
Riboswitches exert genetic control through metabolite-induced
conformational change
Juliane K Soukup1 and Garrett A Soukup2

Conserved RNA structures have traditionally been thought of

as potential binding sites for protein factors and consequently are

regarded as fulfilling relatively passive albeit important roles in

cellular processes. With the discovery of riboswitches, RNA no

longer takes a backseat to protein when it comes to affecting gene

expression. Riboswitches bind directly to cellular metabolites with

exceptional specificity and affinity, and exert control over gene

expression through ligand-induced conformational changes in

RNA structure. Riboswitches now represent a widespread

mechanism by which cells monitor their metabolic state and

facilely alter gene expression in response to changing conditions.
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Abbreviations
FMN flavin mononucleotide

GlcN6P glucosamine-6-phosphate

SAM S-adenosylmethionine
TPP thiamine pyrophosphate

UTR untranslated region

Introduction
Regardless which kingdom of life one examines, the

notion that RNA is only a target and never an instigator

of post-transcriptional genetic regulatory mechanisms

represents a bygone era. For example, it has become

increasingly evident that both prokaryotic and eukaryotic

organisms possess a multitude of endogenous small RNA

transcripts that function as modulators of gene expression

through antisense-mediated mRNA recognition [1,2].

Although such trans-acting ‘riboregulators’ illustrate

RNA’s remarkably widespread role in establishing

genetic regulatory circuits that are vital to cellular func-

tion, their effects are largely exerted through processes or

pathways with requisite protein activities.

Within the past two years, a novel mode of RNA-

mediated genetic regulation has been discovered that

requires no auxiliary protein factor. Here, RNA serves

as the sole molecular switch that modulates transcription,

translation or RNA processing through conformational

changes prompted by direct interaction with a specific

cellular metabolite [3,4]. A stunning array of such ‘ribo-

switches’ have been characterized that respond to coen-

zyme B12 [5��,6–8], flavin mononucleotide (FMN)

[9,10,11��], thiamine pyrophosphate (TPP) [11��,12�,13,

14��,15], S-adenosylmethionine (SAM) [16�,17,18], lysine

[19–23], guanine [24�], adenine [24�,25�] or glucosamine-

6-phosphate (GlcN6P) [26��] (Table 1). Each of these cis-
acting regulatory elements is largely found in the mRNAs

of genes that comprise the biosynthetic pathway respon-

sible for producing the cognate metabolite. Therefore,

riboswitches afford an elegant mechanism for feedback

regulation of biosynthetic pathways.

The biological importance of riboswitches is made evident

by the fact that they are widely distributed and highly

conserved among prokaryotes and, in the case of the TPP

riboswitch, among certain eukaryotes [14��]. Furthermore,

certain riboswitch classes are represented numerous times

throughout a single organism’s genome. For example, 69

genes in Bacillus subtilis appear to be under the control of

any one of the eight known riboswitch elements [24�,26��],
which corresponds to approximately 2% of the organism’s

genome. Consequently, riboswitches represent a fre-

quently utilized form of genetic control that allows org-

anisms to respond to the metabolic state of the cell.

The purpose of this review is to examine the structural

characteristics of each known riboswitch with regard to

consensus sequence, molecular recognition, structural

modulation and resulting effects on gene expression.

The architecture of riboswitches
To exert control over gene expression, riboswitches must

couple the task of ligand recognition with that of mod-

ulating a requisite aspect of gene expression. Conse-

quently, riboswitches are generally composed of two

interdependent but otherwise distinguishable domains:

a natural ligand-binding or aptamer domain [27] and an

‘expression platform’ [4] whose precise conformation

impacts gene expression. Like most artificial aptamers,

natural aptamers exhibit a property termed ‘adaptive

binding’ [28], a type of induced fit whereby conforma-

tional change is concomitant with ligand interaction.

Metabolite binding to the aptamer domain therefore

provides the impetus for altering the conformation of

the expression platform and gene expression.
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Natural aptamers, which range in length from 70 to 170

nucleotides, appear to be truly modular structures that

retain the ability to bind ligand, and exhibit conforma-

tional changes in secondary and tertiary structure in the

absence of an expression platform. Consequently, it is the

aptamer domain sequence that is highly conserved among

evolutionarily divergent organisms (Figure 1). By con-

trast, expression platforms vary in sequence, structure and

mechanism, and usually affect prokaryotic gene expres-

sion through the formation of Rho-independent transcrip-

tional terminators or through sequestration of the Shine–

Dalgarno sequences required for translation initiation. In

fact, expression platforms can vary among members of the

same riboswitch class, as observed for TPP riboswitches

[11��,12�,14��], underscoring the modularity and versatil-

ity of riboswitch aptamer domains.

Evidence of riboswitch function
Each riboswitch aptamer class, excluding that which

binds GlcN6P, had previously been recognized as a

conserved RNA element required for proper metabolic

regulation of associated genes [3]. Although extensive

genetic and biochemical analyses of such RNA elements

led to suggestions that metabolite might interact directly

with RNA [13,29,30], evidence of direct binding has only

been recently provided. Methodology for demonstrating

metabolite interaction with riboswitch RNA has included

the use of RNase H probing [11��,16�,17,21], ‘in-line’

probing [5��,8,9,12�,14��,18,22,24�,25�,26��] and equili-

brium dialysis [5��,12�,18,22,24�,25�]; the latter two tech-

niques have been most widely applied. In-line probing

monitors the spontaneous cleavage of each phosphodie-

ster bond in a structured RNA, whereby the rate of

cleavage is dependent upon conformation and flexibility

[31]. For example, internucleotide linkages in base-paired

regions are structurally constrained, so as to preclude the

in-line conformation required to achieve cleavage via

transesterification, and therefore exhibit relatively low

rates of strand scission. In-line probing of riboswitch

RNA in both the absence and presence of metabolite

reveals conformational changes that ensue from ligand

interaction as changes in the observed cleavage pattern.

Thus, in-line probing provides evidence of both metabo-

lite binding and conformational changes that might affect

gene expression. Direct binding of metabolites to their

cognate riboswitch aptamers has been further corrobo-

rated through equilibrium dialysis experiments. Such

studies have revealed the exquisite specificity and affinity

of each riboswitch aptamer for its cognate metabolite.

Molecular recognition by riboswitch
aptamers
Most riboswitch aptamers possess an affinity and specifi-

city for their ligands that rival the precision of small

molecule–protein interactions. With regard to affinity,

most riboswitch aptamers exhibit apparent dissociation

constants (KD) for their ligands in the range from low

nanomolar to low micromolar (Table 1). One exception

is the GlcN6P riboswitch, which exhibits an apparent KD

of �200 mM, but begins to respond to GlcN6P at concen-

trations as low as 200 nM [26��]. With regard to specificity,

the use of metabolite analogs has revealed the exquisite

sensitivity of riboswitch aptamers in molecular recognition.

For example, the B12 aptamer discriminates against ana-

logs that lack the 50-deoxy-50-adenosyl moiety, modify the

N1, N3 and N6 of the adenosyl moiety, or alter the

stereochemistry of the corrin ring [5��]. The TPP aptamer

favors binding of TPP 1000-fold over binding to thiamine

phosphate or thiamine, and analogs of thiamine further

interfere with molecular recognition [12�]. The FMN

aptamer exhibits 1000-fold discrimination against ribo-

flavin, which lacks a phosphate group [9]. The SAM

aptamer discriminates against analogs that modify the

methionine or 50-deoxy-50-adenosyl moieties, as demon-

strated by reduced binding of S-adenosylhomocysteine,

which lacks a single methyl group and a positive charge

[18]. The lysine aptamer binds stereospecifically to

L-lysine, whereby contacts are made to each amino and

carboxy group [22]. Furthermore, the aptamer forms a

highly discriminating binding pocket that can sense the

length and character of the alkyl sidechain.

Table 1

Properties of known riboswitches.

Riboswitch/metabolite Apparent KD Representation Proposed mechanism(s) References

Adenosylcobalamin
(coenzyme B12)

300 nM Prokaryotes Transcription termination [5��,6–8]
Translation initiation

TPP 100 nM Prokaryotes

Eukaryotes

Transcription termination [11��,12�,13,14��,15]

Translation initiation

RNA processing

FMN 5 nM Prokaryotes Transcription termination [9,10,11��]

Translation initiation

SAM 4 nM Prokaryotes Transcription termination [16�,17,18]

Guanine 5 nM Prokaryotes Transcription termination [24�]

Adenine 300 nM Prokaryotes Transcription termination [24�,25�]

L-lysine 1 mM Prokaryotes Transcription termination [19–23]

GlcN6P 200 mM Prokaryotes RNA cleavage [26��]
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The guanine and adenine aptamers are identical except

for a single nucleotide difference to which they owe their

ligand specificity (Figure 1) [24�,25�]. A cytidine in the

guanine aptamer versus a uridine in the adenine aptamer

consensus sequence suggests that each aptamer recog-

nizes its ligand in part by forming a Watson–Crick base

pair. However, alteration of almost any functional group

on the purine heterocycle causes a substantial loss of

binding affinity, indicating that the entire ligand inter-

faces with the RNA.

The GlcN6P riboswitch breaks the mold of typical ribo-

switches in that it is also a ribozyme [26��]. The RNA

performs self-cleavage, exhibiting a 1000-fold rate en-

hancement in the presence of GlcN6P. The riboswitch

also exhibits excellent specificity, as analogs including

Figure 1
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glucose-6-phosphate and glucosamine do not stimulate

accelerated cleavage. Presently, it is unclear what precise

role GlcN6P plays in catalysis. However, it is likely that

the GlcN6P-dependent ribozyme represents a natural

form of previously engineered allosteric ribozymes [32].

An interesting commonality among certain riboswitches

is their recognition of metabolite phosphate groups. The

TPP, FMN and GlcN6P riboswitches create productive

binding interactions with negatively charged phosphate

moieties despite the fact that RNA itself is a polyanion.

Whether RNA might accomplish this task through a

common motif is one of many details that further struc-

tural investigations will reveal.

Conformational change drives riboswitch
function
The riboswitch aptamer must communicate with the

expression platform to affect gene expression and it is

the conformational change that ensues from ligand inter-

action that thus drives riboswitch function. Often times,

probing reveals the more precise mechanisms of gene

regulation. For example, RNase H probing of the FMN

riboswitch demonstrated that metabolite binding mod-

ulates the formation of an antiterminator stem [11��] and

in-line probing of the TPP riboswitch shows that meta-

bolite binding reduces the conformational flexibility

of the Shine–Dalgarno sequence [12�]. Such studies

illustrate the major expression platforms available to

riboswitches: regulation of transcription termination or

translation initiation.

Regulation of transcription termination is utilized by

nearly every riboswitch class (Table 1) and typically

involves metabolite-dependent formation of a terminator

stem, which prevents transcription elongation and inhi-

bits gene expression (Figure 2a). One exception is the

adenine riboswitch, wherein metabolite binding prevents

terminator stem formation and activates gene expression.

Regulation of translation initiation is less widely utilized

(Table 1) and involves altering the accessibility of the

Shine–Dalgarno sequence (Figure 2b). In this case,

Figure 2
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metabolite binding masks the Shine–Dalgarno sequence

within secondary structure to prevent ribosome binding

and inhibit gene expression. Interestingly, riboswitches

in Gram-negative bacteria seemingly prefer regulation of

translation initiation, whereas Gram-positive bacteria

favor transcription termination, a correlation that prob-

ably reflects the higher frequency of polycistronic genes

in Gram-positive bacteria [3,4].

A third expression platform that can be utilized by ribo-

switches to affect gene expression is regulation of RNA

processing events. A conceptually simplistic manifesta-

tion of this expression platform is represented by the

GlcN6P riboswitch, for which ligand binding induces

catalytic self-cleavage of the mRNA and inhibition of

gene expression (Figure 2c) [26��]. However, it seems

unlikely that the aptamer and expression platform (ribo-

zyme) are separable functionalities, as they are for other

riboswitches. Interestingly, the discovery of TPP ribo-

switches in eukaryotic genes has unveiled other possibi-

lities for riboswitch control of RNA processing [14��,15].

For example, the presence of TPP aptamers within

introns or 30 untranslated regions (UTRs) suggests that

riboswitches might regulate splicing or 30 end formation,

respectively.

Conclusions
Riboswitches represent a facile means for cells to moni-

tor their metabolic state and alter gene expression in

response to changing conditions. Riboswitches exhibit

exceptional specificity and affinity in molecular recogni-

tion, and remarkable versatility with regard to how

conformational changes are utilized to modulate gene

expression. The conservation and distribution of ribo-

switch aptamers among evolutionarily divergent organ-

isms suggest that the origin of at least one motif (the

TPP aptamer) predates the evolutionary split of prokar-

yotic and eukaryotic organisms some 1.5 billion years

ago. Regardless of whether riboswitches actually repre-

sent held-over components from a hypothesized RNA

world [4,14��], it is certainly clear that contemporary

biology has made good use of this paradigm in genetic

control. Possibly, riboswitches continue to afford mod-

ern organisms some measure of genetic streamlining

by precluding the evolutionary and metabolic expense

of manufacturing other regulatory mechanisms that in-

clude protein. The advantage of such streamlining to

microorganisms that must often flourish with meager

resources might explain the prevalence of riboswitches

among prokaryotes. Furthermore, it is interesting to note

that a diversity of stimuli can affect RNA-mediated

genetic control, as tRNA-responsive [33] and thermo-

regulated [34] RNA switches that modulate gene expres-

sion have been characterized. Consequently, roles for

RNA receptors as genetic regulatory elements might be

more widespread than the present collection of ribo-

switches suggests.

As the identification of riboswitches seems to have

exhausted the known set of metabolically related RNA

elements, bioinformatics approaches will undoubtedly

aid the identification of novel riboswitch motifs. This

has already been the case in the identification of the

GlcN6P riboswitch, which was identified as a conserved

sequence element within intergenic regions preceding a

gene involved in GlcN6P synthesis [26��]. However, a

considerable challenge for future riboswitch candidates

might be the identification of ligands that are not intui-

tively obvious.

Although the foundation for riboswitch function via con-

formation change has been firmly laid, each riboswitch

motif uniquely solves a molecular recognition problem.

Thus, in riboswitches resides a wealth of information

regarding the intricacies of RNA structure and ligand

interaction waiting to be explored through further bio-

chemical and biophysical analyses.
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