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Abstract

Background: Structural study of retinal blood vessels provides an early indication of diseases such as diabetic
retinopathy, glaucoma, and hypertensive retinopathy. These studies require accurate tracing of retinal vessel tree
structure from fundus images in an automated manner. However, the existing work encounters great difficulties
when dealing with the crossover issue commonly-seen in vessel networks.

Results: In this paper, we consider a novel graph-based approach to address this tracing with crossover problem:
After initial steps of segmentation and skeleton extraction, its graph representation can be established, where each
segment in the skeleton map becomes a node, and a direct contact between two adjacent segments is translated to
an undirected edge of the two corresponding nodes. The segments in the skeleton map touching the optical disk
area are considered as root nodes. This determines the number of trees to-be-found in the vessel network, which is
always equal to the number of root nodes. Based on this undirected graph representation, the tracing problem is
further connected to the well-studied transductive inference in machine learning, where the goal becomes that of
properly propagating the tree labels from those known root nodes to the rest of the graph, such that the graph is
partitioned into disjoint sub-graphs, or equivalently, each of the trees is traced and separated from the rest of the
vessel network. This connection enables us to address the tracing problem by exploiting established development in
transductive inference. Empirical experiments on public available fundus image datasets demonstrate the
applicability of our approach.

Conclusions: We provide a novel and systematic approach to trace retinal vessel trees with the present of crossovers
by solving a transductive learning problem on induced undirected graphs.

Background
Topological and geometrical properties of retinal blood
vessels from fundus images can provide valuable clinical
information in diagnosing diseases. In particular, vas-
cular anomaly in retina is one of the clinical manifes-
tations of retinal diseases such as diabetic retinopathy,
glaucoma, and hypertensive retinopathy. Take diabetic
retinopathy as an example, it is a leading cause of blind-
ness in the working-age population of most developed
countries. Diabetic retinopathy is the result of progres-
sive damage to the network of tiny blood vessels that
supply blood to the retina. It is classified into two major
groups in clinics according to the severity of the disease:
non-proliferative and proliferative. Proliferative diabetic
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retinopathy is characterized by the formation of new-
formed vessels in the retina, while non-proliferative dia-
betic retinopathy refers to the absence of abnormal new
blood vessels [1]. The description of blood vessel tree
structure is therefore essential in clinical diagnosis of eye
diseases such as diabetic retinopathy. Unfortunately, com-
mercial softwares still largely rely on manual tracing of
the blood vessel trees. This is tedious and time-consuming
due to the highly variable structure of these retinal ves-
sels, and is not sustainable for high-throughput analysis in
clinical setting.

Existing efforts in retinal vessel analysis can be roughly
categorized into two groups, namely, segmentation-based
and tracking-based. The segmentation-based methods
often use pixel classification [2-9] to produce a binary
segmentation, where a pixel is classified into vessel
or non-vessel. Ricci et al. [10] work with orthogonal
line operators and support vector machine to perform
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pixelwise segmentation. Mendonca et al. [2] use four
directional differential operators to detect the vessel cen-
terlines, which are then engaged for morphologically
reconstructing the vessels. An unsupervised curvature
based vessel segmentation method is proposed by Garg
et al. [3]. Meanwhile, a deformable contour model is
adopted by Espona et al. [4], by incorporating the snake
method with domain specific knowledge such as the topo-
logical properties of blood vessels. Soares et al. [6] adopt
eighteen dimensional Gabor response feature to train two
Gaussian mixture models (GMMs), which are further
employed to produce a binary probability map for a test
image. The tracking-based methods [11-21], on the other
hand, usually start with a seed and track the intended ves-
sel based on local intensity or texture information. The
authors of [12] divide the image into non-overlapping
grid and considered each grid separately for seed finding,
which are followed by the tracking procedure to uncover
the vessel network structure. In a series of research efforts
[18-21], the authors extract tubularity measure of all
image pixels and connect those pixels having high tubu-
larity measure values. Then, an optimal set of trees over
these tubular pixels are selected by minimizing a global
objective function with prior geometric constraints, such
as orientation and width of the vessel structure. In a recent
work [22], the tracking problem is formulated as a con-
strained optimization problem based on vessel orientation
and topology, and a candidate enumeration algorithm is
devised for the proposed optimization problem, which
prunes the search space by maintaining a lower bound on
the objective function. Meanwhile, there are also research
efforts from the related neural tracing community that uti-
lize graph based methods and achieve promising results,
such as the all path pruning methods of [23,24].

It has been observed that segmentation-based methods
tend to produce many disconnected and isolated seg-
ments [10], which are less favourable towards retaining
the important topological properties of vessel networks
[25]. Vessel tracking methods, on the other hand, often
preserve the connectivity structure of vessel segments.
Nonetheless they encounter great difficulties with the
occurrence of crossover [15] at the junction points. Cur-
rent methods often fail to trace properly, as it is nontrivial
to predict whether the vessel segments touching at a junc-
tion point belong to one tree, or two and more trees, and
for the later case, to which tree each segment belongs. In
this paper, we dedicate our attention to addressing this
bottleneck issue, which is referred to as the crossover issue.
One important observation is that local and global contex-
tual information is crucial to resolve the crossover issue.
For example, at a junction point, it is very helpful to go
beyond the current vessel brunch and examine the angu-
lar properties of the other vessel brunches of the junction.
These information is unfortunately ignored by current

tracing methods. This observation inspires us to consider
a different tracing approach that can take into account
both local and global contextual information of the vessel
network: After initial steps of pixel-based segmentation
and skeleton extraction, a novel graph representation is
formed, where each segment in the skeleton map becomes
a node, and a direct contact between two adjacent seg-
ments is translated to an edge of the two corresponding
nodes. The segments in the skeleton map touching the
optical disk area are considered as the root nodes. The
number of trees to-be-found in the the vessel network
thus equals the number of root nodes. This graph rep-
resentation is further simplified using a modified version
of segment ordering [26-28]. Based on the graph repre-
sentation, the tracing problem is further formulated as
a transductive inference problem in machine learning,
where the goal becomes that of propagating the tree labels
from known root nodes to the rest of the graph, such
that the graph will be split into disjoint sub-graphs, which
corresponds to trees of the vessel network.

The main contributions of this paper are three-fold.
First, our approach offers a principled way of addressing
the crossover issue. By connecting to the well-established
transductive inference in machine learning [29], both local
and global contextual information can be explicitly con-
sidered. Second, a novel graph representation is proposed,
which can be regarded as an equivalent dual represen-
tation of the original vessel network, and is essential for
establishing the machine learning connection. Third, the
graph representation is simplified using a modified ver-
sion of segment ordering which is meaningful for tracing
purpose. We expect the graph representation, and the
transductive-inference connection can open the door to
some insightful understanding of the characteristics of
crossover sections in vessel networks.

Methods
Figure 1 provides a flowchart description of our approach,
which contains two main steps: The segmentation step
focuses on faithfully retaining the small branches as
well as the connectivity between neighbouring branches.
The tracing step, which contains our main contributions,
turns the tracing problem into graph-based transductive
inference, and the final tracing results are obtained by
exploiting the well-studied transductive inference tools in
machine learning.

Segmentation
The goal of the segmentation step in our context is to
extract vessel skeletons while maintaining their struc-
tural connectivity, as well as the corresponding point-wise
thickness along the skeletons – based on which the reti-
nal vessels can be faithfully reconstructed. This differs
notably from the usual aim of most existing segmentation
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Figure 1 Flowchart of our approach. Overview of the proposed tracing pipeline (Best view in color).

work, where the emphasis is to achieve a high classifica-
tion accuracy. As the number of vessel pixels are much
fewer comparing to the number of background pixels,
often a high accuracy is achieved by missing many ves-
sel pixels, a situation we try to avoid. In fact, our goal
can be better described as segmentation with a high recall.
In other words, it is critical for us to retain the vessel
pixels that keep the local vein and artery branches from
being broken or entirely missing. To achieve this, based
on two existing methods [6,8], our segmenter is formed by
merging the results in a sequential manner, while empha-
sizing on retaining the right network connectivity. Since
our main focus is the tracing step, we discuss here only
the quantitative analysis of the segmentation results, and
leave the detailed description of our segmentation step to
Appendix.

To evaluate the segmentation performance, Table 1
compares our results to the state-of-the-art methods at
the popular DRIVE dataset, while our segmenter excels in
picking up most vessel pixels (the recall column) – cru-
cial for maintaining the connectivity of segmented parts,
it also performs reasonably well in keeping only a small
fraction of false alarms (the precision column) and thus
a very competitive accuracy score – comparable with the

Table 1 Comparison of vessel segmentation performance
in DRIVE

Method Precision Recall F1 Acc.

Ricci [10] - - - .9563

Mendonca [2] .7315 - - .9463

Peter Bankhead [8] .7027 .7177 .7101 .9371

Garg [3] - - - .9361

Espona [4] .7436 - - .9352

Martinez-Perez [5] .7246 - - .9344

Diego Marin [7] .8433 .7067 .7690 .9452

Soares et al. [6] .6943 .7425 .7176 .9466

Our method .7602 .8336 .7952 .9429

leading methods. Visually our algorithm also performs
significantly better than the existing ones in term of pre-
serving the connectivity among segments, which is crucial
for tracing, as displayed in Figure 2. Figure 2(F) and (I) are
two examples of our segmentation results. Figure 2(C-E)
and (H) are examples of other state-of-art methods. The
areas shown in red boxes are the areas where our segmen-
tation algorithm works better than others and it retains
the connectivity of the vessel network.

At the final stage of the segmentation step, the binary
segmentation result is converted into a skeleton map
(of one pixel thickness) by standard medial-axis trans-
form. Meanwhile the optical disk region is identified and
removed by applying a simple smoothing and threshold-
ing step.

Tracing
Let us start by settling down few definitions. In the skele-
ton map, pixels can be partitioned into the following three
categories (also illustrated in Figure 3):

• Body Points: Pixels having two neighbours.
• Terminal Points: Pixels having one neighbour.
• Branching Points: Pixels having three or more

neighbours.

In particular, the terminal points residing inside the
removed optical disk area are called the root points, and
the remaining terminal points are end points. A segment
is thus defined as a continuous subset of skeleton pixels
starts with either a root or a branching point, and ends
with a branching or an end point.

It is commonly assumed that for tracing, we always start
from the optical disk where the root points of the retinal
vessel skeleton are present. As a result, the retinal ves-
sels can always be separated into a disjoint set of rooted
trees, with each tree possessing a unique label stemming
from its root point (and thus the segment it resides in).
This is illustrated as the red-coloured segments of the ves-
sel skeleton in Figure 1 (A). Clearly the number of trees is
always known a priori at this stage.
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Figure 2 Visual comparison of the segmentation result on an exemplar fundus image. (A) Original image (DRIVE-Test-Image-19), and its
ground-truth segmentation in (B). (C) Segmentation result of [10]. (D) Segmentation result of [6] (E) Segmentation result of [7]. (F) Segmentation
result of our method. (G) Original image (DRIVE-Test-Image-01). (H) Segmentation result of [5]. (I) Segmentation result of our method. If we pay
close attention to the boxed regions, we can see that our segmentation step does a much better job at retaining the connectivity of the skeleton.

From skeleton map to graph representation
The skeleton map of the segmented image is converted
into an undirected graph, G = (V , E), where the nodes
V are the vessel segments of the image and there is an
edge between two nodes if the corresponding vessel seg-
ments are connected in the image. Figure 1 (A) and (B)
provide an illustrative example of transforming a small
fraction of a skeleton. The segments containing the root
points are each regarded as the root node of a distinct tree

(Figure 1-A, B). The number of possible labels per node
equals the number of root nodes in the graph. As the label
for the root nodes are known, they are regarded as labelled
nodes (nodes in red color).

Graph simplification based on segment ordering
The graph that we have constructed so far contains
redundant edges that can be further simplified based
on segment ordering. Segment ordering refers to the
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Figure 3 Notation on the skeleton pixels. Skeleton pixels are classified into the following three types: Body points – Pixels having 2 neighbors;
Branching points – Pixels having 3 or more neighbors; Terminal points – Pixels having 1 neighbor, being either root or end pixels. A segment is thus
defined as a continuous subset of skeleton pixels starts with a terminal/branching point, and ends with a branching/terminal point.

graph-theoretical algorithms (such as [26-28]) aiming to
order the segments following the underlining network
structure. As displayed in Figure 4, it works by first
assigning lowest integer values to the terminal segments
(segments containing the terminal points), and assigning
integer values in a non-decreasing manner following the
network structure as we move up along the path from
the terminal (leaf ) segments towards the root segment.
Segment ordering has been applied, for example in the
hydrology applications to order the streams from a hier-
archy of tributaries [26,27]. In this work we adopt the
Shreve’s ordering [28] and propose a modified version
of it.

Shreve’s ordering
Shreve’s ordering is defined on trees as follows: 1) Each
terminal nodes are assigned an order of 1. 2) If two seg-
ments of order μ1 and μ2 meet then the resulting segment
obtains an order of μ1 + μ2. Figure 4 illustrates an exam-
ple of Shreve’s ordering. Shreve’s ordering assumes that
the network structure is a tree with a single root with
no crossover, which is true for river networks. However,
we need to take care of crossover situations and multiple
roots in our context, with which we propose a modified
version of Shreve’s ordering.

Modified Shreve’s ordering
Our modified version of the Shreve’s ordering algorithm
is defined below. 1) Each terminal nodes are assigned an
order of 1. 2) In a 3-clique, if the two incoming segments

has order of μ1 and μ2, then the the third (outgoing)
segment will be ordered as μ1 + μ2. 3) In a 4-clique,
if the two incoming segments has order of μ1 and μ2,
then the other two (outgoing) segments will be ordered as
μ1 + μ2. 4) In a 5-clique, if the three incoming segments
has order of μ1, μ2 and μ3, then the remaining two out-
going segments will be ordered as μ1 + μ2 + μ3. 5) In a
6-clique, if the four segments has order of μ1, μ2, μ3 and
μ4, then the rest two outgoing segments will be ordered as
μ1 +μ2 +μ3 +μ4. In Figure 5, the blue circle marked as A
and B are two examples of 4-cliques and C is an example
of 5-clique. Note by incoming and outgoing here we refer
to the directional paths each starts from a terminal (leaf )
segment and ends at its root segment.

As shown in Figure 6, there are two issues when deal-
ing with the topological connections of 3-cliques, where
Shreve’s ordering algorithm will not proceed properly.
The first issue as presented in subplot (A), illustrates the
deadlock scenario when running from bottom up, the
method of Shreve’s ordering will stop at C2 (shown in yel-
low), due to the context of only one incoming segment
and two outgoing ones. The second issue is very similar
but involves a small spurious segment (i. e. segment 4), as
in subplot (B). One key observation here is the angle C2
in both scenarios is usually an acute angle, while the con-
secutive angles C1 and C3 are usually obtuse angles. By
exploiting this fact in both scenarios, we resume the order-
ing process by searching for the smallest angle along the
ordering front line and order the two outgoing segments
by +1, as shown in subplots (C) and (D), respectively.
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Figure 4 Shreve’s ordering. The vessel segments are ordered
hierarchically. The ordering starts from the leaf segments which are
assigned an order of 1. When two segments of order μ1 and μ2

meets then the resulting segments are given an order of μ1 + μ2.

Graph simplification
Based on segment ordering, now we are able to further
simplify the graph. In a clique (3, 4, 5 or 6) there will
be one or two nodes which has highest order within the
clique. These nodes are hierarchically higher in topo-
logical connectivity than the other nodes within that
clique. For graph simplification we do the following: 1)
We divide a clique VC ={v1, v2, . . . , vn} into two subsets
VCH = {v1, v2, . . . , vk} and VCNH = {vk+1, vk+2, . . . , vn}
(i.e. VC = VCH ∪ VCNH ) where VH is the set of nodes
having highest order within that clique and VCNH are
the rest of the nodes. 2) Now the new edge set will be
{(v1, vk+1), (v1, vk+2), . . . , (vk , vn)}. An example of graph
simplification is shown in Figure 7, where subplot (B)
is the input graph and (C) the corresponding simplified
graph.

Tracing as transductive inference
Transductive inference was introduced in the mid-70s and
has since become popular in machine learning. It is also
closely related to semi-supervised learninga. Compared to
inductive learning, that aims at estimating an unknown
function over the entire space, transductive inference
focuses on estimating the values of an unknown function
on only a few points of interest. This fits precisely into our
context. By leveraging this insight, a number of learning

Figure 5 Modified Shreve’s ordering. Shreve’s ordering is modified
to handle crossovers like A, B and C. For 4-cliques like A and B, when
two segments with order μ1 and μ2 meets then the resulting
segments are ordered as μ1 + μ2. Similarly for 5-clique like C, when
three segments with order μ1, μ2 and μ3 meets then the resulting
segments are ordered as μ1 + μ2 + μ3.

algorithms, notably the label propagation algorithm of
[30], have been developed to address real-life applications.

Formally, assume there are n nodes in our graph rep-
resentation from vessel skeleton. Yl = (y1, y2, . . . , yl)
denotes the l root nodes (red nodes) that are observed,
while YU = (yl+1, yl+2, . . . , yn) denotes the rest unob-
served nodes (blue nodes). Given this graph representa-
tion, the tracing problem can be reformulated as a problem
of transductive inference, by propagating the labels from
the known root nodes (red nodes) to the rest nodes (blue
nodes) in current graph. Clearly it is an easy problem
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Figure 6 Another modification in Shreve’s ordering. Shreve’s ordering is modified further to handle erroneous 3-cliques like C2 in sub-figure (A)
and (B). The C2 in sub-figure (A) is caused by one segment terminating on another segment whereas the C2 is sub-figure (B) is caused by wrong
skeletonization of a 4-clique. In both the situations, segments cannot be ordered further as for a 3-clique at least two segments should be already
ordered to assign an order to the third segment. This deadlock is overcome by measuring the angles between other segments for all those 3-cliques
where only one segment is already ordered (let’s assume the order is μ). Among all these cliques we assign an order of μ + 1 (for two unordered
segments) to the clique which has smallest angle. The resulting orders are shown in sub-figure (C) and (D).

when the subgraphs are isolated from each other (i.e. with-
out crossover in the skeleton map), and becomes increas-
ingly difficult as there are more and more crossovers in
the skeleton map. The label propagation algorithm of [30]
is adapted to our context as illustrated in Algorithm 1.
By starting with the initial guess Ŷ (0), it is not difficult to
show that this algorithm will always converge to Ŷ (∞) =
(1−α)(I−αL)−1Ŷ (0), and the rate of convergence depends
on the eigenvalues of the graph Laplacian [30].

In practice, the output label Ŷ (∞) � Ŷ (T) is obtained in
finite steps when the change of labels ‖Ŷ (T)−Ŷ (T−1)‖ ≤ ε,

Algorithm 1 Label Propagation (Zhou et al. [30])
Output: YU ← the unlabeled part of prediction Ŷ (∞)

Init: α ∈ [0, 1)

Compute the weight matrix W (as in next section)
Compute the diagonal degree matrix D by Dii ←∑

j Wij

Compute the graph Laplacian L ← D− 1
2 WD− 1

2

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)

Iterate Ŷ (t+1) ← αLŶ (t)+(1−α)Ŷ (0) until convergence
to Ŷ (∞)



De et al. BMC Bioinformatics 2014, 15:20 Page 8 of 20
http://www.biomedcentral.com/1471-2105/15/20

with ε ≤ 1e − 5. We also empirically fix α to 0.9 during
our experiments.

Computing the weight matrix W
The weight matrix W is a real symmetric matrix of size
n×n, which is sometimes referred to as the affinity matrix
in graph theory. Clearly W is of central importance in our
approach as it is assumed to encode sufficient information
from the input image data. In this paper, the orientation-
based features are proposed as the sufficient statistics
toward computing W as below:

• Segment orientation and angle between segments:
For each skeleton point, the first eigenvector of the
Hessian matrix of local image patch determines an
orientation. A (usually curved) vessel segment comes
with two ends, thus has two local orientations. For
each end, its orientation is computed by taking an
average of the eigenvector of the last ten skeleton
points from this end. It is then used to compute
θ ∈ [0, π), the angle between two adjacent segments.

We also devise three functions that will be used in
constructing W. They are

f1(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− sin(θ)

k
if θ ∈ [0, θc)

− sin(θc)

k
if θ ∈ [θc, arccos

(− sin θc
k2

)
)

k cos(θ) if θ ∈ [arccos
(− sin θc

k2

)
,180°),

(1)

f2(θ) = k cos(θ), (2)

f3(θ) = k + k sin(θ), (3)

where the parameters k and θc are experimentally fixed as
k = 5 and θc = 80°.

The diagonal elements of the weight matrix W are
always zero, Wii = 0, ∀i. The computation of the weight
matrix elements Wij for two different segments i 	= j
involves the following rules:

• 3-Clique: i.e. there are three adjacent segments in the
junction.
In this scenario we use the following equation:

Wij = exp(−f1(θ)). (4)

The rationale behind choosing this function comes
from the intuition that we want to encourage small
changes of local curvatures between two connected
segments, while punishing those with larger
curvature changes. Figure 8(A) and (C) shows the
effects of varying θ in f1 and W.
Figure 9 presents three exemplar 3-cliques: subplot
(A) (case-A) is the standard branching situation
where the segments (marked as i, j and k ) belong to
the same label. In subplot (B) (case-B), the red
segment terminates on a blue segment and creates a
3-clique. Here the segment i should have a label
different that of segment j and k. In subplot (C)
(case-C), a crossover between the blue and the red
branches is converted into two 3-cliques due to error
in skeletonization. We differentiate case-A from
case-B,C with the help of the segment ordering
algorithm explained previously. Case-B and case-C
and further differentiated by checking the length of
segment k (C pixels). If C ≤ Ccritical then we

Figure 7 A graph simplification example. (A) A skeleton. The digits in black denotes segment orders whereas the digits in blue denotes segment
indexes. (B) An unsimplified graph. (C) A simplified graph. The highlighted segments are particular examples of graph simplification.
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Figure 8 Influence of θ on the values of functions f1, f2, f3 and their corresponding W. (A) Variation of f1(θ) with θ . (B) Variation of f2(θ)

and f3(θ) with θ . (C) W corresponding to sub-figure (A). (D) W corresponding to sub-figure (B).

Figure 9 3-cliques. (A) A simple 3-clique. (B) A 3-clique created by the termination of one segment (red one) on another segment (blue one).
(C) Two 3-cliques created by the wrong skeletonization of a 4-clique.
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consider it as case-C, otherwise it is case-B. The value
of Ccritical is experimentally set as Ccritical = 10.
Then we find the orientation difference for two
segment pairs (i, k) and (j, k). Those two angles are
ψ2 and ψ1 (shown in Figure 9(B)). Now we calculate
the Wik and Wjk as following: If ψ1 ≥ ψ2 then,

Wjk = exp(−f1(θ))

Wik = exp(f1(θ)) (5)

else

Wik = exp(−f1(θ))

Wjk = exp(f1(θ)) (6)

• 4-Clique: i.e. there are four fully-connected segments
in the junction.
As displayed in Figure 10, if A, B, C and D are four
pixels connecting the four segments X, Y, W and Z
in a crossover setting, intuitively we can see that only
AC and BD line should intersect with each other. The
other pairs (AB, CD) and (AD, BC) are not able to
intersect within the convex hull of the four points
(A, B, C, D). Hence from the set of feasible line
segments {(AB, CD), (AD, BC), (AC, BD)} we can
easily identify the (AC, BD) pair that are able to
crossover. As a result, higher weight should be
assigned to the segment pair (X, Z) (the segments
which contains the points A and C) and (Y , W ) (the
segments which contains the points B and D). The
subplots of Figure 8(B) and (D) suggest to define the
following function form

Wij = exp(−f2(θ)) (7)

for these pairs of interest, as well as the function form

Wij = exp(−f3(θ)) (8)

for the rest less favourable pairs.
• 5/6-Clique: As presented in Figure 11(A), for 5-clique

scenario, one segment (the blue ones) crosses over
another segment (the red ones) at the branching
point. Here the goal is to divide them in two groups,
one having 2 segments (j and k in subplot (A)) and
the other having 3 segments (i, l and m). From
segment ordering we know (i, j) are assigned larger
values than the rest, so we already have one member

Figure 10 A 4-clique. Here we know the (x, y) coordinates of points
A, B, C, D in the image plane, so we can find the equation of straight
lines AC, BD, AB, BC, CD, AD. We take the pair of straight line equations
(AC, BD), (AB, CD) and (AD, BC) and find the intersecting points
between the pairs. Only one pair (AC, BD) intersect within the convex
hull of points (A, B, C, D) while others pairs are either parallel or will
intersect outside the convex hull. By using this we understand that A
pairs with C and B pairs with D. Accordingly we assign (X , Z) (The
segments containing points A and C) and (W , Y) (The segments
containing points B and D) pair with weight from Equation 7 (Blue
curve in Figure 8-D) and for other pairs we assign from Equation 8
(Red curve in Figure 8-D).

from each group. The rest of the members can be
assigned by the usual “smooth curve around the
junction point” assumption and employing f1(θ) in
the same way as in 3-clique.
As presented in Figure 11(B) for 6-clique two
crossovers happen at the same location. The target
here is also to divide them in two groups: one having
3 segments (i, l and m) and the other having 3
segments (j, n and k ). Similarly, from the segment
ordering we already know that the two nodes with
large index values (i, j), belong to different groups, so
we employ f1(θ) in a same way as in 5-clique.

Removing spurious segments
When converting a binary segmentation into skeleton
map, quite often a spurious small segment will be intro-
duced, which is particularly harmful in the context of
crossovers. An example is illustrated in Figure 12, where
one 4-clique now becomes two 3-cliques, and the geomet-
ric properties are also changed, due to the introduction of
the spurious segment C which usually is very tiny.

This type of tiny spur can be identified and further
removed by checking the average angle β and length of
the segment C: C will be removed if β ≤ βcritical and C ≤
Ccritical. In practice, β(βcritical) = 70° and C(Ccritical) = 10.
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Figure 11 5- and 6-cliques. (A) A 5-clique. (B) A 6-clique. In both the scenarios weights are assigned using the same function as 3-cliques.

Results and discussion
Our approach are evaluated in synthetic datasets, as
well as two standard testbeds, DRIVE [31] and STARE
[32]. The synthetic datsets contain 17, 000 images, while
DRIVE dataset contains 40 retinal fundus images, and

Figure 12 The introduction of small spurious segments. An
illustrative example of the introduction of a small spurious segment
when converting a binary segmentation into its skeleton map.

STARE has 20 fundus images. Some exemplar images of
the three types of datasets are shown in Figure 13 subplots
(A), (D), and (G). The standard DIADEM score [33] has
been used as the evaluation metric.

Synthetic datasets
Three synthetic datasets are constructed for systematic
performance evaluation under controlled setting, that
have in total 17, 000 images. The Shreve’s ordering is
also used here to quantify the complexity of a tree, mea-
sured by the largest ordering value assigned to a tree
segment (i.e. the root segment). To start with, thirty
tree-like structures are hand-drawn, serving as building-
blocks for simulating these synthetic images. These hand-
drawn trees can be categorized into three groups: (1)
Those with low complexity (root segment ordering value
of 2–5); (2) Medium complexity (root value of 5–10);
(3) High complexity (root value more than 10). Some
examples are presented in Figure 14 subplots (A) and
(B), where the tree axis (shown in dotted blue line) is
defined in the direction of its length. To generate a syn-
thetic image, the angular distance between two adjacent
trees are defined as the spread angle γ between the
two tree axes in counter-clockwise direction, as shown
in subplot (C). Now, a synthetic image can be gener-
ated with three parameters: (1) Complexity of the trees in
the image; (2) Number of trees; (3) Spread angle. Three
synthetic image datasets are thus generated by vary-
ing these above parameters, where in each dataset, only
one parameter varies while the rest two parameters are
fixed.

• Dataset 1: In this dataset, the tree complexity is
varying while the other two parameters are fixed,
namely, the number of trees are fixed to 8 and the
spread angle is set to 30°. This gives rise to 5 subsets
of images within this dataset: (1) All trees are of low
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A B C

D E F

G H I

Figure 13 Tracing results: visual examples. Visualizing exemplar results for the tracing step. (A) Synthetic Image (B) Tracing without graph
simplification for synthetic data. (C) Tracing with graph simplification for synthetic data. (D) Image from DRIVE dataset. (E) Tracing without graph
simplification for DRIVE image. (F) Tracing with graph simplification for DRIVE image. (G) Image from STARE dataset. (H) Tracing without graph
simplification for STARE image. (I) Tracing with graph simplification for STARE image.

complexity; (2) Four out of the eight trees are with
low complexity, and the rest four trees are with
medium complexity; (3) All trees are of medium
complexity; (4) Four out of the eight trees are with
medium complexity, and the result four are with high
complexity; (5) All trees are of high complexity. Two
examples of this dataset are shown in Figure 15. 100
images are produced for each subset, in all 5, 000
images are generated in this dataset.

• Dataset 2: In this dataset, the number of trees are
varying from the set {3, 5, 7, 9, 11, 12}, while the other
two parameters are fixed: 1/3 from each complexity
group, and the angles between trees is set to 30°. Two
examples are displayed in Figure 16. Each subset
contains 1000 images, in all we have 6, 000 images for
this dataset.

• Dataset 3: In this dataset, the spread angle varies from
the set {360°, 300°, 240°, 180°, 120°, 60°}, while and the
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Figure 14 Illustration on generating synthetic images. (A) An exemplar tree with low complexity. (B) An exemplar tree with medium
complexity. (C) Illustration on how the synthetic image is generated.

number of trees is set to 8, and for the tree
complexity, the same strategy is used as that in dataset
2 (1/3 from each complexity group). Two examples
are presented in Figure 17. Each subset contains 1000
images, in all we have 6, 000 images for this dataset.

Preparation for computing the DIADEM score
DIADEM score operates strictly on tree structures. This
holds true for all tracing ground-truth where only trees
are presented. Unfortunately our tracing prediction may
contain scenarios where branches from the same tree
might intersect, and this self-intersection issue need to
be resolved before a DIADEM score is computed. The
following strategy is proposed to address the issue: Each
traced tree is ordered by our modified Shreve’s ordering;
We then look at the two segments with largest ordering
values (Denoted as (i,j) in the the cases of Figure 18; The
(i, j) segments is thus used to address the self-intersection

issue by assigning the rest segments according to angles
w.r.t. segments i or j. For example, in subplot (A), seg-
ment l will be linked with segment i, as ∠(l, j) is less
than ∠(l, i).

Experimental results
Throughout this paper, the DIADEM score is utilized to
measure the performance of a method on a particular
dataset, obtained by averaging the scores over all images of
current dataset. It has been extensively used in the neural
tracing community as standard evaluation metric [33].

Synthetic datasets
The first row of Figure 19, containing three subplots (A)-(C),
presents the DIADEM score (for the propose algorithm
with graph simplification) for the three synthetic datasets,
respectively, where each curve in the plot denotes the
DIADEM scores as a function of parameter k. Clearly

Figure 15 Tracing: Synthetic dataset 1. Synthetic Dataset 1: Synthetic images with fixed number of trees and spread angle (angular distance
between two adjacent trees), but with varying tree complexity. (A) Less complex image. (B) Complex image.
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Figure 16 Tracing: Synthetic dataset 2. Synthetic Dataset 2: Synthetic images with fixed tree complexity and spread angle, but with varying tree
numbers. (A), (B) are two synthetic images composed with different number of trees.

our method is insensitive to a wide range of k values
(k = 5, 7, 9) where they produce almost the same per-
formance, while the score drops significantly by decreas-
ing k further to 3 or even 1. Box plots in the second
rows of Figure 19, namely subplots (D)-(F) display the
corresponding DIADEM score curve with the proposed
algorithm with or without the graph simplification mod-
ule, one for each of the three synthetic datasets. Our
complete algorithm (i.e. the one with graph simplifica-
tion, shown as red boxes) outperforms the one with-
out the graph simplification module by a large (about
10%) margin. The relatively small performance variation
around each evaluate point (i.e. each of the box plots) also

suggests that our algorithm performs robustly against a
variety of inputs.

Real-life testbeds: DRIVE and STARE
In the above mentioned synthetic dataset we have fixed
the other parameters and varied only k and shown the
performance in Figure 20. Another set of experiments are
conducted to systematically evaluate the impact of the
internal parameters of our algorithm, namely k, α, θ , C, on
the performance. For each case we fix the rest parame-
ters to their empirically optimum values, while varying
the one parameter and plotting the DIADEM scores.
This is reported collectively in Figure 20, where the first

Figure 17 Tracing: Synthetic dataset 3. Synthetic Dataset 3: Synthetic images with fixed tree complexity and tree numbers, but with varying
spread angle. (A), (B) are two synthetic images composed with different spread angles.
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Figure 18 Preparation prior to computing the DIADEM score. Preparing the computation of the DIADEM score: Address the self-intersection
issues of the tracing results as illustrated in (A), (B), and (C).

(second) row of subplots is for DRIVE (STARE) dataset,
respectively. During these experiments, we vary k in its 5
particular values (1, 3, 5, 7, 9), α in 3 values (0.5, 0.7, 0.9), θ
in 8 values (50°, 60°, 70°, 80°, 90°, 100°, 110°, 120°), and C in
8 values (4, 6, 8, 10, 12, 14, 16, 20). One key observation is
the relatively insignificant impacts of varying parameters

w.r.t. the final performance, evaluated on real life testbeds.
Besides, the changes (if there are any) across the testbeds
follow a very similar trend and are usually uni-modal. This
facilitate us to pick up a set of empirically optimal set
of parameters that we are using throughout this paper,
namely, k = 5, α = 0.9, θ(θc)80°, and C(Ccritical) =

Figure 19 Tracing results: synthetic experiments. Performance on synthetic dataset. (A) Performance of algorithm with graph simplification
with varying k for Dataset 1 (B) Performance of algorithm with graph simplification with varying k for Dataset 2. (C) Performance of algorithm with
graph simplification with varying k for Dataset 3. (D) Comparing the performance of algorithm with graph simplification (in red) and without graph
simplification (in blue) for Datset 1. (E) Comparing the performance of algorithm with graph simplification (in red) and without graph simplification
(in blue) for Datset 2. (F) Comparing the performance of algorithm with graph simplification (in red) and without graph simplification (in blue) for
Datset 3.
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Figure 20 Tracing results: effect of internal parameters. The effect on performance by varying internal parameters of the proposed method. The
top row denotes the performance for DRIVE dataset and the bottom row denotes the performance for STARE dataset.

10. It is worth noting that once again our complete
algorithm significantly outperform the one without graph
simplification module. In the end, our method produces a
DIADEM score of 0.765 for DRIVE and 0.821 for STARE,
respectively.

The performance of our algorithm is compared with the
state-of-the-art tracking based method by Turetken et al.
[19] on DRIVE in Table 2. In [19], the authors have varied
the cardinality of their k-minimum spanning tree algo-
rithm and plotted the DIADEM scores. For our case we
varied each of our 5 internal parameters and plotted five
DIADEM score curves in red color (as well as the varia-
tion without the graph simplification module as shown in
blue) in Figure 20 (top row). In Table 2 we have shown the
maximum and minimum DIADEM score obtained by our
algorithm and Engin et al. [19]. Our algorithm clearly out-
performs the state-of-the-art method, as we have the best
DIADEM score of 0.765 which is better than the best DIA-
DEM score of Engin et al. [19]. Besides, the performance
of [19] varies dramatically from 0.15 to around 0.71 when
varying their internal parameter, which suggests a sense
of non-robust behaviour for their system. Meanwhile in

Table 2 Comparison of DIADEM score (DS) for DRIVE
dataset with other methods

Method Minimum DS Maximum DS

Our method .703 .765

Engin et al. [19] .15 .71

our system the performance varies rather mildly, ranging
overall from 0.703 to 0.765. Although we have a few
internal parameters, our parameters (mostly length and
angles) are very intuitive, and their values indeed have
only limited impact on the final performance of our
work.

Figure 13 presents the visual results of our work. The
first column shows the original image, while the second
and the third columns display the corresponding trac-
ing results without and with graph simplification. On
the other hand, row number one, two and three denote
the tracing results for an exemplar image from the syn-
thetic dataset, the STARE dataset, and the DRIVE dataset,
respectively. In the subplot, a white square denotes a
wrong tracing result while a green circle denotes a cor-
rect result. From subplot (B) we can see that the 5-
cliques C1, C2 and C3 are incorrectly traced without
the graph simplification module, which become correct
when our full model (i.e. with graph simplification) is
employed. In both the cases 4-cliques C4 and C5 are
correctly traced. In subplot (E) for DRIVE, we can see
that the 5-cliques C1 and C2 are incorrectly traced,
while in subplot (F), those are also traced out correctly.
Note due to topological errors induced from the seg-
mentation and the skeleton extraction steps, there are
a few incorrect tracing results such as C4, C5 persist in
both subplots (E) and (F) (i.e. without and with graph
simplification). Similar patterns also can be observed
from the STARE dataset, as shown in the third row
(namely subplots (G)-(I)).
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Conclusion
In this paper, we propose a novel approach for tracing reti-
nal blood vessels from fundus images, where we formulate
the tracing problem as an equivalent transductive learn-
ing problem. Our tracing approach performs very well in
resolving many crossover scenarios and various complex
situations. It sometimes fails due to imperfect segmenta-
tion or in complex scenarios with more than five segments
at a junction point. Current results suggest that orienta-
tion features are important but might not be sufficient
for solving very complex scenarios. As a future direction
we are currently working on vessel thickness and texture
information for resolving these complex scenarios.

Endnote
aMore details on transductive inference can be found in

Chapter 11 and 24 of [34].

Appendix
Details of our segmentation step
To facilitate the tracing step of our pipeline, the goal of
the segmentation step here is to extract the vessel skele-
ton while maintaining the structural connections, as well
as the corresponding point-wise radii along the skeleton
(A point radius is to measure the thickness of a skeleton
point in the orthogonal direction), based on which the
retinal vessels can be faithfully reconstructed. This differs

A

B

C

D

E

F

G

Figure 21 Our segmenter: Based on existing methods. (A) Original color fundus image. (B) Supervised segmentation result with the highest F1
score. (C) Supervised segmentation result with the highest recall. (D) Unsupervised segmentation method. (E) Two branches are wrongly
segmented into one, small branches are disconnected. (F) Small branches are often connected back here. (G) Two branches are often kept
separated from each other.
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notably from the usual aim of most existing segmentation
work, where the emphasis is to achieve a high classifica-
tion accuracy. As the number of vessel pixels are much
fewer comparing to the number of background pixels,
often a high accuracy is achieved by missing many vessel
pixels – a situation we try to avoid. In fact, our goal can
be better described as segmentation with a high recall. It is
critical for us to retain the vessel pixels that keep the local
vein and artery branches from being broken or entirely
missing. To achieve this, we resort to a cascade of two
segmentation modules for producing our final segments.
The first one in the cascade is a supervised segmenter as
being described next, and the second one is an unsuper-
vised segmenter that is specialized at recovering parallel
thin branches, which often tend to be merged into one
thick branch by the first module.

The first segmentation module: supervised segmenter
In the first module, we implement a supervised seg-
menter using Gabor filters and GMMs, which is inline
with existing supervised methods used for segmenting

retinal vessels [6]. For each pixel in the training set, the
Gabor response feature of 18 directions are computed and
normalized to form the input features [6]. Two GMMs,
each having 20 Gaussian components, with one for ves-
sel and the other for non-vessel background pixels, are
trained on these features as a pixel classifier. Then for a
test image, by applying the trained GMMs we obtain the
probability of a pixel being vessel or not. A probability
map of the image is produced by maximizing over these
two probabilities for each of the pixels.

We have observed that the desired segmentation in our
context often stems from the result with highest F1 score,
as e.g. demonstrated in Figure 21(B). This is reasonable,
since with a high recall (i.e. less false negatives), we are
still after a result with high precision (i.e. less false posi-
tives). Together they can be characterized by a single F1
score. As demonstrated in Figure 21(B) and (E), the output
is reasonably clean, but many small branches of the reti-
nal network are either entirely missing, or not connected.
Moreover, the parallel thin branches tend to merge to
form a thick branch, which is clearly not desirable for the

A B

C D
E

F

Figure 22 Our segmenter: Combining the segmentation results. (A) The partial result so ar, by combining the best elements from Figure 7B-D.
(B) Final segmentation result. (C)-(D) Zoom-in views that reveals small branches are still disconnected. (E)-(F) After the re-connection procedure
described in Section ‘Experimental results’, Small branches are now connected.
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tracing purpose. Therefore, we further adjust the thresh-
old over a suitable range and obtain a second output with
the highest recall: As illustrated in Figure 21(C) and (F),
the result tends to be very noisy and much thicker than
what it should be. Nevertheless, by starting with the skele-
ton of the result with highest F1, followed by merging with
the small branches from the one with highest recall, we are
able to retrieve and reconnect those small branches that
otherwise might be missed out. The point-wise radii issue
is avoided by simply sticking to the highest F1’s result.

Unfortunately, the result after merging the highest F1
and the highest recall outputs are still not satisfactory: It
seems a characteristic of the supervised methods is that
they tend to merge very close parallel branches into one
branch, undesirable for our purpose of tracing. So we need
to consider using a second module from unsupervised
segmentation.

The second module: unsupervised segmenter
We have attempted with a few existing methods and
observed that the segmenter of [8], the one using Isotropic
Undecimated Wavelet Transform (IUWT), empirically
produces the best segmentation for the close and parallel
branches, as illustrated in Figure 21(D) and (G). As a sec-
ond add-on module of the cascade, based on the current
partial result from supervised segmentation, the wrongly-
merged thick branches are identified and replaced by the
parallel branches from the second module.

Combining supervised and unsupervised method of
segmentation
For combining the images from supervised and unsuper-
vised method of segmentation (total 3 images) we have
followed these steps.

• We have used the binary segmented images and
extracted the skeleton from them.

• Depending on the number of neighbours, we have
marked the skeleton pixels as body pixels (those
pixels with 2 neighbours), branching pixels (those
with 3 or more neighbours) or terminal pixels (those
with one neighbour). We define a vessel segment as a
group of body pixels which are connected together.

• We calculate the median diameter of each vessel
segment by estimating the diameter on each point of
the vessel segment skeleton by following the method
described in [8]. Then we calculate the mean diameter
(dm) of all the vessel segments for a particular image.

• We have replaced the segments which have diameter
less dm from Figure 21-B by the same segments from
Figure 21-C. While replacing we always took care
about the continuity of the connected segments and
we have always preferred thin and longer segments
than thick and shorter segments.

• Then we have taken those segments from
Figure 22-B, which are one standard deviation more
than the dm and replaced them with the segments
from Figure 21-D.

Resolving the disconnection issue
So far the partial result is able to retain the small branches,
and it works well with the close and parallel branches, as
displayed in Figure 22(A). Still some small branches are
still disconnected as in Figure 22(C)-(D). The is resolved
by first fitting a 3rd-order curve to the skeleton of those
disconnected branches, and second, reconnecting them
by incrementally and carefully extending a fitted curve
from both ends in parallel till it retains contact to a main
branch. The radius of each point on the extended curve is
estimated as a convex combination of the radii of its neigh-
bouring points, with the weight being in proportion to the
inverse distance between the point and its neighbouring
point. This finally produces a well-connected structure
suitable and ready for tracing purpose (Figure 22(E)-(F)).
Note that the segmentation output of an image is repre-
sented as the skeleton plus their corresponding point-wise
radii.
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