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Abstract—We focus on the problem of still image-based human
action recognition, which essentially involves making prediction
by analyzing human poses and their interaction with objects in
the scene. Besides image-level action labels (e.g., riding, phoning),
during both training and testing stages, existing works usually
require additional input of human bounding-boxes to facilitate
the characterization of the underlying human-object interactions.
We argue that this additional input requirement might severely
discourage potential applications and is not very necessary. To
this end, a systematic approach was developed in this paper to
address this challenging problem of minimum annotation efforts,
i.e. to perform recognition in the presence of only image-level
action labels in the training stage. Experimental results on three
benchmark datasets demonstrate that compared with the state-of-
the-art methods that have privileged access to additional human
bounding-box annotations, our approach achieves comparable or
even superior recognition accuracy using only action annotations
in training. Interestingly, as a by-product in many cases, our
approach is able to segment out the precise regions of underlying
human-object interactions.

Index Terms—Action recognition, still image, without annota-
tion

I. INTRODUCTION

Video-based human action recognition has been a relatively
established and well-regarded research problem in computer
vision [1], [2], while still image-based human action recog-
nition is a comparably less studied and arguably more chal-
lenging problem. Recently it has gained increased attentions
in research community with serious efforts in establishing
benchmarks and organizing challenges such as the influential
PASCAL VOC Action recognition competition [3]. Different
from video-based action recognition [4], [5] where temporal
image sequences are available and play fundamental roles,
in still image-based action recognition [6], the central theme
involves predicting the action label based on interpreting
human poses and their interaction with objects of the scene.
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Besides image-level action labels (e.g., riding, phoning),
existing works usually also require manually annotated human
bounding-boxes as input [7], [8], [9], [10], [11], [12], [13]
during both training and testing stages, which have played a
critical role in modelling the typical human poses of different
actions, and in characterizing the underlying human-object
interactions. As manual annotation of these bounding-boxes
is rather time-consuming and painful, this input requirement
might severely discourage potential applications. Recently,
Gkioxari et al. [14] have moved a step forward and shown
that it is possible to locate and recognize human actions in
testing images without using manually annotated bounding-
boxes. Although they do not directly utilize manually an-
notated bounding-boxes, they need to train human detectors
to guide their recognition at the test stage. Similarly, Prest
et al. [15] have also studied human-object interactions in
the weakly supervised environment via pre-trained human
detectors. Besides, it remains an on-going research topic on
how to robustly and precisely detect humans from images.

In fact, we argue that this input requirement is not very
necessary. In this paper, we aim to recognize actions from
still images based on minimum annotation efforts (i.e. only
image label annotations in the training stage).

Consequently, a systematic pipeline was developed in our
approach as follows: (1) Object proposals are first generated
using selective search, and are further decomposed into finer-
grained object parts. They are used to delineate the detailed
shape of human-object interaction regions. (2) Finally, an
action label is predicted with the help of an efficient product
quantization method to encode features obtained from the
human-object interaction regions.

Therefore, the main contributions of this paper are as
follows: First, a systematic approach was developed for the
problem of action recognition in still images with minimum
annotation efforts. It entirely eliminates the un-necessary need
for human bounding-boxes as input during both training and
testing stages, thus opening doors to many practical applica-
tions with least demands on manual annotations. Empirically
our approach is shown to perform on a par with or even
better than state-of-the-art methods on benchmark datasets,
even when these existing methods enjoy privileged access to
human bounding-boxes annotations that our approach does not
have. Second, very often, our approach is able to accurately
delineate the foreground regions of underlying human-object
interactions, which is also called “action mask” in our paper.
Moreover, for the cases when our system fails to delineate a
proper action mask, the predicted action labels are mostly also
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wrong, and it is also true for the other way around.
It is worth mentioning that Simonyan et al. [16] also attempt

to predict the action label on the entire input image with VGG
very deep convolutional neural network (CNN) models. Thus,
the need for manual annotated bounding-boxes is removed.
Their method did not distinguish the foreground and the
background in images. As a result, the feature from the whole
images cannot delineate different roles of the foreground
actors and the environments in actions. As demonstrated in
empirical experiments, by making the efforts in delineating
the foreground action mask in our pipeline, the prediction
performance of our approach is shown to surpass that of [16]
by a large margin.

II. RELATED WORKS

In this section, we review several state-of-the-art works on
action recognition, image segmentation, and object detection.

A. Related works on action recognition

Video-based action recognition has been relatively well-
established with a long list of literature over the years and
interested readers might want to consult recent survey articles
such as [1], [2].

For still image-based human action recognition [6], different
action representations have been investigated for effective
recognition. Existing methods can be roughly grouped into
three categories. The first category is the pose-based methods.
Maji et al. [7] use part detectors to detect the parts of human
bodies and encode them into poselet for action recognition.
Tompson et al. [17] learn a CNN for human pose estimation.

The second category is the context-based methods. They
consider not only the human himself, but also the human-
object interactions to aid the action recognition. Delaitre
et al. [18] generate interacted person-object pairs and select
discriminative ones for action recognition. Yao et al. [19] con-
sider multi-interactions in an action including human poses,
human-object interaction, as well as the relationship among
objects. Gkioxari et al. [11] employ learned object detectors
to detect the most related object to the person in an action. The
third category is the part-based methods. Sharma et al. [12]
propose to use image local patches as parts and learn a
DPM [20]-like classifier for action recognition.

Prest et al. [15] recognized action images using the same
setup as ours, i.e., only using image labels in all images.
The difference is that Prest et al. used multiple human part
detectors including the upper-body and face detector to locate
the human in the image. According to the detected person,
the related objects are then detected based on their relative
locations to the person and their shared appearance across
images. In contrast, our method deals with humans and objects
without using any prior information (e.g., human detectors)
and treat them in the same way.

With the prevalence of CNN [21], new results in ac-
tion image recognition are constantly updated. Gkioxari
et al. [14] tried to recognize action images without using
human bounding-boxes in testing images. They learned an
R-CNN [22] detector using the human bounding-boxes in

training images, and used it to detect the human location in
testing images. In this work, they only considered the human
in the action. To represent the human, they proposed to use
different parts like the head, torso and legs, etc. They applied
CNN on the image, and extracted the pool5 (in AlexNet [21])
outputs to represent the parts.

Gupta et al. [10] also advocated investigating the human
and related objects in action images. They proposed a new
dataset with annotations on both humans and related objects,
which has not been released by now.

B. Related works on image segmentation & object detection

There are vast literatures on both topics; but here we only
review the most related works. Chai et al. [23] propose to
co-segment objects in images. Their method makes use of the
central area of the image as the initialization for GrabCut [24],
which is useful for images with single objects. Meanwhile, the
centrality prior is also widely used in image saliency detection
techniques such as [25]. Unfortunately, as action images in our
context usually involve multiple objects, there is no guarantee
that they have to be located at the image center. As a result,
this assumption is not applicable for still image-based human
action recognition. In contrast, our approach is capable of
automatically segmenting out action-related objects and human
without relying on this assumption.

The works on multi-foreground co-segmentation [26], [27]
aim to detect recurring objects in similar images. Liu et al. [28]
segmented multi-objects in an image by using a random
geometric prior forest. Objects in the training set are first
organized in a tree structure. Any detected object in testing is
reconstructed from its neighborhood in the tree. These works
are quite different as in our context, only action related objects
are of interest. Moreover, the objects in action images are more
diverse.

Zhang et al. [29] achieved weakly supervised image seg-
mentation by learning the distribution of spatially structured
superpixel sets from image-level object labels. Liu et al. [30]
proposed a multi-class video segmentation in a weakly super-
vised manner. Ren et al. [31] used multiple instance learning
to solve image segmentation with only image-level labels.
The works of weakly supervised image segmentation and
object detection methods e.g. [32], [33], [34], [35], [36], [37],
[38], [39] are also related but do not directly apply to our
problem: During the training stage of weakly supervised image
segmentation and object detection, multiple object tags are
provided at the image level. For example, for an image with
a person riding on a horse, it will be tagged explicitly with
“person” and “horse”. However, in our context, an image may
just be labeled as a unique label of “riding”. Thus, given an
action label, the techniques developed for weakly supervised
image segmentation and object detection might fail to segment
action related objects.

III. OUR APPROACH

Following the divide-and-conquer principle, the challenging
task of still image-based human action recognition is decom-
posed into two subproblems here, as also illustrated in Fig. 1.
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Fig. 1. System overview. Without using human bounding-boxes in either training or testing images, we first extract object proposals and parts from the input
image. Then, we learn the action mask (in red) using parts. Finally, we extract feature vectors from the objects in the action (magenta bounding regions) and
encode them into an action representation for recognition. Our method recognizes the “using computer” action in this case.

The first subproblem involves on how to delineate the detailed
shape of human-object interaction regions (i.e. the action
mask). Subsequently the second subproblem concentrates on
proper feature representation for the recognition task.

To address the first subproblem, a joint optimization scheme
is proposed to obtain a meaningful foreground action mask
from the input image. We adopt a part-based representation, as
it has shown good discrimination ability in related topics of ac-
tion recognition [14] and fine-grained image recognition [40].
Inspired by the observation that usually a small groups of
distinct part patterns are present given a particular action class,
we propose to learn the action-related object parts with a group
sparsity constraint, which facilitate the unsupervised formation
of action-specific receptive fields from the part candidates.
Meanwhile, we also consider the enforcement of spatial co-
herence among parts using low level visual features in each
image, which coincides well with the assumption in action
datasets including PASCAL VOC 2012 Action [3] where
action-related objects are usually spatially close. This leads
to a five-step iterative pipeline for unsupervised discovery of
a foreground action mask of the current image.

The second subproblem in our context focuses mainly
on a good and dedicated feature representation from the
action mask for recognition purpose. As the objects (including
human here as human can also be regarded as a special
object) discovered during the first subproblem capture rich
discriminative information, they are continuously used here.
On the other hand, due to the high-dimensional nature of the
object related Fisher vectors, we propose to utilize an efficient
product quantization (PQ) [41] method, as PQ has been shown
to work well for feature compression for a broad range of
vision related applications.

Notation summary: For an input image Ii, the location of
an object proposal j is denoted by a binary mask Bi,j . The
location of the k-th part in j-th object proposal is denoted
as a binary mask Bi,j,k. The feature vector of a part is z ∈
Rd. All the parts in the i-th image is denoted by Zi, which
contains stacked part feature vectors in image i. zi,j,k refers
to the part feature corresponding to Bi,j,k. We further denote
with αi the binary action foreground mask (1 for foreground
and 0 for background) of Ii, and θH the global part model.

They are represented using different Gaussian mixture models
(GMM). ξc denotes the class specific part model, which has
the same length to our image representation. xi,m represents
m-th low level visual feature in Ii , while θLi is used to model
the distribution of low level features in Ii.

A detailed account of our two-step approach is presented in
what follows.

A. Subproblem 1: Learning to delineate the action mask from
an input image

Given an input image, we start by generating object pro-
posals using selective search [42]. For any generated object
proposal, we will introduce how parts are extracted and
represented in Sec. III-A1. Then, we learn the action fore-
ground mask in Sec. III-A2. Finally, we compute the global
representation using this mask in Sec. III-B.

1) Part generation and representation: An action involves
the interaction of possibly multiple humans and objects, and
in our context a human can also be seen as a special object.
However, direct usage of the objects in obtaining the action
mask may not properly characterize the essential spatial rela-
tionship of objects, since not all parts in an object are involved
in the action related interactions. For example, in the action
of “riding horse”, only the lower part of the human object is
on the upper part of the horse object. Thus, we would need to
work with fine detailed information of object parts to better
characterize the spatial interactions of an action.

This observation inspires us to represent each object with
parts explicitly. It is worth pointing out that part based object
representation has been working very well in related topics
of human action recognition [14] and fine-grained object
recognition [40]. An efficient method [43] is used in our
approach to produce object part: Each object is specified by a
bounding-box produced by the unsupervised selective search
method [42]. This is followed by a CNN model applying
to the (warped) bounding-box, where the outputs of the last
convolutional layer of CNN are used to compute parts. Taking
the output X ∈ RS×S×D from a bounding-box, where S is the
spatial size and d is the number of filters, the (S−M+1)2 parts



4

are generated with the following multi-max pooling technique:

zMr,s,d = max
r≤r′<r+M,
s≤s′<s+M

Xr′,s′,d , (1)

s.t. 1 ≤M ≤ S, 1 ≤ d ≤ D ,

where (r, s) are the relative coordinates of the top-left cor-
ner of the part bounding-box embedded with respect to its
enclosing object bounding-box, and M is the scale index of
parts. As M is assigned to a range of values, then the parts of
corresponding scales are generated from the object of interest,
with each corresponding to a specific size of receptive fields
in the object.

At this moment, parts are independently generated from
different objects without considering the interactions among
objects and in particular the human-object interactions that
are critical to characterize an action. This drives us to consider
what follows on how to delineate the detailed shape of human-
object interactions for each action. This is a rather challenging
task as in our context only an action label annotation is
provided for one image in training, and worse, there also exist
ambiguities in these action labels.

2) Discover the action mask: We solve this problem with
the assumption that related objects in an action are spatially
close. This assumption holds in many benchmark datasets like
VOC 2012 Action. We will learn a shared visual model for the
object parts in all action classes. Meanwhile, we considered the
spatial coherence for parts within the same action through low
level visual features (e.g., RGB values of pixels in the color
image), such that the detected objects/parts can be meaningful
for an action rather than isolated from each other.

Specifically, our task here can be formulated as an energy
minimization problem on a Markov random field:

min
α,θH ,{θL

i },ξc

∑
i

(∑
m

U(αi,m;xi,m,Zi, θ
H , θLi , ξ

c)

)
(2)

+
∑
i

(∑
m,n

V (αi,m, αi,n)

)
,

where θH and θLi each denotes a separate Gaussian mixture
model (GMM). V is the smoothness term, which evaluates
the spatial labeling coherence of the objects/parts in an action
image. It is defined as:

V (αi,m, αi,n) (3)

= δ(αi,m, αi,n)dist(m,n)−1exp(−β‖xi,m − xi,n‖2),

which is the same as that in GrabCut [24], where dist(m,n) is
the Euclidean distance of neighboring pixels. The unary term
U is defined as:

U(αi,m;xi,m,Zi, θ
H , θLi , ξ

c) (4)

= −log p(αi,m;xi,m,Zi, θ
H , θLi , ξ

c)

= −logπLαi,m,ki,m +
1

2
logdetΣLαi,m,ki,m

+
1

2
[xi,m − µLαi,m,ki,m ]T (ΣLαi,m,ki,m)−1[xi,m − µLαi,m,ki,m ],

where θLi is a GMM learned on pixel RGB values:

θLi = {πLα,k, µLα,k,ΣLα,k | α = 0, 1; k = 1, ...,KL} (5)

containing KL Gaussian mixture components. Similarly, θHi
is defined as:

θHi = {πHα,k, µHα,k,ΣHα,k | α = 0, 1; k = 1, ...,KH}, (6)

which is a GMM learned on part features. π, µ, and Σ are the
weights, means, and covariance in each GMM, respectively. p
evaluates the probability of each pixel assigned to the action
foreground mask or not. θLi are estimated with Zi, θH and
ξc, i.e., the parts in an action are selected from Zi using θH

and ξc, and their receptive fields form the initial estimation
for the foreground and background.

The action foreground masks are discovered through itera-
tive optimization of Eq. (2) on part features z and low level
visual features (pixel RGB values) as illustrated in Fig. 2.
First, we start learning a class part model ξc for each action
class using part features and image labels (cf. Eq. 7), since
part features contain more semantic information than low level
visual features. Instead of evaluating each part separately,
similar parts are clustered into groups in a part feature space.
One important observation is that each action class only has
a few effective part groups. This inspires us to estimate ξc

with the group sparsity constraint. Then an initial action
mask ᾱi is obtained for the input image i. Because ᾱi still
does not consider the spatial coherence assumption, in the
next step we aim to refine ᾱi into αi based on low-level
visual features using GrabCut where the spatial coherence of
objects (including the human object) are incorporated. Finally,
a global part model θH is introduced in either the foreground
action mask or background over the entire training images,
respectively. The above-mentioned steps are then iterated until
the obtained action mask becomes stable.

Specifically, we first generate object proposals from each
image using selective search [42]. Each object proposal is
specified by a binary mask (1 for object and 0 for background)
of the entire image. In the i-th image Ii, we denote its object
proposals as {Bi,1, ..., Bi,|Ii|}. Parts from each object proposal
are obtained according to Eq. (1). This is followed by the
following iterative steps to solve Eq. (2):

Step 1 image representation with θH . For each image,
a Fisher vector (FV) [44] is computed using all
part features in it according to θH (GMM). In the
initial iteration, θH is set to the GMM learned from
part features Zi over all training images. When
computing FV, the dimension of part features is
reduced from D to D′ using PCA. Only the mean and
variance are used in each Gaussian to compute FV
following [44]. Thus, the FV length corresponding
to one Gaussian is 2D′, and the length of the whole
FV is 2D′KH .

Step 2 learn the part model ξc of each action class c.
A specific part model is learned for each action
class. Note the dimensions in FVs are organized into
groups with each group of features computed from a
Gaussian component in the GMM. Using the FVs A
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Fig. 2. The iterative process of discovering the action mask from an input image. Refer to Sec. III-A2 on details of each step.

(the FV of one image as a row in A) and the image
labels y (images in class c are labeled 1 and the rest
are -1) of all training images, we learn ξc ∈ R2D′KH

for each class c with the group sparsity constraint as:

min
ξc

1

2
‖Aξc − y‖2 + λ1‖ξc‖1 + λ2

∑
t

‖ξcGt
‖2,

(7)

where ξc is divided into KH non-overlapping groups
{ξcGt

∈ R2D′ |t = 1, ...,KH}. Each Gt denotes
a Gaussian in θH . Eq. (7) can be solved using
SLEP [45]. Then, we choose the Gaussian compo-
nents which have non-zero weights in ξc, and name
their centers as the representative parts Rc of action
class c:

Rc = {t | ‖ξcGt
‖1 > 0}, (8)

where Rc is a set of indexes of GMM components
for class c.

Step 3 obtain the initial action mask ᾱi of image i. For
each image i, we compute ᾱi using the learned rep-
resentative parts. In each image, we select those parts
which are nearest to the representative parts (in all
the GMM components). Since each part corresponds
to a receptive field in an object proposal, its location
in the object proposal can be computed according to
the filter and step sizes in the CNN model as [46],
[47]. The receptive filed of the selected part zi,j,k
is also denoted with a binary mask in the image as
Bi,j,k, which corresponds to the k-th part in the j-th
object proposal of the i-th image. Then, ᾱi of the
i-th image is computed as:

B̂i =
1

Ni

∑
j

∑
k

Bi,j,k[nn(zi,j,k) ∈ Ryi ], (9)

ᾱi = 1(B̂i > η), (10)

where 1 is an indicator function, nn is the nearest
neighbor operator, and > is an element-wise larger
operation here. η is an threshold, Ni equals to the
number of selected parts in the i-th image, and yi is
the image label.

Step 4 update αi and θLi with ᾱi and low level features
xi,m in image i. We refine ᾱi into αi on low-level

Fig. 3. Action representation. Feature vectors of objects are divided into
segments. The feature vectors in all objects of each segment are encoded by
a GMM into FV. The FVs of all segments are concatenated into the action
representation.

visual features xi,m using GrabCut in each image.
With the initial action mask ᾱi, we use low level
features xi,m (pixel RGB values) extracted from it
to learn a foreground GMM, and use the rest to learn
a background GMM, both of which form θLi . Then,
we run GrabCut on the image to obtain the refined
action mask αi.

Step 5 update θH for all images. With the refined action
mask αi, we update the global part model θH . We
use the parts located in the foreground mask in all
images to learn the foreground part GMM, and use
the rest parts to learn the background part GMM.
They collectively form the updated global part model
θH .

Iterate steps 1 to 5 over all training images until:

1

N

N∑
i

‖αTi −α
T−1
i ‖2

‖αTi ‖2
< ε, (11)

where αTi is the action mask after the T -th iteration, N is the
number of training images. Empirically we find 5 rounds are
sufficient for the iterative process to converge. Finally, we get
the shared global part model θH , the part model ξc for each
class, and the foreground action mask αi for each image. They
will continue to participate in addressing the next subproblem
to be discussed.
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TABLE I
AVERAGE PRECISION (%) ON VOC 2012 ACTION VALIDATION SET.

Ours w/o mask Ours Ours+image Action Part [14] Action Part [14] R*CNN [11]
Train BB no no no yes yes yes
Test BB no no no no yes yes

CNN VGG16 VGG16 VGG16 VGG16 VGG16 VGG16
Jumping 82.93 82.33 85.51 79.4 84.5 90.1
Phoning 66.26 69.17 72.09 63.3 61.2 80.4

Playing Instrument 89.93 91.10 93.88 86.1 88.4 95.1
Reading 68.13 67.34 69.89 64.4 66.7 81.0

Riding Bike 90.62 91.47 92.20 93.2 96.1 95.8
Riding Horse 94.2 96.04 97.23 91.9 98.3 98.6

Running 81.78 84.35 85.32 80.2 85.7 87.4
Taking Photo 66.37 71.21 73.31 71.2 74.7 87.7

Using Computer 89.95 90.48 92.34 77.4 79.5 93.4
Walking 56.19 59.98 60.67 63.4 69.1 71.4

mAP 78.64 80.35 82.24 77.0 80.4 88.0

B. Subproblem 2: Action representation

Based on the solution we have obtained for the first sub-
problem, here we focus on developing a good and dedicated
feature representation for the action recognition purpose.

Because each action involves a variable number of objects
(including humans), we will fuse the objects into an action
representation rather than to directly stacking part features
together to form an action vector. Besides, using objects
can mitigate the possible issue of imperfect action masks.
Later in Table II (cf. ours vs. VGG VD [16] w/o BB), it
is empirically demonstrated that this representation is better
than the simple holistic representation, where multiple CNN
models are directly applied on the entire input image.

First, to encode the object-based parts, we only consider
the object proposals Bi,j that have a sufficient overlapping
percentage with the action mask αi in each image i,

‖αi ∩Bi,j‖2
‖Bi,j‖2

> γ. (12)

Empirically this filters away a large amount of irrelevant
background object proposals. Now, in each of the remaining
objects, its parts are encoded into a Fisher vector (FV)
with θH . This could lead to a very high-dimensional object
representation (> 100 K).

Next, we aim to represent the image action by the set of
objects in its action mask. As different actions may involve
variable numbers of objects, to maintain a same dimensional
action representation, one common strategy is to use bag-of-
visual-words (BOVW) method. It is however very difficult to
apply a vector quantization for very high dimensional vectors
in our context. Instead we propose to utilize an efficient
product quantization (PQ) method [41] to encode the set of
action-related objects, as PQ has demonstrated to be suitable
for high-dimensional feature compression to achieve compact
storage in large-scale image retrieval and classification topics.
Considering the feature vectors of objects from all actions, we
first divide them into short segments or subvectors of equal
lengths. A specific GMM is learned for each of such segment.
Then a FV is computed based on the object features belonging
to the segment of a given action using the learned GMM.
Next, the FVs over segments are concatenated to represent the
particular action of interest. Finally, the action class prediction

is made by a learned one-vs-all linear SVM classifier [48]. The
PQ process is illustrated in Fig. 3.

C. Action recognition for testing images

So far we have described the training stage. For a test image,
the learned ξc can still be applied. By executing only steps 3
and 4 of Sec. III-A2, its action mask corresponding to each
action class is obtained, and subsequently its action feature
vector is acquired. The action prediction is then made by
invoking the aforementioned linear SVM classification.

IV. EXPERIMENTS

Throughout empirical evaluation, the VGG16 [16] CNN
model is used to extract part features from object proposals.
The part features are further reduced to 256 dimensions by
applying PCA to retain around 90% of the total energy. The
global part model θH contains 256 GMMs, where half of
them are learned from the foreground action mask and the
rest is from background over all training images. θLi contains
20 GMMs, where half of the GMMs are for foreground and
background, respectively. Through empirical examination we
have observed that more GMMs does not necessarily lead to
improved performance but with dramatically increased com-
putation cost. λ1 and λ2 are fixed to 0.01 in Eq. (7) to make
the portion of selected foreground part groups in each class
around 30%−50%. We set η = 0.5, ε = 0.1, and γ = 0.5. We
first encode parts into a FV in each object. The FV’s dimension
of each object is 256× 2× 256 = 131, 072. Then, we encode
objects into an action using PQ. We divide object FVs into
short segments. Each segment has a length of 512 (mean and
variance part of each GMM in FV), and is reduced to 256 by
PCA. For each segment, we learn a GMM with 4 components.
Empirically we have also observed that more GMMs do
not improve the recognition accuracy but at the costs of
significantly increased storage and computation. The length of
the final action representation is 256×256×2×4 = 524, 288.

The proposed part based action representation is denoted
as “ours”. We also use VGG16 to extract CNN features from
the whole image in the same way as [16], and denote this
representation as “image”. We evaluate the appended features
“ours+image”. Besides, we evaluate the proposed part based
representation without using the action foreground mask, i.e.,
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TABLE II
AVERAGE PRECISION (%) OF VOC 2012 ACTION TEST SET.

Ours w/o mask Ours Ours+image VD [16] VD [16] R*CNN [11] Action part [14] RMP [8]
Train BB no no no no yes yes yes yes
Test BB no no no no yes yes yes yes

CNN VGG16 VGG16 VGG16 VGG16,19 VGG16,19 VGG16 VGG16 AlexNet
Jumping 82.03 83.51 86.68 - 89.3 91.1 84.7 82.3
Phoning 78.12 70.57 72.22 - 71.3 83.8 67.8 52.9

Playing Instrument 90.55 92.31 93.97 - 94.7 92.2 91.0 84.3
Reading 67.19 68.67 71.30 - 71.3 81.2 66.6 53.6

Riding Bike 93.28 94.78 95.37 - 97.1 96.9 96.6 95.6
Riding Horse 94.56 96.70 97.63 - 98.2 98.4 97.2 96.1

Running 85.22 87.49 88.54 - 90.2 93.1 90.2 89.7
Taking Photo 68.92 70.72 72.42 - 73.3 84.3 76.0 60.4

Using Computer 84.55 86.31 88.81 - 88.5 90.9 83.4 76.0
Walking 62.73 64.58 65.31 - 66.4 77.9 71.6 72.9

mAP 80.72 81.57 83.23 79.2 84.0 89.0 82.6 76.4

using all object proposals to compute the action representation.
It is denoted as “ours w/o mask”. These methods are evaluated
on three benchmark datasets:
• PASCAL VOC 2012 action dataset [3]. It contains 10

different actions: Jumping, Phoning, Playing instrument,
Reading, Riding bike, Riding horse, Running, Taking
photo, Using computer, Walking. It has 2, 296 training
images and 2, 292 validation images. Our evaluation
results are obtained on the testing images through the
“boxless action classification” of the publicly available
competition server.

• Stanford 40-action dataset [49]. It contains 40 actions,
and 9, 532 images in total. We use the provided split of
training and testing images for evaluation.

• Willow 7-action dataset [50]. It has 7 classes of common
human actions. It has at least 108 images per class of
which 70 images are used for training and validation and
the rest are used for testing.

All the experiments are carried out on a desktop computer
with an Intel i7-3930K CPU, 64G main memory, and an
Nvidia Titan Black GPU.

A. Results on PASCAL VOC 2012 action Dataset [3]

We evaluate the proposed method on PASCAL VOC 2012
validation and test sets in Table I and II, respectively. We
first show that the proposed action detection method can help
improving the classification accuracy. On the validation set, the
proposed method (80.35%) leads to 1.7% better mean average
precision (mAP) than that without using the action mask
(ours w/o mask, 78.64%). When we append the CNN feature
computed from the whole image, the accuracy is further
improved to 82.24%. This shows that the proposed part based
action representation has a synergy with the global image
features. On the testing set, the appended action representation
achieves 83.23% mAP.

We show the action mask learning process in Fig. 4. Because
there is no object ground truth provided in this dataset, we
evaluate qualitatively rather than quantitatively. We observe
that the detected action mask often captures the interacted
humans and objects accurately. For example, in the 4th image
(reading), although the human is not in the center of the image,
he can still be detected as part of the action mask. If we

instead use GrabCut initialized only at the center, then only
the newspaper in the image can be segmented into the action
mask.

It is clearly demonstrated in experiments that variants of our
approach always outperform existing state-of-the-arts without
using human bounding-boxes. On the validation set, to our best
knowledge, [14] uses the least amount of human annotations,
i.e., only human bounding-boxes in training images (only train
BB) are used. [14] employs a part based human representation.
In contrast, our approach (i.e. ours) utilizes the part based
representation of human-object interactions. Ours (80.35%)
has 3.35% better mAP than [14] (77.0%), which validates
that objects can provide context information to humans to
improve the recognition performance. Ours also has compara-
ble performance to [14] (80.4%) using human bounding-boxes
in both training and testing images. On the testing set, [16]
showed the results without using human bounding-boxes in
all images. They extracted CNN from the whole images using
two CNN models, which has a worse result (79.2%) than our
part based representation (81.57% and 83.23%). This shows
that part based representation is useful in characterizing human
actions.

Moreover, variants of our approach achieve comparable
results w.r.t. existing methods when they are using human
bounding-boxes (both train BB and test BB) [14], [16],
[8]. R*CNN [11] is shown to deliver higher mAP than other
methods. This can be attributed to the fact that strong human
and object detectors are learned with human annotations,
which facilitates precise matches for actions.

Exploiting the interaction between humans and objects
is beneficial in action recognition/detection in the weakly
supervised environment. We take a closer look at the results on
“ours” and “action part” [14] (without testing BB) on the val-
idation set. Our approach (i.e. ours) detect all related humans
and objects in the action, while [14] only detects humans. As
shown in Table I, 8 out of 10 actions have better results in ours
than in [14]. These 8 actions are: Jumping, Phoning, Playing
Instrument, Reading, Riding Horse, Running, Taking Photo,
and Using Computer. The detection results on the testing set
are presented in Fig. 5. One can see that the related objects can
be well captured in each action on the unknown images. We
also observe that the detected action mask can well capture the
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Fig. 4. Learned action masks over iterations on PASCAL VOC 2012 action dataset. The first column shows the input images. The rest five columns shown
in red color are the action masks α obtained (from the 1st to the 5th iteration) to delineate human-object interactions.

interacted objects in most images of the dataset. Furthermore,
some failure cases of our approach (i.e. ours) is presented on
the validation set in Fig. 6. Most of these failures are caused
by the ambiguity of the action in the image. For example, the
ground truth of the first image is “jumping”. However, the
human is actually “running to jump”.

We also tested the time cost of our method on this dataset.
Ours cost about one day training time and takes 0.5s per image
testing time. In [11], training takes about 3 hrs and testing
takes 0.4s per image. Although ours has longer training time,

the testing time is comparable to [11].

B. Results on more action datasets

We evaluated our method on more action recognition
datasets including Standford 40-action dataset [49] and Willow
7-action dataset [50].

The results are presented in Table III and IV, where variants
of our approach have significantly better results than existing
methods even when they have privileged access to manually
annotated human bounding-boxes. EPM [12] also use a part
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Fig. 5. Action masks of testing images in VOC 2012 action. Two samples including the input image and the acquired action masks are shown in each
detected class. The classes are (from left to right, from top to bottom): Jumping, Phoning, Playing instrument, Reading, Riding bike, Riding horse, Running,
Taking photo, Using computer, Walking. The red color denotes the learned action foreground mask.

Fig. 6. Mistakes on PASCAL VOC Action val. set. We show the original image and the wrong prediction with their labels respectively.

TABLE III
AVERAGE PRECISION (%) OF STANFORD 40-ACTION DATASET.

Methods Train BB Test BB CNN mAP
Object bank [51] yes yes - 32.50

LLC [52] yes yes - 35.20
EPM [12] yes yes VGG16 72.30

Ours no no VGG16 80.77
Ours+image no no VGG16 82.64

based representation on humans but with a lower results
than those of ours. This is because they detected the useful
parts from the human region for recognition. In contrast, our
action representations build on all the interacted objects, which
contain more contextual information.

C. Weakly-supervised object detection

Our method can be extended to weakly supervised object
detection problem, where the object detector is learned with

TABLE IV
AVERAGE PRECISION (%) OF WILLOW 7-ACTION DATASET.

Methods Train BB Test BB CNN mAP
EPM [12] yes yes - 67.60

Ours no no VGG16 75.31
Ours+image no no VGG16 76.96

only image level labels. Our action recognition problem is sim-
ilar to the weakly supervised object detection problem, where
both problems only use image labels in training. The difference
is that our action recognition problem is more challenging,
because it involves the detection of multiple objects (without
a number limit) in an action but object detection methods only
need detect one object. Thus, our method can be freely applied
to the weakly supervised object detection problem.

We compared our method with related methods on the
PASCAL VOC 2012 detection dataset in Table V. Our method
has a comparable result on this dataset. The state-of-the-
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TABLE V
MEAN AVERAGE PRECISION (MAP %) OF PASCAL VOC 2012
DETECTION DATASET USING THE WEAKLY-SUPERVISED OBJECT

DETECTION METHOD.

Methods mAP
weak sup. [33] 74.5

ours 75.7

art methods [33] detected bounding boxes of objects on the
whole image using image level labels. Ours used a part-based
object representation and can detect the boundary of objects
rather than bounding boxes, which can provide more subtle
information for discriminance.

D. Discussion

In this paper, we proposed a new method for action recog-
nition in still images without using human bounding boxes but
with only image labels in training images.

Particularly, we find that:
• Bounding box annotations on humans are not necessary

for action recognition in either training or testing stage
(cf. Table I and Table II).

• Meaningful parts in objects can be learned using image
level labels for each action class (cf. Fig. 4).

• The receptive fields of the learned parts in each action
form an estimation of the the action foreground mask in
each image (cf. Fig. 2).

We have provided the following methods for efficient action
detection/recognition with only image level action labels in
training images:
• We use an efficient multi-max pooling technique to

compute multi-scale part representations from the outputs
in CNN on each object (cf. Sec. III-A1).

• Part features are clustered in each image and computed
into a Fisher Vector, from which an action class model
with the group sparsity constraint is learned to compute
the action specific parts (cf. Sec. III-A2, step 1-2).

• We use the GrabCut method to compute the action
foreground mask from the receptive fields of the learned
action specific parts in each image (cf. Sec. III-A2, step
3-4).

• We proposed to use product quantization to encode the
objects in each action into the final representation for
action recognition (cf. Sec. III-B).

In our experience, there is one issue with the proposed
framework: the learning process may introduce heavy com-
putations, when the numbers of images and action classes are
very large in the dataset. Our methods generate a large number
of parts for each action. It is important to research on how to
reduce the number of effective parts and quickly assign them
into action foregrounds and backgrounds.

V. CONCLUSION AND OUTLOOK

In this paper, we propose to recognize image-based actions
with only action label annotations in training images (i.e.
without using human annotations in both training and testing
images). A systematic pipeline is developed in our approach

to first generate object proposals using selective search, which
are further decomposed into finer-grained object parts, that
are subsequently used to delineate the detailed shape of
human-object interaction regions. Then the action label is
predicted with the help of an efficient product quantization
method to encode features obtained from the human-object
interaction regions. Experimental results on three benchmark
datasets demonstrate the competitiveness of our approach with
respect to the state-of-the-art methods even when they are
allowed to use additional human annotations. Our future work
includes improving the extraction of human-object interactions
of different actions by using image level action labels only.
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