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Segment 2D and 3D Filaments by Learning
Structured and Contextual Features

Fig. 1: Exemplar optical disk region masks used during the evaluation on the
optical disk region. (Left): The mask is completely inside the fundus mask.
(Right): The mask is partially inside the fundus mask, then the intersected
area is selected.

I. EXEMPLAR OPTICAL DISK REGION MASKS

Fig. 1 illustrates two examples of the optical disk region
masks used during the evaluation on the optical disk region.
Here a masked area is centered around the optical disk with a
radius of 100 pixels is applied to extract the region of interest,

II. AN ALTERNATIVE EVALUATION METRIC IN 3D
EXPERIMENTS

On 3D datasets, instead of the evaluation metric that has
been described in the main text, where the near boundary
voxels are simply ignored, here a slightly different metric
is utilized. Basically these near boundary voxels are now
still considered but with a weight linear w.r.t. its shortest
distance from the ground-truth (a voxel inside the ground-
truth is considered as dgt = 0 ). In other words, we assign
each voxel a weight w according to its shortest distance dgt
to the ground-truth as

w =

{
(dgt)/σ if 0 < dgt < σ

1 otherwise

As shown in Fig. 2, the voxels closer to the ground-truth
surface have less influence on evaluation due to the inaccurate
in this region. The parameter σ = 2 is fixed throughout the
experiments.

Under this alternative metric, we get the results on the
Gold166 which are reported in TABLE I. When comparing
with the counterpart (Table III) in the main text, it is clear
that the order of all the competing methods remains the same.
This suggests that either ignoring the boundary voxles or add
small weights would not change the final evaluation results.
In this paper we thus stick to the first metric.

Fig. 2: The weight w with respect to the dgt when σ = 2
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TABLE I: Comparison of 3D neuronal segmentation methods on Gold166 dataset using F1 measure (%) with tolerance σ = 2.

SF SF + context distance Adaptive Enhancement [4] GWDT [5] Regression Tubularity [3]
86.22± 7.96 86.60 ± 8.46 70.21± 13.80 82.49± 9.82 79.64± 10.70

TABLE II: Performance statistics of 2D segmentation using F1 measure (%), Precision (%), Recall (%), Specificity (%) and MCC.
Method

SF SF + context distance Kernel Boost [?] OOF [?] IUWT [?] Eigen [?] T2T [?] SE [?] B-COSFIRE [?] CNN [?] FC-CRF [?]

D
R

IV
E

F1 measure 77.57 ± 2.16 78.86 ± 2.15 74.79 ± 2.67 67.01 ± 3.12 68.81 ± 3.31 65.74 ± 4.85 40.56 ± 2.26 60.98 ± 2.75 78.73 ± 1.95 80.07 ± 1.77 78.57 ± 2.08
Precision 79.31 ± 2.16 80.50 ± 2.15 71.65 ± 2.67 65.76 ± 3.12 69.23 ± 3.31 67.43 ± 4.85 42.72 ± 2.26 55.33 ± 2.75 78.87 ± 1.95 82.03 ± 1.77 78.54 ± 2.08
Recall 75.95 ± 2.16 77.33 ± 2.15 78.30 ± 2.67 68.42 ± 3.12 68.57 ± 3.31 64.82 ± 4.85 38.80 ± 2.26 68.23 ± 2.75 78.67 ± 1.95 78.23 ± 1.77 78.97 ± 2.08
Specificity 97.11 ± 2.16 97.28 ± 2.15 95.50 ± 2.67 94.81 ± 3.12 95.57 ± 3.31 95.43 ± 4.85 92.31 ± 2.26 91.95 ± 2.75 96.93 ± 1.95 97.51 ± 1.77 96.84 ± 2.08
MCC 0.7442 ± 0.0216 0.7589 ± 0.0215 0.7106 ± 0.0267 0.6214 ± 0.0312 0.6436 ± 0.0331 0.6116 ± 0.0485 0.3244 ± 0.0226 0.5511 ± 0.0275 0.7567 ± 0.0195 0.7728 ± 0.0177 0.7556 ± 0.0208


