
INCREMENTAL REGULARIZED LEAST SQUARES FOR DIMENSIONALITY
REDUCTION OF LARGE-SCALE DATA

XIAOWEI ZHANG† , LI CHENG‡ , DELIN CHU§ , LI-ZHI LIAO¶, MICHAEL K. NG¶, AND ROGER C. E. TAN§

Abstract. Over the past a few decades, much attention has been drawn to large-scale incremental data analysis, where
researchers are faced with huge amount of high-dimensional data acquired incrementally. In such a case, conventional algorithms
that compute the result from scratch whenever a new sample comes are highly inefficient. To conquer this problem, we propose
a new incremental algorithm IRLS that incrementally computes the solution to the regularized least squares (RLS) problem
with multiple columns on the right-hand side. More specifically, for a RLS problem with c (c > 1) columns on the right-hand
side, we update its unique solution by solving a RLS problem with single column on the right-hand side whenever a new sample
arrives, instead of solving a RLS problem with c columns on the right-hand side from scratch. As a direct application of IRLS,
we consider the supervised dimensionality reduction of large-scale data and focus on linear discriminant analysis (LDA). We
first propose a new batch LDA model that is closely related to RLS problem, and then apply IRLS to develop a new incremental
LDA algorithm. Experimental results on real-world datasets demonstrate the effectiveness and efficiency of our algorithms.

Key words. Incremental regularized least squares, linear discriminant analysis, supervised dimensionality reduction,
LSQR.

AMS subject classifications. 65F10, 65F22, 65F50, 68T05

1. Introduction. Regularized least squares (RLS) with multiple columns on the right-hand side, which
is also known as Tikhonov regularization [32] or multivariate Ridge Regression (RR) [1], is one of the most
widely used methods for statistical estimation and regularization of ill-posed problems. Given matrices
A ∈ R

n×d and B ∈ R
n×c with c > 1, RLS solves the problem

(1.1) min
X∈Rd×c

‖AX −B‖2F + λ2‖X‖2F ,

where λ > 0 is a regularization parameter. Many problems in practical applications [9, 23, 31] can be formu-
lated as (1.1). In these applications, A usually denotes the data matrix with n samples from d-dimensional
space and B denotes the corresponding label information in classification or responses in regression. RLS
problem (1.1) has been extensively studied in fields as diverse as numerical linear algebra, statistics, machine
learning and data mining. It has an unique explicit solution X∗ given by

(1.2) X∗ = (ATA+ λ2Id)
−1ATB = AT (AAT + λ2In)

−1B.

However, computing (1.2) costs O(cndmin{n, d}) flops [18], which can be very slow for large-scale high-
dimensional data where both n and d are huge. To keep pace with the growing scale of data in the modern
age of “Big Data”, numerous iterative approaches have been proposed, including both deterministic methods
like LSQR [26] and LSMR [16] and randomized methods like Blendenpik [2], randomized extended Kaczmarz
[41] and LSRN [25]. Despite their effectiveness, all these iterative approaches assume that data are given at
one time.

Over the past a few decades, due to the advances in data collection and storage capabilities, there has
been an explosion in the amount of high-dimensional data. Moreover, in many applications data are ac-
quired incrementally. On the one hand, when a new data is added, the statistical model used to analyse the
data may not change much and the solution should be very close to the old one. On the other hand, even
for efficient learning algorithms, computing the solution from scratch whenever a new sample is acquired is
computationally expensive and requires huge amount of memory as more data are collected, which makes
them infeasible for large-scale high-dimensional data. Consequently, it is imperative to develop algorithms
that can run in an incremental fashion to accommodate the new data. More specifically, we need to design

†Bioinformatics Institute, A*STAR, Singapore (zhangxw@bii.a-star.edu.sg).
‡Bioinformatics Institute, A*STAR, Singapore and School of Computing, National University of Singapore, Singapore

(chengli@bii.a-star.edu.sg).
§Department of Mathematics, National University of Singapore, Singapore 119076 (matchudl@nus.edu.sg, sci-

tance@nus.edu.sg).
¶Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (lil-

iao@hkbu.edu.hk, mng@math.hkbu.edu.hk).

1

2 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

an algorithm satisfying the following criteria [29]: It is able to learn additional information from new data
without forgetting previously acquired knowledge, and it can accommodate new data from new sources (e.g.
new classes). Compared with batch learning, incremental learning has the advantages of being adaptive and
responsive, and, different from batch learning, incremental learning deals with theory revision at each time
step instead of theory creation from scratch. Another challenge in dealing with large-scale high-dimensional
data is the “curse of dimensionality”, due to which the effectiveness of conventional learning methods deteri-
orates exponentially as the dimensionality increases. A common way to overcome this problem is to reduce
the dimension of the data, see [6] for a review of various dimensionality reduction methods.

In this paper, we attempt to tackle both problems by proposing a new incremental algorithm for dimen-
sionality reduction of large-scale data. Specifically, we are interested in designing incremental algorithms for
RLS with multiple columns on the right-hand side so that, when a new sample is added, we can compute
the solution of (1.1) with n+ 1 data points by updating the solution of (1.1) with n data points, instead of
computing it from scratch. As an application, we then apply this new incremental RLS method to linear
discriminant analysis (LDA) [15, 19], which is one of the most powerful tools for supervised dimensionality
reduction, resulting a novel incremental LDA algorithm for dimensionality reduction of large-scale data.

1.1. Our contributions. The contributions of this paper are three folds: (1) We propose a novel
incremental algorithm for RLS problem (1.1) and name it IRLS. To compute the new solution when a new
sample arrives, IRLS updates the old one by solving a RLS problem with single column on the right-hand
side, instead of solving the RLS problem with c columns on the right-hand side. IRLS has two properties:
(i) The new solution resulted from updating the old one is the exact solution of RLS problem (1.1). (ii) It
can handle large-scale data with min{n, d} ≫ 1 and both cases n ≥ d and n ≤ d. The advantages of IRLS
over conventional RLS are more prominent when c is large or when the data matrix A is sparse. (2) We
propose a new batch LDA algorithm named LDADL. This algorithm is designed for a new batch LDA model
formulated as a RLS problem (1.1) with A being the data matrix and B recording the class information.
We prove that the solution to the new LDA model converges to the LDA solution as the regularization
parameter λ converges to zero. Moreover, we provide theoretical results connecting our LDA model with
regularized LDA (RLDA) in [39] and spectral regression discriminant analysis (SRDA) in [7]. Different from
existing least squares LDA models [7, 28, 36], our model is derived from the perspective of data lifting and
highly adoptable to incremental LDA. (3) We propose a new incremental LDA algorithm named ILDADL
by applying the newly proposed IRLS method to the new batch LDA model. This new incremental LDA
algorithm can handle new samples from both existing classes and new classes. In addition, the effectiveness
and efficiency of the proposed methodologies are demonstrated on extensive real-world datasets.

1.2. Related work. Limited work has been done in the area of incremental least squares (LS). In
[4], Bertsekas considered incremental methods for nonlinear LS problem. However, incremental methods
discussed in [4] have quite different meaning from that of the current paper in that they solve nonlinear
LS problems iteratively and each iterate is updated from the previous iterate by incrementally processing
samples in A. In [3] and [8] matrix A is assumed to have full column rank. Baboulin et al. [3] proposed a
parallel incremental solver for dense LS problem by updating the QR factorization of A. Cassioli et al. [8]
proposed an incremental algorithm based on updating the inverse of ATA. However, the computations of
QR factorization of A and the inverse of ATA are time-consuming and need huge memory when the data
matrix A is very big. A closely related topic is the online ridge regression [34] that learns one sample at a
time and makes prediction for the sample.

There is some recent work on incremental LDA algorithms [27, 37, 22, 40, 24, 21]. Ye et al. [37] proposed
IDR/QR by applying regularized LDA in a projected subspace spanned by the centroid matrix. The main
limitation of IDR/QR is that much information is lost in the first projection and some useful components
are discarded in the updating process, resulting in inferior performance as pointed out in [7]. Pang et al.
[27] introduced a way of updating the between-class and within-class scatter matrices. Unfortunately, the
updating of the discriminative transformation is not mentioned, which is one of the most difficult steps in
incremental LDA. In [22, 21], the authors presented a different incremental LDA algorithm, which we denote
ILDA/SSS, by applying the concept of sufficient spanning set approximation to update the scatter matrices.
The main drawback of ILDA/SSS is that three eigenvalue thresholds need to be given in advance. In [40],
the authors proposed GSVD-ILDA which is an incremental version of LDA/GSVD [20]. As illustrated in
[24], both ILDA/SSS and GSVD-ILDA suffer from a common problem, that is, it is difficult to strike a

Incremental Regularized Least Squares for Dimensionality Reduction 3

balance between the classification performance and the computational efficiency. As an improvement, [24]
adopted the idea of LS-LDA [36] and proposed a new incremental algorithm named LS-ILDA via updating
the pseudo-inverse of the centred data matrix. In [13], the authors developed ILDA/QR that computes the
LDA solution by updating the economical QR factorization of the data matrix. However, [13] assumes that
all data points are linearly independent, which does not hold when more data points are collected.

1.3. Notations. We use lowercase letters (e.g. c, d, n, etc.) or greek letters (e.g. α, λ, γ, etc.) to
denote scalars, use bold letters (e.g. a, b, e, etc.) to denote vectors, and use uppercase letters (e.g. A, B,
X , etc.) to denote matrices. All vectors are assumed to be column vectors. In is the n×n identity matrix; 0
is the matrix of zeros whose size should be clear from the context. We use trace(·) and rank(·) to denote the
trace and the rank of matrix, respectively. We also adopt the following conventions in the rest of this paper:
For any variable X, its updated version after the insertion of new samples is denoted by X̃. For example,
the data matrix A becomes Ã after the insertion of a new sample a. We use the “∗” superscript (e.g. G∗,
X∗, etc.) to denote optimal solutions to optimization problems, use the underline of letters (e.g. A, G, aj ,
etc.) to denote matrices or vectors obtained by appending one row at the bottom or one column at the right
end, and use the “ ˆ ” accent (e.g. X̂ , â) to denote matrices or vectors obtained by appending multiple rows
at the bottom.

The rest of the paper is organized as follows. In Section 2, we provide a detailed derivation of the IRLS
algorithm. In Section 3, we give a brief review of the LDA problem. In Section 4, we propose a new fast batch
LDA algorithm. In Section 5, we develop a new incremental LDA algorithm that is the exact incremental
version of our new batch LDA algorithm. In Section 6, we provide extensive experimental results using
real-world datasets. Finally, we provide some concluding remarks in Section 7.

2. Incremental regularized least squares (IRLS). In this section, we derive the incremental algo-
rithm IRLS for RLS problem (1.1).

Let Aλ =
[

A λIn
]

and X̂ =
[

X
W

]

where X ∈ R
d×c and W ∈ R

n×c, then the unique RLS solution X∗

given in (1.2) is closely related to the minimum Frobenius norm solution of the following LS problem:

(2.1) min
{

‖AλX̂ −B‖2F
∣

∣

∣
X̂ ∈ R

(d+n)×c
}

.

The detailed description is provided in Lemma 2.1.

Lemma 2.1. Let X̂∗ =
[

X∗

W∗

]

be the minimum Frobenius norm solution to the LS problem (2.1), then

X∗ is the unique solution to the RLS problem (1.1).
Proof. Since Aλ has full row rank and X̂∗ is the minimum Frobenius norm solution to the LS problem

(2.1), it follows that X̂∗ is uniquely determined by

X̂∗ = A†
λB = AT

λ (AλA
T
λ)

−1B = AT
λ (AA

T + λ2In)
−1B,

where A†
λ denotes the Moore-Penrose pseudo-inverse [18] of Aλ. Therefore, we have X∗ = AT (AAT +

λ2In)
−1B, which is the unique solution of the RLS problem (1.1).

Now, we consider the problem of computing X̂∗ using the QR factorization of AT
λ . Let

(2.2) AT
λ = QR =

[

Q1

Q2

]

R

be the economical QR factorization of AT
λ , where R ∈ R

n×n is an upper-triangular matrix, Q1 ∈ R
d×n and

Q2 ∈ R
n×n. Since AT

λ has full column rank, R is nonsingular and it is easy to verify that

(2.3) X∗ = Q1R
−TB.

This formula will be frequently used as the theoretical base in IRLS to update X∗ when new data are
inserted.

Let a ∈ R
d denote the newly added sample and define â =

[

a

0

]

∈ R
d+n, and b ∈ R

c denote the

corresponding right-hand side, we have

ÃT
λ =

[

AT
λ â

0 λ

]

and B̃ =

[

B
bT

]

.

4 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

Suppose the economical QR factorization of AT
λ is given by (2.2) and let

r = QT â = QT
1 a, q =

[

q1
q2

]

=
(I −QQT)â

τ
,

where q1 ∈ R
d, q2 ∈ R

n and τ =
√

‖(I −QQT)â‖2 + λ2 > 0, we have

ÃT
λ =

[

QR Qr + (I −QQT)â
0 λ

]

=

[

Q q

0 λ
τ

] [

R r

0 τ

]

,(2.4)

which is the economical QR factorization of ÃT
λ , and implies that Q̃1 =

[

Q1 q1
]

∈ R
d×(n+1). From the

formula of X∗ in (2.3), we have

X̃∗ =
[

Q1 q1
]

[

R r

0 τ

]−T [

B
bT

]

=
[

Q1 q1
]

[

R−T 0
− 1

τ
rTR−T 1

τ

] [

B
bT

]

=
[

Q1 q1
]

[

R−TB
1
τ
(bT − rTR−TB)

]

=Q1R
−TB +

q1

τ
(bT − rTR−TB)

=X∗ +
q1

τ

(

bT − aTX∗) ,(2.5)

where we used r = QT
1 a and X∗ = Q1R

−TB in the last equality.
To compute X̃∗ using the above equation, we need to know q1

τ
. However, computing q1

τ
by explicitly

performing QR factorization (2.2) costs O(dn2 +2n3/3) flops [18], which is prohibitively high for large-scale
high-dimensional data. Thus, we have to find an alternative approach.

Let w = b−X∗Ta, t = argmax1≤i≤c |wi|, x̃∗ and x∗ denote the tth column of X̃∗ and X∗, respectively.
If wt = 0, then X̃∗ = X∗. So, we assume wt > 0. On the one hand, we have from the original RLS problem
(1.1) that

(2.6) x̃∗ = argmin
x
‖Ãx− B̃t‖22 + λ2‖x‖22,

where Ã =

[

A
aT

]

and B̃t denotes the t
th column of B̃. On the other hand, based on formula (2.5) of updating

X∗, we have

x̃∗ = x∗ +
q1

τ
wt,

which implies that

q1

τ
= (x̃∗ − x∗)/wt

and thus,

X̃∗ = X∗ + (x̃∗ − x∗)wT /wt.

As we can see from the above derivation, the dominant work in updating X∗ is to solve the RLS problem
with single column on the right-hand side in (2.6). We adopt LSQR [26] to solve (2.6), which leads to an
incremental RLS algorithm for one new sample as presented in Algorithm 1.

Now, we investigate the computational complexity of Algorithm 1 and compare it with that of RLS. In
Algorithm 1 the dominant cost is that of applying LSQR. LSQR is an iterative algorithm which needs to
compute two matrix-vector multiplications of the forms Av and ATu in each iteration, which requires 4sn
flops if the average number of non-zero features for one sample is s. The remaining computational cost of

Incremental Regularized Least Squares for Dimensionality Reduction 5

Algorithm 1 (IRLS: Incremental RLS for one new sample)

Input: Data matrix A, response matrix B, unique solution X∗, a new sample a and the corresponding
response b.

Output: Updated A, B and X∗

1: Compute w = b−X∗Ta and t = argmax1≤i≤c |wi|.
2: if wt > 0 then
3: Apply LSQR to solve (2.6).
4: Compute q1 = (x̃∗ − x∗) and X∗ ← X∗ + q1(w

T /wt).
5: end if
6: A←

[

A

aT

]

, B ←
[

B

bT

]

.

7: return A, B, and X∗.

LSQR in each iteration is 9d + 5n flops [26]. Let Niter denote the number of iterations used in LSQR, the
computational cost of Algorithm 1 is O(Niter(4sn + 9d) + 4dc), where O(4dc) is the cost of rank-1 update
of X . For batch RLS, since we need to solve a RLS problem with c columns on the right-hand side, the
computational cost is O(cndmin{n, d}) when direct solver (1.2) is adopted, and is O(cNiter(4sn+9d)) when
iterative solver LSQR is adopted. In large-scale problems, the iterative solver usually outperforms the direct
one, especially when the data matrix A is highly sparse. Therefore, for a RLS problem with c columns on
the right hand side our incremental algorithm is approximately c times as efficient as the batch RLS in terms
of flops. We should remark that RLS problem (1.1) can be decoupled into c independent RLS problems
with single right hand side and share the same coefficient matrix A. Thus, these problems can be solved in
a parallel or distributed way to reduce computational time. However, designing incremental algorithm for
parallel or distributed computing architecture is more complicated than Algorithm 1 and is out of the scope
of this paper. We left this topic for future research.

Remark 2.1. Notice that, although we resort to the economical QR factorization of AT
λ in the derivation

of IRLS, we do not need it to update X∗ in Algorithm 1. Moreover, LSQR is not the only choice for solving
(2.6), any efficient RLS solver can be adopted in IRLS.

In the sequel of this paper, we apply IRLS to reduce the dimension of large-scale data, and particularly,
we are interested in applying IRLS to design incremental LDA algorithms. Before that, we need to briefly
review LDA and establish the connection between LDA and RLS.

3. Linear discriminant analysis. In this section, we briefly review LDA and its generalizations for
undersampled problems, as well as the LS solutions to LDA.

3.1. A brief review. Suppose we have a set of n data points a1, a2, ..., an ∈ R
d from c classes, and

all data points are given in the form of a data matrix

A =
[

a1 · · · an

]T
=

[

AT
1 AT

2 · · · AT
c

]T ∈ R
n×d,

where each block matrix Ak ∈ R
nk×d (1 ≤ k ≤ c) is a collection of data points from the kth class, nk is

the number of data points in the kth class and n =
∑c

k=1 nk is the total number of data points. The global
centroid c of A and the local centroid ck of each class Ak are given by c = 1

n
ATe, ck = 1

nk
AT

k ek, respectively,
where

e =
[

1 · · · 1
]T ∈ R

n, ek =
[

1 · · · 1
]T ∈ R

nk , k = 1, · · · , c.

Let Nk denote the set of row indices that belong to the kth class, and Sb =
1
n

∑c
k=1 nk(ck − c)(ck− c)T ,

Sw = 1
n

∑c
k=1

∑

j∈Nk
(aj − ck)(aj − ck)

T and St =
1
n

∑n
j=1(aj − c)(aj − c)T be the between-class scatter

matrix, the within-class scatter matrix and the total scatter matrix, respectively. It is well known [20] that
St = Sb+Sw, trace(Sw) =

1
n

∑c
k=1

∑

j∈Nk
‖aj − ck‖22 and trace(Sb) =

1
n

∑c
k=1 nk‖ck− c‖22. Thus, trace(Sb)

measures the weighted distance between the local centroids and the global centroid, while trace(Sw) measures
the distance between the data points and their corresponding local centroids. In the lower-dimensional
space mapped upon using the linear transformation G ∈ R

d×l, the between-class, within-class and total
scatter matrices are of the forms GTSbG, GTSwG, GTStG, respectively. Ideally, the optimal transformation

6 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

G should maximize trace(GTSbG) and minimize trace(GTSwG) simultaneously, or equivalently, maximize
trace(GTSbG) and minimize trace(GTStG) simultaneously.

To make LDA applicable for the undersampled problem (that is, d > n), various extensions of the classical
LDA can be found in the literature, see [7, 11, 12, 17, 20, 28, 35, 36, 38, 39] . Among those extensions, one
popular extension is to replace the matrix inverse in classical LDA with pseudo-inverse, which leads to the
following criterion

(3.1) G∗ = arg max
G∈Rd×l

trace
(

(GTStG)†(GTSbG)
)

.

This extension of LDA has been applied successfully to many applications including machine learning, data
mining and bioinformatics, which require to deal with high-dimensional data efficiently.

3.2. Least squares approach. It is well-known [15] that LDA for binary class (c = 2) case is equivalent
to a LS problem. Recently, this connection has been extended to multi-class (c > 2) case by investigating the
relationship between LDA and multivariate linear regression with a specific class indicator matrix [19, 28, 36].
In [36], the author proposed a new class indicator matrix Y ∈ R

n×c defined as

(3.2) Yjk =

{ √

n
nk
−
√

nk

n
if j ∈ Nk,

−
√

nk

n
otherwise,

and showed that the multivariate linear regression solution GMLR ∈ R
d×c obtained from

(3.3) GMLR = arg min
G∈Rd×c

1

2
‖HtG− Y ‖2F ,

where Ht =
1√
n
(A−ecT) ∈ R

n×d is the scaled centred data matrix, solves the corresponding LDA optimiza-

tion problem (3.1). The same idea has been explored in [39], where the authors established an equivalence
between RLDA and a ridge estimator for multivariate linear regression. In [28], a similar result has been
obtained by investigating the relationship between LDA and minimum squared error (MSE). In [7], the
authors cast LDA into a regression framework using spectral graph analysis and proposed a new algorithm
named spectral regression discriminant analysis (SRDA) which is very efficient for large-scale data.

The equivalence relationship between LDA and LS problem not only facilitates efficient computation of
the LDA solution, but also enables the use of regularization techniques (e.g., sparsity inducing regularization
or Laplacian-based regularization). However, the use of centred data matrix Ht and class indicator matrix Y
defined in (3.2) makes it difficult to incrementally update the LS solution to LDA, since one has to recalculate
the whole centred data matrix and class indicator matrix when a new sample is inserted as [24] did. In the
next section, we will show how to solve this problem with necessary modification to (3.3) and a different
class indicator matrix.

4. A new batch LDA algorithm . Notice from the LS problem (3.3) that, to compute GMLR, one
needs to calculate the centred data matrix Ht. In many applications (e.g., text-document processing) the
data matrix A may be sparse, which can be exploited to facilitate computation and save memory. However,
after centring, the centred data matrix Ht is not sparse any more. To avoid centring the data matrix, we
propose a new LS model for LDA which is highly adoptable to incremental setting.

4.1. A new least squares LDA model. The following trick is commonly used [7, 28, 39] to avoid
centring the data matrix: append a new component ′′1′′ to each data aj as aj = [aT

j 1]T . The revised LS
problem is formulated as

(G∗, g∗) = argmin

{

1

2

∥

∥

∥

∥

[

A e
]

[

G
gT

]

− Y

∥

∥

∥

∥

2

F

∣

∣

∣

∣

∣

G ∈ R
d×c, g ∈ R

c

}

.(4.1)

It can be proven that G∗ solves the LS problem (3.3), hence a solution to LDA problem (3.1).

Incremental Regularized Least Squares for Dimensionality Reduction 7

To make the above LS solution of LDA more adoptable to incremental setting, we propose to use the
following class indicator matrix:

E :=

e1
. . .

ec

∈ R

n×c.(4.2)

Compared with the class indicator matrix Y in (3.2), the new indicator matrix E contains only 1 or 0 in
each column, and thus, has the advantage that when a new sample is inserted we only need to append
the corresponding class indicator vector to E, instead of recalculating the whole indicator matrix. More
importantly, we have the following result relating LDA problem (3.1) and LS problem (4.1) with Y being
replaced by E.

Lemma 4.1. Let G∗ be obtained from any solution to the following LS problem

(G∗, g∗) = argmin

{

1

2

∥

∥

∥

∥

[

A e
]

[

G
gT

]

− E

∥

∥

∥

∥

2

F

∣

∣

∣

∣

∣

G ∈ R
d×c, g ∈ R

c

}

,(4.3)

then

G∗ = arg max
G∈Rd×c

trace
(

(GTStG)†(GTSbG)
)

.

Thus, the solution to the LS problem (4.3) also solves the LDA problem (3.1).
Proof. Since (G∗, g∗) is a solution to the LS problem (4.3), it must satisfy the associated normal equation

([

AT

eT

]

[

A e
]

) [

G∗

g∗T

]

=

[

AT

eT

]

E,

which is equivalent to

(4.4)

[

ATA nc
ncT n

] [

G∗

g∗T

]

=

[

ATE
nT

]

,

where n =
[

n1 · · ·nc

]T
. The last equation in the above linear system implies that

g∗ = n/n−G∗T c.

Substituting the above equality into the first row of linear system (4.4), we get

(ATA− nccT)G∗ = ATE − cnT .

It is easy to verify that

ATA− nccT = nHT
t Ht and ATE − cnT =

√
nHT

b D,

where Hb =
[√

n1(c1 − c) · · · √nc(cc − c)
]T

/
√
n and D = diag(

√
n1, · · · ,

√
nc) is a diagonal matrix,

which leads to

√
nHT

t HtG
∗ = HT

b D.(4.5)

Let the reduced singular value decomposition (SVD) of Ht be Ht = U1ΣtV
T
1 , where U1 ∈ R

n×γ and
V1 ∈ R

d×γ are column orthogonal, Σt ∈ R
γ×γ is a diagonal matrix with positive diagonal entries and

γ = rank(Ht). In addition, let the reduced SVD of Σ−1
t V T

1 HT
b be Σ−1

t V T
1 HT

b = P1ΣbQ
T
1 , where P1 ∈ R

γ×q,
Q1 ∈ R

c×q are column orthogonal, Σb ∈ R
q×q is diagonal and nonsingular. Then equation (4.5) becomes

V T
1 G∗ = Σ−1

t P1ΣbQ
T
1 D/
√
n,

8 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

which further implies that

(G∗)TStG
∗ = DQ1Σ

2
bQ

T
1 D/n and (G∗)TSbG

∗ = (G∗)THT
b HbG

∗ = DQ1Σ
4
bQ

T
1 D/n.

Thus,

((G∗)TStG
∗)†(G∗)TSbG

∗ = D−1Q1Σ
2
bQ

T
1 D,

and

trace
(

((G∗)TStG
∗)†(G∗)TSbG

∗
)

= trace(Σ2
b).

On the other hand, it has been shown in [36] that

max
G

trace
(

(GTStG)†GTSbG
)

= trace(Σ2
b).

Combining the above two equations completes the proof.
Remark 4.1. As can be seen from the proof of Lemma 4.1, for any class indicator matrix Y of the form

Y = EM − αeyT ,

where M ∈ R
c×c is nonsingular, α is a scalar and y ∈ R

c is a column vector, the solution to the LS
problem (4.1) solves the LDA problem (3.1). The indicator matrix in [36] corresponds to the case when M =
diag(

√

n/n1 · · ·
√

n/nc), α = 1 and y = [
√

n1/n · · ·
√

nc/n]
T , the indicator matrix in [24] corresponds to

the case when M = diag(
√

1/n1 · · ·
√

1/nc) and α = 0. The indicator matrix E used in (4.3) corresponds
to M = Ic and α = 0.

For the sake of convenience and simplicity, we use A and G to denote the augmented data matrix
[

A e
]

and the corresponding transformation
[

G

gT

]

, respectively, and use d′ to denote the dimension of the augmented

data (i.e. d′ = d+ 1). In this way, the LS problem (4.3) becomes

(4.6) G∗ = arg min
G∈Rd′×c

1

2
‖AG− E‖2F .

Before proceeding to the proposal of new batch LDA model, let us consider a very special case when
A has full row rank (i.e., all training samples are linearly independent). In such a case, by comparing LS
problems (4.6) and (2.1), we can compute the solution G∗ incrementally by applying the IRLS algrithm.
However, in the incremental setting, the linear independence assumption among training data fails to hold as
more and more new data are acquired. To overcome this problem and make the IRLS algorithm applicable,
we introduce a new trick named data lifting to deal with the rank deficiency problem and propose a new
batch LDA algorithm.

The idea behind data lifting is very simple. In order to make training samples linearly independent, we
first implicitly append λIn to the data matrix resulting a higher-dimensional data matrix

Aλ :=
[

A λIn
]

∈ R
n×(d′+n),

then use Aλ as the data matrix in the LS problem (4.6), that is, solve the following LS problem

(4.7) G∗
λ = argmin

{

1

2
‖AλGλ − E‖2F

∣

∣

∣

∣

Gλ ∈ R
(d′+n)×c

}

.

We then partition G∗
λ as follows:

(4.8) G∗
λ =

[

G∗
λ1

G∗
λ2

]

=

G∗
λ1

g∗T
λ

G∗
λ2

 ∈ R
(d′+n)×c,

Incremental Regularized Least Squares for Dimensionality Reduction 9

where G∗
λ1 ∈ R

d×c, g∗
λ ∈ R

c and G∗
λ2 ∈ R

n×c. Finally, we use G∗
λ1 as the solution of the LDA problem (3.1).1

At the first sight, our trick looks contradictory to the goal of LDA to reduce the dimension. However,
we should clarify that, since we are interested in G∗

λ1, we only implicitly append λIn to the data matrix.
The augmented matrix Aλ is never formed explicitly, as can be seen from Theorem 4.2 and Algorithm 2.
The idea behind this trick is somehow similar to that of the kernel trick [30] where all training samples
are mapped implicitly to some high-dimensional or even infinite-dimensional feature space. Moreover, our
method is supported by theoretical results as described in the following theorem.

Theorem 4.2. Let γ = rank(A) and σγ be the smallest nonzero singular value of A, G∗ be the minimum
Frobenius norm solution to the LS problem (4.6), and G∗

λ be defined as in (4.8) be the minimum Frobenius
norm solution to the LS problem (4.7). Then,

(a) G∗
λ1 is the unique solution of the following RLS problem

(4.9) min
G∈Rd′×c

1

2
‖AG− E‖2F +

λ2

2
‖G‖2F .

(b)
‖G∗

λ1
−G∗‖F

‖G∗‖F
≤ λ2

λ2+σ2
γ
, and lim

λ→0
G∗

λ1 = G∗. Moreover, if σγ ≫ λ, we have
‖G∗

λ1
−G∗‖F

‖G∗‖F
= O(λ2), which

means that G∗
λ1 converges to G∗ quadratically with respect to λ.

Proof. (a) From the definition of G∗
λ1, we have from the proof of Lemma (2.1) that

(4.10) G∗
λ1 = AT (AAT + λ2In)

−1E.

The rest of the proof is analogous to that of Lemma 2.1 and so is omitted.
(b) Since G∗ is the minimum Frobenius norm solution to the LS problem (4.6), it follows that

(4.11) G∗ = A†E.

Let the reduced singular value decomposition (SVD) of A be A = U1ΣV
T
1 , where U1 ∈ R

n×γ and V1 ∈ R
d′×γ

are column orthogonal matrices, and Σ = diag(σ1 · · · σγ) with σ1 ≥ · · · ≥ σγ > 0, then equalities (4.10)
and (4.11) can be reformulated as

(4.12) G∗
λ1 = V1Σ(Σ

2 + λ2Iγ)
−1UT

1 E,

and

(4.13) G∗ = V1Σ
−1UT

1 E,

respectively. Combining equations (4.12) and (4.13) , we have

G∗
λ1 −G∗ = −λ2V1Σ

−1(Σ2 + λ2Iγ)
−1UT

1 E,

which leads to

‖G∗
λ1 −G∗‖F ≤ λ2‖(Σ2 + λ2Iγ)

−1‖2‖V1Σ
−1UT

1 E‖F ≤
λ2

λ2 + σ2
γ

‖G∗‖F .

Hence,
‖G∗

λ1
−G∗‖F

‖G∗‖F
≤ λ2

λ2+σ2
γ
. The rest part is straightforward by applying the obtained inequality.

Remark 4.2. Theorem 4.2 provides the rationale behind our trick of data lifting. Theorem 4.2(a)
establishes an equivalence between our method and ridge regression, which further implies that our method
is capable of avoiding data over-fitting problem. Theorem 4.2(b) shows that the solution G∗

λ1 computed by
our method converges to the minimum Frobenius norm solution of LS problem (4.6). Therefore, according

1The lower-dimensional representation of a data point x ∈ R
d is given by x

L := G∗T
λ1

x. In some literatures (e.g. [7]), xL is

also given by x
L := G∗T

λ1

[

x

1

]

= G∗T
λ1

x+g
∗
λ
. It is easy to see that the latter representation is just a translation of the former one.

Thus, both representations will give the same classification results when classifiers depending on the mutual distance between
data points (e.g. KNN) are used.

10 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

to Lemma 4.1, G∗
λ1 converges to a solution of LDA problem (3.1), and the convergence rate is O(λ2) if λ is

small enough.
Our model in (4.7) is related to some prior work. In [39], the authors consider the following RLS problem2

min
G∈Rd′×c

1

2
‖AG− Y ‖2F +

λ2

2
‖G‖2F ,(4.14)

and establish an equivalence relationship between (4.14) and regularized linear discriminant analysis. The
major difference between (4.14) and our model (4.9) lies in the regularization term where the norm of g is also
considered in our model. An algorithm named RFDA/RR is also proposed in [39] that requires to compute
the incomplete Cholesky decomposition (ICD) of HT

t Ht if d ≤ n or of HtH
T
t if d > n. The computational

cost of RFDA/RR with ℓ columns retained in the ICD is given in Table 1.
The SRDA proposed in [7] considers a similar RLS problem as (4.9), and has become one of the most

efficient algorithms for large-scale discriminant analysis. Specifically, SRDA solves the following LS problem
via LSQR

(4.15) G∗
λs = argmin

{

1

2
‖AG− Y ‖2F +

λ2

2
‖G‖2F

∣

∣

∣

∣

G ∈ R
d′×(c−1)

}

,

where Y ∈ R
n×(c−1) is a response matrix obtained from the Gram-Schmidt orthogonalization of {e, E1, · · · , Ec};

see [7] for more details of the response matrix generation. We can establish the following connection between
the solutions of (4.9) and (4.15) (i.e., G∗

λ1 and G∗
λs) in Lemma 4.3.

Lemma 4.3. Let D = diag(
√
n1 · · ·

√
nc), there exists a column orthogonal matrix Z ∈ R

c×(c−1)

satisfying
[√

n1 · · · √nc

]T
Z = 0 such that

(4.16) G∗
λs = G∗

λ1D
−1Z.

Proof. Let {yi}c−1
i=0 be the set of orthonormal vectors obtained from the Gram-Schmidt orthogonalization

of {e, E1, · · · , Ec}, then we have from [7] that

Y =
[

y1 · · · yc−1

]

and eTY = 0.

Since e lies in the range space of E, it follows that Y lies in the range space of E and we can find some
coefficient matrix Y ∈ R

c×(c−1) such that Y = EY, which further implies that

Ic−1 = Y
T
Y = YTETEY = YTD2Y.

Define Z := DY, then Z is column orthogonal and Y = ED−1Z. Moreover, 0 = eTY =
[√

n1 · · · √nc

]T
Z.

Therefore, the unique solution to problem (4.15) is given by

G∗
λs = AT (AAT + λIn)

−1Y = AT (AAT + λIn)
−1ED−1Z = G∗

λ1D
−1Z,

where in the last equality we used (4.10).
Since we are only interested in G∗

λ1 which, due to the result presented in Theorem 4.2(a), is the unique
solution to the RLS problem (4.9), we adopt LSQR to compute it in our model, which gives rise to a new
bath LDA algorithm named LDADL as described in Algorithm 2. We also remark that, as explained in
Remark 2.1, LSQR is not the only choice and any efficient LS solver can be adopted to solve (4.9).

From the analysis above and Lemma 4.3, we can expect that LDADL shall achieve similar performance
as SRDA. Moreover, LDADL has two advantages over SRDA and RFDA/RR: (1) LDADL is theoretically
supported in that we can establish a close relationship between LDADL and LDA problem (3.1) as pre-
sented in Theorem 4.2(b). (2) LDADL can be efficiently extended to the case that a new sample is added
incrementally, as shown in Section 5 below. In contrast, the incremental versions of SRDA and RFDA/RR
are difficult to develop. For SRDA, the difficulty lies in updating the response matrix Ȳ obtained from the
Gram-Schmidt orthogonalization, while for RFDA/RR the difficulty is incurred by the regularization term
λ2

2 ‖G‖2F . This is a significant difference between our LDADL and SRDA and RFDA/RR.

2For the sake of consistency, the optimization problem studied in [39] is presented here using our notations. The same
situation applies to SRDA in (4.15).

Incremental Regularized Least Squares for Dimensionality Reduction 11

Algorithm 2 (LDADL: Batch LDA with Data Lifting)

Input: Training data A ∈ R
n×d, nk (1 ≤ k ≤ c) and parameter λ > 0.

Output: Transformation matrices G∗
λ1 ∈ Rd′×c.

1: Append e to data matrix A to construct A.
2: Compute G∗

λ1 via applying LSQR to solve (4.9).
3: return G∗

λ1.

Table 1

Comparison of computational complexity and memory usage: dimension (d), d′ = d + 1, the number of training data
(n), t = min{d, n}, the number of classes (c), the number of columns retained in ICD (ℓ), the number of iterations in LSQR
(Niter) and the average number of non-zero features for one sample (s).

Algorithms Operation counts (flops) Memory
RLDA [38] O(14dn2 − 2n3) O(dn+ 2dc)
ROLDA [10] O(4dn2 + 35n3) O(dn+ 2n2 + (d+ n)c)

ULDA/QR [11] O(4dn2 + 4n3) O(d(n+ c) + 3n2)
IDR/QR [35] O(2dnc) O(dn+ 2(dc+ c2))

RFDA/RR [39] O(dn(3t + 4c) + ℓt2) O(t2 + d(n+ c) + c2)
SRDA [7] O((c− 1)Niter(4sn+ 9d′)) O(ns+ (c+ 2)d′)
LDADL O(cNiter(4sn+ 9d′)) O(ns+ cd′)

4.2. Time and space complexity. We close this section by providing a computational complexity
analysis of the proposed algorithm. Since we need to solve a RLS problem with c columns on the right-
hand side by applying LSQR, the time cost of LDADL is O(cNiter(4sn+ 9d′)). In our experiments, we use
Niter = 20, which is the default value in MATLAB. A comparison of computational complexity between
LDADL and other LDA algorithms discussed in this paper is given in Table 1. From Table 1, we see that
LDADL and SRDA have similar efficiency and both algorithms are faster than other competitors when the
data matrix is large-scale and highly sparse. When the class number c is small or the data is dense, IDR/QR
is faster than other competitors. In terms of memory usage, LDADL and SRDA use less memory and the
advantage is more prominent when the data matrix is highly sparse.

5. Incremental version of LDADL. In this section, we study the incremental version of LDADL
proposed in Section 4. To describe our method clearly, we divide this section into two parts, where in the
first part we consider the case when the new sample belongs to an existing class and in the second part we
consider the case when the new sample belongs to a new class.

Following the idea of IRLS in Section 2 and supposing the economical QR factorization of AT
λ is given

by (2.2), we know that the minimum Frobenius norm solution G∗
λ to the LS problem (4.7) is given by

G∗
λ = QR−TE, which further leads to G∗

λ1 = Q1R
−TE. Let a ∈ R

d denote the newly added sample,

a =
[

a

1

]

∈ R
d′

and â =
[

a

0

]

∈ R
d′+n, the economical QR factorization of ÃT

λ is given by (2.4) with r = QT
1 a.

5.1. a belongs to an existing class k0. In this case, the class indicator matrix becomes

Ẽ =

[

E
zT

]

,

where z ∈ R
c is a vector with the kth0 element set to 1 and all other elements set to 0.

Since the IRLS algorithm can be applied directly, we have by following the updating scheme (2.5) that

G̃
∗
λ1 =G∗

λ1 +
q1

τ

(

z −G∗T
λ1a

)T
.

Let w = z−G∗T
λ1a, t = argmax1≤i≤c |wi|, g̃∗ and g∗ denote the tth column of G̃

∗
λ1 and G∗

λ1, respectively.
If wt > 0, we solve the following RLS problem

(5.1) g̃∗ = arg min
g∈Rd′

∥

∥

∥
Ãg − Ẽt

∥

∥

∥

2

2
+ λ2‖g‖22,

and update G∗
λ1 as follows:

G̃
∗
λ1 = G∗

λ1 + (g̃∗ − g∗)wT /wt.

12 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

Algorithm 3 (ILDADL: Incremental LDADL for one new sample)

Input: Data matrix A, label matrix E, optimal transformation G∗
λ1, a new sample a and the corresponding

class label.
Output: Updated A, E and G∗

λ1

1: Compute w = −G∗T
λ1a.

2: if x belongs to an existing class k0 then
3: Compute wk0

← wk0
+ 1, t = arg max

1≤i≤c
|wi|, and apply LSQR to solve (5.1).

4: Compute q1 = (g̃∗ − g∗) and G∗
λ1 ← G∗

λ1 + q1(w
T /wt).

5: else
6: Apply LSQR to solve (5.2) and update G∗

λ1 ←
[

G∗
λ1 + g̃∗wT g̃∗].

7: end if
8: return A←

[

A

aT

]

, E and G∗
λ1.

5.2. a belongs to a new class. In this case, we have c̃ = c+ 1 and

Ẽ =

[

E 0
0 1

]

∈ R
(n+1)×c̃.

Although IRLS cannot be applied directly in this case since the number of classes has increased by one, the
idea of updating the RLS solution is the same. In particular,

G̃
∗
λ1 =

[

Q1 q1
]

[

R−T 0
− 1

τ
rTR−T 1

τ

] [

E 0
0 1

]

=
[

Q1 q1
]

[

R−TE 0
− 1

τ
rTR−TE 1

τ

]

=
[

Q1R
−TE − q1

τ
rTR−TE q1

τ

]

=
[

G∗
λ1 − q1

τ

(

aTG∗
λ1

)

q1

τ

]

.

Let w = −G∗T
λ1a and g̃∗ denote the c̃th column of G̃

∗
λ1. On the one hand, we have from equation (4.9)

that

(5.2) g̃∗ = arg min
g∈Rd′

∥

∥

∥

∥

Ãg −
[

0
1

]
∥

∥

∥

∥

2

2

+ λ2‖g‖22.

On the other hand, the above formula of updating G∗
λ1 shows that g̃∗ = q1

τ
, which implies that

G̃
∗
λ1 =

[

G∗
λ1 + g̃∗wT g̃∗] .

As can be seen from the above derivation, the dominant work in updating G∗
λ1 in both cases is to solve

the RLS problems (5.1) and (5.2). Compared with the batch algorithm LDADL that solves a RLS problem
with c columns on the right-hand side, the incremental algorithm solves a RLS problem with single column
on the right-hand side, thus reduces the computational cost c times. The RLS problems (5.1) or (5.2) can
be efficiently solved by LSQR, which lead to the incremental implementation of LDADL for one new sample
as presented in Algorithm 3.

5.3. Time and space complexity. The dominant computational cost of Algorithm 3 consists of
applying LSQR to solve one RLS problem. Let c denote the current number of classes and ñ denote the
number of training data after the single insertion. Then, the total computational cost of Algorithm 3 is
O(Niter(4sñ + 9d′) + 4d′c) with O(4d′c) being the cost of the rank-1 update of G∗

λ1, provided that LSQR
terminates after Niter iterations. Since in the process of updating G∗

λ1, we only need to store A and the
latest G∗

λ1 as well as the class labels of data points in A, the memory cost of Algorithm 3 is O(ñs+ d′c).
We summarize the computational cost and memory usage of incremental LDA algorithms: IDR/QR [35],

LS-ILDA [24], ILDA/SSS [21, 22] and ILDADL in Table 2. We observe from Table 2 that among the four

Incremental Regularized Least Squares for Dimensionality Reduction 13

Table 2

Comparison of computational complexity for a single insertion: dimensionality (d), d′ = d+1, the number of training data
after the single insertion (ñ), the number of classes (c), the number of iterations in LSQR (Niter) and the average number of
non-zero features for one sample (s).

Algorithms Operation counts (flops) Memory
IDR/QR [35] O(2dc2 + 91c3/3) O(2dc)
LS-ILDA [24] O(14dñ + 7dc) O(2dñ+ dc)
ILDA/SSS [22] O(2dñ2 + 12ñ3) O(dñ+ 2dc)

ILDADL O(Niter(4sñ+ 9d′) + 4d′c) O(ñs+ d′c)

Table 3

Statistics of the datasets: dimensionality (d), the number of training data (n), the number of testing data (# test) and the
number of classes (c). In the third column, the left value means the total number of training data and the right value means
the number of incremental training data.

datasets d n # test c
Feret 6400 600 | 300 400 200
sports 126373 5151 | 1708 3429 7
Reuters 18933 4941 | 1182 3272 41
TDT2 36771 5648 | 1714 3746 30

20NEWS 26214 11314 | 6678 7532 20
new3 83487 5749 | 3066 3809 44
rcv1 47236 320504 | 81651 213631 53

amazon 262144 817268 | 91193 544841 7

incremental LDA algorithms, algorithms IDR/QR and ILDADL have the lowest computational complexities.
Specifically, when the class number c is very small compared to the sample size ñ, IDR/QR should be faster
than all other algorithms, while ILDADL shall be faster when c is large or when the data matrix A is
highly sparse (i.e. s is small). LS-ILDA has much higher computational complexity than those of IDA/QR
and ILDA/QR for large-scale sparse data. The computational complexities of ILDA/SSS is very high and
increases cubically with respect to the accumulated number of training data. Among the four incremental
LDA algorithms IDR/QR has the lowest memory usage when c is small and ILDADL has the lowest memory
usage when c is large or when the data matrix A is highly sparse.

6. Experimental results. In this section, we investigate the performance of our batch and incremental
algorithms, namely LDADL and ILDADL, and compare them with some state-of-the-art algorithms. This
section consists of five parts. In Subsection 6.1, we describe the datasets used in the experiments and
experimental settings. In Subsection 6.2, we compare the performance of our model (4.7) with different LS
solvers for computing G∗

λ1. In Subsection 6.3, we investigate the effect of parameter λ in the data lifting
trick (i.e. RLS problem (4.9)). In Subsection 6.4, we compare LDADL with some state-of-the-art batch
LDA algorithms. In Subsection 6.5, we compare ILDADL with existing state-of-the-art incremental LDA
algorithms.

6.1. Datasets and experiment settings. Eight datasets were used in our experimental study, most
of which are high-dimensional sparse data. Important information of these datasets are summarized as
follows:

• The Feret face dataset contains 1000 images of 200 individuals (each one has 5 images). The facial
portion of each original image was automatically cropped based on the locations of eyes and mouths,
and the cropped images were resized to 80× 80 pixels. This dataset is downloaded from

http://www.itl.nist.gov/iad/humanid/feret/feret_master.html.
• The sports dataset is derived from the San Jose Mercury newspaper articles that are distributed as
part of the TREC collection [33]. The new3 dataset is derived from TREC-5, TREC-6 and TREC-7
collections [33]. Each one of these datasets is constructed by selecting documents that are part of
certain topics in which the various articles are categorized (based on the DESCRIPT tag). All these
text-document data are downloaded from CLUTO at

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
• Reuters corpus contains 21578 documents in 135 categories. We provide here the ModApte version.
Those documents with multiple category labels are discarded. It left us with 8213 documents in

http://www.itl.nist.gov/iad/humanid/feret/feret_master.html
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download

14 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

Table 4

Computational time of two LS solvers: Economical QR and LSQR.

datasets QR LSQR
Feret 9.9e+0 2.1e+1
sports 5.6e+4 1.3e+0
Reuters 1.6e+3 2.7e+0
TDT2 8.5e+3 4.3e+0

20NEWS 1.4e+3 4.1e+0
new3 2.2e+5 1.2e+1
rcv1 NA 1.7e+2

amazon OOM 1.1e+2

65 categories. After preprocessing, this corpus contains 18933 distinct terms. We use the top 41
Categories (In these categories, each category contains no less than 10 documents).
• The TDT2 dataset is a subset of the original TDT2 corpus (Nist Topic Detection and Tracking
corpus) that consists of data collected during the first half of 1998 and taken from 6 sources, including
2 news wires (APW, NYT), 2 radio programs (VOA, PRI) and 2 television programs (CNN, ABC).
It consists of 11201 on-topic documents which are classified into 96 semantic categories. In this
subset, those documents appearing in two or more categories were removed, and only the largest 30
categories were kept, thus leaving us with 9394 documents in total.
• The 20NEWS dataset is a collection of approximately 20,000 newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. The data contains 18846 documents that are orga-
nized into 20 different newsgroups, each corresponding to a different topic. The Reuters, TDT2 and
20NEWS datasets are downloaded from

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html.
• The rcv1 dataset is downloaded from

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
• The amazon dataset [5, 14], downloaded from

http://www.mblondel.org/data/,
contains 1362109 reviews of Amazon products. Each review may belong to one of 7 categories
(apparel, book, DVD, electronics, kitchen & housewares, music, video) and is represented as a
262144 dimensional vector.

For each dataset, we randomly split it into training and testing data in the following way: for each class
with size nk, we randomly select ⌈0.6nk⌉ 3 data as training data and the rest as testing data. In experiments
involving incremental LDA algorithms, we further partition the training data into two parts: in each of the
first ⌊0.5c⌋ classes, we randomly select 80% of the data points as initial training data, and the rest of the
training data as incremental training data that will be inserted into the initial training data one by one.
Incremental learning is completed until all data points in the incremental training data are added into the
initial training data. The classification accuracy of the final transformation matrix G∗

λ1 is evaluated on the
testing data using the nearest neighbor (NN) classifier. The computational cost is the CPU time of updating
G∗

λ1 for one single insertion. For each algorithm, to reduce the variability, this process is repeated 10 times,
and the average results are reported. The important statistics of these datasets are summarized in Table 3,
where the left value in the third column means the total number of training data and the right value means
the number of incremental training data. All experiments were conducted on a workstation with 32 2.70
GHz Intel Xeon CPUs and 128 GB RAM in total. The number of iterations of LSQR is set to be 20 which
is the default in MATLAB.

6.2. Comparison of different LS solvers. In this part, we compare the performance of our model
(4.7) that uses two different LS solvers for computing G∗

λ1: economical QR factorization G∗
λ1 = Q1R

−TE,
where Q1 and R are from the economical QR factorization of AT

λ , and LSQR. The computational time is
shown in Table 4. We omitted the results of the economical QR solver on datasets rcv1 and amazon, since
it takes a prohibitively long time to get the results on rcv1, and runs out of memory (OOM) on amazon. We

3⌈·⌉ denotes the ceiling function and ⌊·⌋ denotes the floor function.

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.mblondel.org/data/

Incremental Regularized Least Squares for Dimensionality Reduction 15

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

50

55

60

65

70

75

80

λ

A
cc

ur
ac

y
RFDA/RR

SRDA

LS−LDA

LDADL

(a) Feret

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

70

75

80

85

90

95

100

λ

A
cc

ur
ac

y

RFDA/RR

SRDA

LS−LDA

LDADL

(b) sports

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

60

65

70

75

80

85

90

95

λ

A
cc

ur
ac

y

RFDA/RR

SRDA

LS−LDA

LDADL

(c) Reuters

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

75

80

85

90

95

100

λ

A
cc

ur
ac

y RFDA/RR

SRDA

LS−LDA

LDADL

(d) TDT2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

55

60

65

70

75

80

85

90

λ

A
cc

ur
ac

y

RFDA/RR

SRDA

LS−LDA

LDADL

(e) 20NEWS

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

50

55

60

65

70

75

80

85

λ

A
cc

ur
ac

y

RFDA/RR

SRDA

LS−LDA

LDADL

(f) new3

Fig. 1. Model selection of LDADL: The curves show the classification accuracy of RFDA/RR, SRDA, LS-LDA and
LDADL as a function of λ. It is clear that a proper regularization will mitigate data over-fitting. Moreover, SRDA and
LDADL have similar performance regardless of the selection of λ and both outperform LS-LDA over a large range of λ.

observe from Table 4 that LSQR is much more efficient. Therefore, we adopt LSQR as the LS solver in our
model.

6.3. Effect of the parameter λ. To investigate the effect of λ ≥ 0, we plot the classification accuracy
of LDADL as a function of λ and compare it with LS-LDA that solves (4.6) (i.e. λ = 0) by computing
G∗ = A†E. Because of the similarity among LDADL, RFDA/RR and SRDA, we also plot the classification
accuracy of RFDA/RR and SRDA with respective to different λ.

16 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

Table 5

Classification accuracy (mean ±standard deviation in percentage) of batch LDA algorithms.

datasets RLDA ROLDA ULDA/QR IDR/QR RFDA/RR SRDA LS-LDA LDADL
Feret 72.75±1.55 85.98±1.85 70.40±2.05 57.48±2.81 69.75±1.06 62.93±2.13 70.45±2.02 70.13±2.43
sports 97.17±0.29 74.44±1.26 74.42±1.29 94.59±0.36 83.90±0.12 95.98±0.29 73.94±1.48 96.06±0.30
Reuters 91.53±0.43 81.65±1.28 70.16±9.45 87.89±0.55 86.19±0.17 90.85±0.52 76.65±4.62 91.79±0.31

TDT2 96.72±0.21 78.34±1.92 77.47±2.64 95.92±0.32 81.85±0.11 94.54±0.29 79.65±3.35 95.29±0.24
20NEWS 86.84±0.47 70.21±0.98 67.70±3.23 67.99±0.66 78.92±0.72 82.47±0.36 67.56±3.35 82.58±0.35
new3 83.21±0.98 72.05±0.39 55.97±0.67 75.50±0.90 72.96±0.71 81.81±0.49 53.39±0.91 82.28±0.56
rcv1 OOM OOM OOM 89.14±0.07 OOM 89.83±0.04 OOM 89.86±0.03

amazon OOM OOM OOM 86.27±0.01 OOM 92.43±0.14 OOM 92.65±0.03

Fig. 1 shows the performance of all four algorithms on different λ from

{10−5, 10−4, · · · , 105}.

Since the last two datasets rcv1 and amazon are too large and it takes a huge amount of time to compute
solutions for all values of λ and all algorithms, we only show the results on the first 6 datasets. It is easy
to see that both LDADL and SRDA have similar performance and achieve significantly higher accuracy
than LS-LDA over a wide range of λ, which is consistent with the connection between LDADL and SRDA
established in Lemma 4.3. Theoretically, we have shown that G∗

λ1 of LDADL converges to G∗ of LS-LDA as
λ→ 0. This is validated by the results on Feret data. However, for other datasets, there is a big difference
between LDADL and LS-LDA when λ is close to zero. One reason for this observation is that we terminate
LSQR after 20 iterations, thus the resulting solution is actually an approximation to G∗

λ1. According to
Lemma 4.3, LDADL and SRDA are closely related, but we observe from Fig. 1 that LDADL is slightly worse
than SRDA when λ is larger than a threshold. The underlying statistical mechanism behind this observation
is interesting and needs to be studied further. In addition, we see that the accuracy of RFDA/RR, SRDA
and LDADL increases first and then drops dramatically when we increase the value of λ, which verifies the
claim that a proper regularization will mitigate data over-fitting. To maintain a good overall performance,
we fix λ = 1 for all three methods as well as ILDADL in the sequel.

6.4. Comparison with batch LDA algorithms. We compare LDADL with the following seven
batch LDA algorithms:

1. Regularized LDA (RLDA) [17, 38], which replaces St with St + αI for some α > 0 to handle the
singularity problem. We adopt the more efficient implementation of RLDA proposed in [38]. To select
the optimal α, we perform 5-fold cross-validation on the candidate set {10−5, 10−4.9, · · · , 104.9, 105}.

2. Regularized orthogonal LDA (ROLDA) [10], which is similar to RLDA but selects the regularization
parameter α based on the user-specified deviation ǫ between ROLDA solution G(α) and OLDA
solution G (i.e., ‖G(α)−G‖ ≤ ǫ). As suggested in [10], we select ǫ = 10−2.

3. Uncorrelated LDA based on QR factorization (ULDA/QR) [12, 35].
4. IDR/QR [37], an LDA variant which performs RLDA in the range space of the centroid matrix. The

regularization parameter α is set to be 0.5, which produces good overall results in [37].
5. RFDA/RR [39], a regularized discriminant analysis algorithm related to the ridge regression problem

(4.14).
6. SRDA [7], an efficient discriminant analysis algorithm based on spectral regression.
7. LS-LDA that solves (4.6) exactly by computing G∗ = A†E = Q(R†)TE, where Q and R are from

the economical QR factorization of AT .
For each algorithm, the optimal LDA transformation is computed using all training data including both
initial and incremental training data. The average results of classification performance and CPU time over
10 replications of all algorithms are shown in Table 5 and Table 6, respectively.

Main observations from Table 5 and 6 include the following:
• LDADL achieves the best overall performance in the sense that it strikes a good balance between
high classification accuracy and efficiency. On the side of accuracy, RLDA achieves higher accuracy
than the rest algorithms for most of the datasets due to the selection of optimal parameter by cross-
validation, followed by LDADL. However, cross-validation takes a long time for large datasets, which
makes RLDA inefficient. On the side of efficiency, IDR/QR, SRDA and LDADL are much faster

Incremental Regularized Least Squares for Dimensionality Reduction 17

Table 6

Computational time (in seconds) of batch LDA algorithms.

datasets RLDA ROLDA ULDA/QR IDR/QR RFDA/RR SRDA LS-LDA LDADL
Feret 1.3e+2 2.1e+0 1.7e+0 5.3e-1 3.4e+0 2.2e+1 1.5e+0 2.1e+1
sports 2.9e+3 3.8e+4 3.5e+4 9.2e-2 1.1e+3 1.2e+0 3.6e+4 1.3e+0
Reuters 2.5e+3 1.3e+3 1.2e+3 1.3e-1 1.2e+3 3.0e+0 1.2e+3 2.7e+0
TDT2 1.9e+3 4.6e+3 4.4e+3 1.4e-1 1.7e+3 4.2e+0 4.4e+3 4.3e+0

20NEWS 9.1e+3 6.4e+3 5.0e+3 1.2e-1 5.9e+3 3.8e+0 4.9e+3 4.1e+0
new3 6.9e+3 2.2e+5 3.0e+5 4.9e-1 1.7e+3 1.2e+1 5.0e+5 1.2e+1
rcv1 OOM OOM OOM 2.6e+0 OOM 1.7e+2 OOM 1.7e+2

amazon OOM OOM OOM 3.0e+0 OOM 9.7e+1 OOM 1.1e+2

than other algorithms, and among these three algorithms LDADL achieves the highest accuracy. For
large datasets such as rcv1 and amazon, only IDR/QR, SRDA and LDADL are applicable, other
algorithms run out of memory.
• Although IDR/QR is the most efficient approach, its classification performance is unstable as there
is no theoretical relation between the optimization problem adopted by IDR/QR and that of LDA.
This can be seen from its accuracy on Feret, 20NEWS and amazon datasets.
• SRDA and LDADL have similar performance, which verifies the result in Lemma 4.3. Although
SRDA is marginally faster than LDADL on some datasets, LDADL achieves higher accuracy on all
datasets.
• The only difference between LS-LDA and LDADL is the Tikhonov regularization, but LDADL
achieves much higher accuracy, which implies that over-fitting is a crucial problem in the LDA
model and LDADL is capable of alleviating data over-fitting.

6.5. Comparison with incremental LDA algorithms. In this subsection, we compare our newly
proposed incremental algorithm ILDADL with three stat-of-the-art incremental LDA algorithms: IDR/QR
[37], LS-ILDA [24] and ILDA/SSS [21, 22]. ILDA/SSS has three parameters: two threshold for significant
components of the total scatter matrix and the between-class scatter matrix, and one threshold for the
discriminative components. Since [21, 22] did not provide a way to select these parameters, we set all three
parameters to be 0.1 as [24] did, which enables the algorithm to achieve its best performance. For IDR/QR
[37] and LS-ILDA [24] we implement their algorithms in MATLAB; for ILDA/SSS, we use the MATLAB
codes provided by the authors 4.

For all incremental algorithms, the optimal transformation is updated from the previously obtained
information when a new sample is inserted. The classification accuracy is of the final transformation when
all incremental training data have been inserted. The average results of classification performance evaluated
on the testing data over 10 replications are shown in Table 7. The execution time for incremental algorithms
is the CPU time of updating the transformation matrix when a new sample is inserted. Thus, every time
a new sample is inserted there is a corresponding CPU time. The mean execution time of each updating
for all algorithms over 10 replications is shown in Fig. 2 and Fig. 3, where the horizontal axis shows the
accumulated number of inserted new samples from the incremental training data while the vertical axis
indicates the execution time (in seconds).

In Fig. 2, we compare the computational time for no-incremental method–LDADL and incremental
method–ILDADL. We see from Fig. 2 that ILDADL is much faster than LDADL and the speedup becomes
more prominent as more new samples are inserted. This performance gain is attributed to the decrease of
computational complexity of ILDADL, since it only needs to solve a RLS problem with single column on the
right hand side while LDADL has to solve a RLS problem with c columns on the right hand side. We also
observe that the computational time of LDADL is approximately an increasing step function of the class
number c, which is consistent with the formula (4.9). Comparing the accuracy of ILDADL in Table 7 and
that of LDADL in Table 5, we notice that they are more or less the same (the largest difference of accuracy
is 1.9% on the Feret dataset, but for other dataset the difference is less than 0.7%), which validates the
claim that the LDA solution computed by our incremental algorithm is in theory the same as the batch LDA
solution.

4http://www.iis.ee.ic.ac.uk/~tkkim/code.htm

18 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

0 50 100 150 200 250 300

10
−1

10
0

10
1

10
2

Accumulated number of inserted data

C
P

U
 t

im
e

LDADL

ILDADL

(a) Feret

0 200 400 600 800 1000 1200 1400 1600 1800
10

−0.8

10
−0.6

10
−0.4

10
−0.2

10
0

10
0.2

Accumulated number of inserted data

C
P

U
 t

im
e

LDADL

ILDADL

(b) sports

0 200 400 600 800 1000 1200

10
−1

10
0

Accumulated number of inserted data

C
P

U
 t

im
e

LDADL

ILDADL

(c) Reuters

0 200 400 600 800 1000 1200 1400 1600 1800
10

−1

10
0

10
1

Accumulated number of inserted data

C
P

U
 t

im
e

LDADL

ILDADL

(d) TDT2

0 1000 2000 3000 4000 5000 6000 7000
10

−1

10
0

10
1

Accumulated number of inserted data

C
P

U
 t
im

e

LDADL

ILDADL

(e) 20NEWS

0 500 1000 1500 2000 2500 3000
10

−1

10
0

10
1

Accumulated number of inserted data

C
P

U
 t

im
e

LDADL

ILDADL

(f) new3

0 1 2 3 4 5 6 7 8

x 10
4

10
1

10
2

Accumulated number of inserted data

C
P

U
 t

im
e

LDADL

ILDADL

(g) rcv1

0 1 2 3 4 5 6 7 8 9

x 10
4

10
1

10
2

Accumulated number of inserted data

C
P

U
 t

im
e

LDADL

ILDADL

(h) amazon

Fig. 2. Computational time comparison of LDADL and ILDADL: The curves show the CPU time as functions of the
number of inserted samples so far. Since datasets rcv1 and amazon have large number of incremental training data, computing
the LDA solution from scratch using LDADL for each new sample takes a huge amount of time. To make the comparison
feasible for datasets rcv1 and amazon, we compute the LDA solution using LDADL for each batch of 1000 new samples, while
for ILDADL we still record the updating time for each new sample.

Incremental Regularized Least Squares for Dimensionality Reduction 19

Table 7

Classification accuracy (mean ± standard deviation in percentage) of incremental LDA algorithms: LDA/SSS either takes
too much time to get the result (NA) or runs out of memory (OOM) when applied to the last four datasets. LS-ILDA also
runs out of memory on the last two datasets.

datasets ILDADL IDR/QR LS-ILDA LDA/SSS
Feret 68.23±2.30 51.98±1.93 70.40±2.05 70.40±2.05

sports 96.03±0.27 95.04±0.40 74.42±1.29 73.62±0.23
Reuters 91.78±0.42 86.79±0.35 73.36±7.31 82.25±1.00
TDT2 95.25±0.31 95.83±0.55 77.47±2.64 77.23±0.23

20NEWS 81.88±0.46 68.38±0.80 67.70±3.23 NA
new3 81.44±0.82 75.24±0.63 59.02±8.20 NA
rcv1 89.69±0.06 86.60±0.01 OOM OOM

amazon 92.68±0.12 85.49±0.04 OOM OOM

In Fig. 3, we plot the computational time of four incremental algorithms.Since ILDA/SSS either takes
too much time to get the result or runs out of memory on the last four datasets, there is no plot for ILDA/SSS
on these datasets. Similarly, LS-ILDA also runs out of memory and thus there is no plot on the last two
datasets. We observe that IDR/QR and ILDADL significantly outperform the rest algorithms. Although
IDR/QR is faster than ILDADL on most datasets, ILDADL is slightly faster than IDR/QR on datasets
with large class number such as Reuters and new3. Regarding the classification performance, ILDADL is
obviously better than other incremental algorithms, as can be seen from Table 7. In addition, we observe
from Table 7 that the performance of IDR/QR is unstable and varies over different datasets.

In conclusion, ILDADL is the best among the four compared incremental algorithms in terms of clas-
sification accuracy, computational complexity and space complexity. It provides an efficient incremental
dimensionality reduction for large-scale datasets.

7. Conclusions. In this paper, we have proposed an incremental algorithm IRLS that is capable of
updating the solution to the RLS problem with multiple columns on the right-hand side when a new data is
acquired. IRLS has several nice properties: (1) The resulted solution is the exact solution to the RLS problem.
(2) It deals with both over-determined (n ≥ d) and under-determined (n ≤ d) RLS problems. (3) It is much
faster than computing the RLS solution from scratch, and this advantage becomes more pronounced when c is
large or when A is highly sparse. We have applied IRLS to supervised dimensionality reduction of large-scale
data. In particular, we have considered incremental LDA. This has been accomplished by first proposing a
new batch LDA model that relates LDA with RLS, and then applying IRLS to this newly proposed model.
Extensive experiments on real-world datasets demonstrate that the new batch LDA algorithm is competitive
with the state-of-the-art LDA algorithms and our incremental LDA algorithm is efficient and effective in
processing large-scale data.

Acknowledgments. The authors would like to thank the editor and anonymous referees for their
valuable comments and suggestions on earlier versions of this paper.

REFERENCES

[1] T. Anderson, An Introduction to Multivariate Statistical Analysis, Wiley, 3 ed., 2003.
[2] H. Avron, P. Maymounkov, and S. Toledo, Blendenpik: Supercharging LAPACK’s least-squares solver, SIAM J. Sci.

Comput., 32 (2010), pp. 1217–1236.
[3] M. Baboulin, L. Giraud, S. Gratton, and J. Langou, Parallel tools for solving incremental dense least squares

problems. application to space geodesy, Journal of Algorithms and Computational Technology, 31 (2009), pp. 117–
131.

[4] D. Bertsekas, Incremental least squares methods and the extended kalman filter, SIAM J. Opt., 6 (1996), pp. 807–822.
[5] M. Blondel, K. Seki, and K. Uehara, Block coordinate descent algorithms for large-scale sparse multiclass classification,

Machine Learn., 93 (2013), pp. 31–52.
[6] C. Burges, Dimension reduction: A guided tour, Foundations and Trends in Machine Learning, 2 (2009), pp. 275–365.
[7] D. Cai, X. He, and J. Han, SRDA: An efficient algorithm for large-scale discriminant analysis, IEEE Trans. Knowledge

Data Eng., 20 (2008), pp. 1–12.
[8] A. Cassioli, A. Chiavaioli, C. Manes, and M. Sciandrone, An incremental least squares algorithm for large scale

linear classification, European J. Oper. Res., 224 (2013), pp. 560–565.
[9] N. Cesa-Bianchi, Applications of regularized least squares to pattern classification., Theoret. Comput. Sci., 382 (2007),

pp. 221–231.

20 X. Zhang, L. Cheng, D. Chu, L.-Z. Liao, M. K. Ng , AND R. C. E., Tan

0 50 100 150 200 250 300

10
−1

10
0

10
1

Accumulated number of inserted data

C
P

U
 t

im
e

ILDADL

IDR/QR

LS−ILDA

LDA/SSS

(a) Feret

0 200 400 600 800 1000 1200 1400 1600 1800
10

−2

10
−1

10
0

10
1

10
2

10
3

Accumulated number of inserted data

C
P

U
 t

im
e

ILDADL

IDR/QR

LS−ILDA

LDA/SSS

(b) sports

0 200 400 600 800 1000 1200

10
−1

10
0

10
1

10
2

10
3

Accumulated number of inserted data

C
P

U
 t

im
e

ILDADL

IDR/QR

LS−ILDA

LDA/SSS

(c) Reuters

0 200 400 600 800 1000 1200 1400 1600 1800

10
−1

10
0

10
1

10
2

10
3

Accumulated number of inserted data

C
P

U
 t

im
e

ILDADL

IDR/QR

LS−ILDA

LDA/SSS

(d) TDT2

0 1000 2000 3000 4000 5000 6000 7000

10
−1

10
0

10
1

Accumulated number of inserted data

C
P

U
 t

im
e

ILDADL

IDR/QR

LS−ILDA

(e) 20NEWS

0 500 1000 1500 2000 2500 3000
10

−1

10
0

10
1

Accumulated number of inserted data

C
P

U
 t

im
e

ILDADL

IDR/QR

LS−ILDA

(f) new3

0 1 2 3 4 5 6 7 8

x 10
4

10
−1

10
0

10
1

Accumulated number of inserted data

C
P

U
 t

im
e

ILDADL

IDR/QR

(g) rcv1

0 1 2 3 4 5 6 7 8 9

x 10
4

10
−1

10
0

10
1

10
2

Accumulated number of inserted data

C
P

U
 t

im
e

ILDADL

IDR/QR

(h) amazon

Fig. 3. Computational time comparison of four incremental LDA algorithms: ILDADL, IDR/QR, LS-ILDA and
ILDA/SSS. The curves show the CPU time as functions of the number of inserted samples so far.

Incremental Regularized Least Squares for Dimensionality Reduction 21

[10] W. Ching, D. Chu, L.-Z. Liao, and X. Wang, Regularized orthogonal linear discriminant analysis, Pattern Recognition,
45 (2012), pp. 2719–2732.

[11] D. Chu and S. Goh, A new and fast orthogonal linear discriminant analysis on undersampled problems, SIAM J. Sci.
Comput., 32 (2010), pp. 2274–2297.

[12] D. Chu, S. Goh, and Y. Hung, Characterization of all solutions for undersampled uncorrelated linear discriminant
analysis problems, SIAM J. Matrix Anal. Appl., 32 (2011), pp. 820–844.

[13] D. Chu, L.-Z. Liao, M. K. Ng, and X. Wang, Incremental linear discriminant analysis: A new fast algorithm and
comparisons, IEEE Trans. Neural Netw. Learn. Syst., (2015).

[14] M. Dredze, K. Crammer, and F. Pereira, Confidence-weighted linear classification, in Proceedings of the 25th Inter-
national Conference on Machine Learning, 2008, pp. 264–271.

[15] R. Duda, P. Hart, and D. Stork, Pattern Classification, Wiley, 2000.
[16] D. Fong and M. Saunders, LSMR: An iterative algorithm for sparse least-squares problems, SIAM J. Sci. Comput., 33

(2011), pp. 2950–2971.
[17] J. Friedman, Regularized discriminant analysis, J. Amer. Statist. Assoc., 84 (1989), pp. 165–175.
[18] G. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins University Press, 3rd ed., 1996.
[19] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Predic-

tion, Springer, 2nd ed., 2009.
[20] P. Howland, M. Jeon, and H. Park, Structure preserving dimension reduction for clustered text data based on the

generalized singular value decomposition, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 165–179.
[21] T. Kim, B. Stenger, J. Kittler, and R. Cipolla, Incremental linear discriminant analysis using sufficient spanning

sets and its applications, Int. J. Comput. Vis., 91 (2011), pp. 216–232.
[22] T. Kim, S. Wong, B. Stenger, J. Kittler, and R. Cipolla, Incremental linear discriminant analysis using sufficient

spanning set approximations, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2007.

[23] F. la Torre, A least-squares framework for component analysis, IEEE Trans. Pattern Anal. Machine Intell., 34 (2012),
pp. 1041–1055.

[24] L. Liu, Y. Jiang, and Z. Zhou, Least square incremental linear discriminant analysis, in Proceedings of the 9th IEEE
International Conference on Data Mining, 2009.

[25] X. Meng, M. Saunders, and M. Mahoney, LSRN: A parallel iterative solver for strongly over- or under-determined
systems, SIAM J. Sci. Comput., 36 (2014), pp. C95–C118.

[26] C. Paige and M. Saunders, LSQR: An algorithm for sparse linear equations and sparse least squares., ACM Trans.
Math. Softw., 8 (1982), pp. 43–71.

[27] S. Pang, S. Ozawa, and N. Kasabov, Incremental linear discriminant analysis for classification of data streams, IEEE
Trans. Syst., Man, Cybern. A, 35 (2005), pp. 905–914.

[28] C. Park and H. Park, A relationship between linear discriminant analysis and the generalized minimum squared error
solution, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 474–492.

[29] R. Polikar, L. Udpa, and V. Honavar, Learn ++: An incremental learning algorithm for supervised neural networks,
IEEE Trans. Syst., Man, Cybern. C, Special Issue on Knowledge Management, 31 (2001), pp. 497–508.

[30] Bernhard S. and A. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and
Beyond, MIT Press, 2002.

[31] C. Saunders, A. Gammerman, and V. Vovk, Ridge regression learning algorithm in dual variables, in Proceedings of
the 15th International Conference on Machine Learning, 1998, pp. 515–521.

[32] A. Tikhonov and V. Arsenin, Solutions of ill-posed problems, V. H. Winston & Sons, 1977.
[33] TREC, Text retrieval conference. http://trec.nist.gov, 1999.
[34] V. Vovk, Competitive on-line linear regression, in Advances in neural information processing systems 10, MIT Press,

1998, pp. 364–370.
[35] J. Ye, Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems, J.

Mach. Learn. Res., 6 (2005), pp. 483–502.
[36] , Least squares linear discriminant analysis, in Proceedings of the 24th International Conference on Machine Learn-

ing, 2007, pp. 1087–1094.
[37] J. Ye, Q. Li, H. Xiong, H. Park, R. Janardan, and V. Kumar, IDR/QR: An incremental dimension reduction

algorithm via QR decomposition, IEEE Trans. Knowledge Data Eng., 17 (2005), pp. 1208–1222.
[38] J. Ye, T. Xiong, Q. Li, R. Janardan, J. Bi, V. Cherkassky, and C. Kambhamettu, Efficient model selection for

regularized linear discriminant analysis, in Proceedings of the 15th ACM International Conference on Information
and Knowledge Management, 2006, pp. 532–539.

[39] Z. Zhang, G. Dai, C. Xu, and M. Jordan, Regularized discriminant analysis, ridge regression and beyond, J. Mach.
Learn. Res., 11 (2010), pp. 2199–2228.

[40] H. Zhao and P. Yuen, Incremental linear discriminant analysis for face recognition, IEEE Trans. Syst., Man, Cybern.
B, 38 (2008), pp. 210–221.

[41] A. Zouzias and N. Freris, Randomized extended kaczmarz for solving least squares, SIAM J. Matrix Anal. Appl., 34
(2013), pp. 773–793.

http://trec.nist.gov

