s;=s, a;_1~p]

|deally it is the optlmal value func under perfect play, v v'(s)
. In practice, itis v, the value function of our strongest
pIay Py - Thisiis apprOX|mated by a 0-parametric CNN, as

vo(s) = vh(s) = v*(s)
Same architecture as RL policy network. Only it now
predicts a single value instead of a distribution.
It is trained by regression on (s,a), with SG to minimize the
MSE between the predicted value vs(s) and ideal outcome

Z, AS Oval s
"05) (— vo(s)) p
»

Af x
Comparable with Monte Carlo rollouts using the RL p‘g’llgy
network, but with 15K times less computation.

Self-play positions

Monte Carlo Tree Search

O Algorithm

O O O @ N playouts for every move
@ Pick the best winning rate
@ 5,000 playouts/s on 19x19

v

@ Evaluation may be wrong

@ For instance, if all moves
lose immediately, except one

that wins immediately.
9/10 3/10 4/10 .

From Remi COUIOm, the author of Crazy Stone (http://www.remi-coulom.fr/JFFoS/JFFoS.pdf)

Monte Carlo Tree Search

() @ @ @ More playouts to best
| il moves

@ Apply recursively

@ Under some simple
conditions: proven
convergence to optimal
move when
#playouts— oo

9/15 2/6 3/9

From Remi COUIOm, the author of Crazy Stone (http://www.remi-coulom.fr/JFFoS/JFFoS.pdf)

How AlphaGo Works

a Selection b

Expansion c

Q +u(P) max

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network p, and the output probabilities are stored as prior
probabilities P for each action. ¢, At the end of a simulation, the leaf node

Evaluation d

MCTS

Backup

/.
G
I

is evaluated in two ways: using the value network vg; and by running
a rollout to the end of the game with the fast rollout policy p-, then
computing the winner with function r. d, Action values Q are updated to

track the mean value of all evaluations r(-) and vy(-) in the subtree below
that action.

From AlphaGO’S 28Janl6 nature paper @ (http://www.nature.com/nature/journaI/v529/n7587/fuII/nature16961.htmI)

How AlphaGo Works

Nothing new in MCTS, see e.g.

/—> Selection — > Expansion —— Simulation —> Backpropagation \

£ 45 45 4

Tree Default
Policy Policy

;
\ A 7

One iteration of the general MCTS approach.

How AlphaGo Works

Search with policy and value networks

The RL policy network and value network are combined in a MCST
to select actions by look-ahead search.

The tree is traversed by simulation. An edge of the MCST contains
an state-action value Q(s, a). At each time step t of each simulation,

an action is selected by ay=argmax(Q(sya)+ u(sp,a))

a
2Inn

Here u is a UCB value, usually in the form of , wWhere n; is the

HJ‘

number of time arm j is played and » is the total number of plays so far

Value of the leaf node, V(s;), is a combination of two sources,
V(st)=(1—X)ve(st) + AzL

Where vy(s;)is from the value network, and z; is based on the fast roll-
outs of policy px

Elo Rating

AlphaGo

evaluations
b c
3,500 gp - 3,500+ 3,500+
o o
g 3,000 3,000~
8
2,500+ 2,500+
3 2,000+ 2,000
a
2
- 1,500 1,500
1,000+ 1,000+
500+ 500+
0- 0-
sz2 3 O P 2 9 Rollouts Threads 1 2 4 8 16 32 40 e 40=mmd 12 24 40 64
g’g -g_ 2 > 2 § s g ® ® ® ® 40
SE’) e F ‘3) =% g Value network e e o o GPUs & 8 4 1 2 4 8 64112176280
g° ° g Policynetwork @ ® @ ° L Il]
o Single machine Distributed

AlphaGo

Configuration and performance

Configuration Search = No.of CPU No.of GPU _ Elorating _

v

threads
Singlel6! p-10-11 40 48 1 2,151
Single 40 48 2 2,738
Single 40 48 = 2,850
Single 40 48 8 2,890
Distributed 12 428 64 2,937
Distributed 24 764 112 3,079
meanst i — Distributed 40 1,202 176 3,140
2againsts. -~ Distributed 64 1,920 280 3,168

Lee Marl6

From wiki ped ia, (https://en.wikipedia.org/wiki/AIphaGo)

o History of Weiqi Machines

Best program:

Checker machine estimated around 15

First checker program by A. L. (Chinook) won over Kyu at internet Weiqi
Samuel human masters servers (KGS?)
First survey of Computer KCC Igo 2Kyu diploma

Weiqi programs of 70s-80s by Japanese Go Assoc.
Start of int. Computer
Go Congress (Ing|Cup)

1385-2000 Handtalk 3Kyu diploma
by Japanese Go Assoc,

First PhD thesis

about Weiqi
(first claim to won over any Same year, Chess machine won
human player)
_ o __over Garry Kasparov
First Weiqi |First weiqi program First weiqi
program |cetterthanan program that dan

absolute beginner ”
‘ self-learn

‘ >

1959 1960 1970 ~1975 1985 1989 1994 1996 1997 1999 2002

Reinforcement Learning

o History of Weiqi Machines

The research of Go programs is still in its infancy, but we shall see
that to bring Go programs to a level comparable with current

Chess programs, investigations of a totally different kind than used
in computer chess are needed.

-- John McCarthy 1990

Checker i

MC

s solved!

TS:

15t time: MoGo won over
Kim yungwang 8P in a 9-
stones handicap game;

Cra

zyStone won twice over

Aoba Kaori 4P with 7&8
handicap stones

Around 6 Kyu at KGS

Crazy stone won over peNN + MCTS:
Norimoto Yoda 9P with ar5und 5D atIKGS

4 handicap stones e.g. Darkfmcts @icLrie

MCTS:

Around 5-6D at KGS Around 3D at KGS
e.g. Zen, Crazy Stone

DCNN only:
Around 4-5 Kyu at KGS
e.g. Clark & Storkey

MCTS + DCNN:
Zen reaches stable 7D
at KGS

AlphaGo won over Lee
Sedol (top 9P) 4:1

AlphaGo won over Hui
Fan (2P) 5:0

DCNN only:

e.g. Darkforest2 @i¢Lr16

e.g. Many faces of Go oL |
- >
2006 2007 2008 2014 2015 2016
Monte-Carlo tree search (MCTS) Deep Convolutional Neural

Network (DCNN)

Future Look of Weiqi Machines

three versions of “Solved” Problems

* Ultra-weakly solved: From start of game, know
the optimal outcome (of black)

 Weakly solved: From start of game, best play
(of black) to end regardless of the opponent’s

play

e Strongly solved: From any state of a game,
best play (of black) to end

How AlphaGo Works

The RL policy network and value network are combined in a MCST
to select actions by look-ahead search.

The tree is traversed by simulation. An edge of the MCST contains
an state-action value Q(s, a). At each time step t of each simulation,
an action is selected by = argmax(Q(sy, a) + u(sy a))

a

Here uis a bonus value y(s.a)oc %) N(s,a) is visit count,
1+ N(s,a)
and P(s,a)=p,(als) is the prior prob for an action a. we also have
] n P
(s,a) Z 1(s,a,i) Q(s,a)= Z L(s,a,i)V(sy)

N(s,a) i
Value of the leaf node, V(s1), is a combination of the two sources,

V(st)=(1—X)ve(st) + AzL

Where vg(s)is from the value network, and ZL is based on the fast roll-
outs of policy Pr

Here search with policy and value networks

