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Pose Estimation from Line Correspondences: A
Complete Analysis and A Series of Solutions
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Abstract— In this paper we deal with the camera pose estima-
tion problem from a set of 2D/3D line correspondences, which
is also known as PnL (Perspective-n-Line) problem. We carry
out our study by comparing PnL with the well-studied PnP
(Perspective-n-Point) problem, and our contributions are three-
fold: (1) We provide a complete 3D configuration analysis for
P3L, which includes the well-known P3P problem as well as
several existing analyses as special cases. (2) By exploring the
similarity between PnL and PnP, we propose a new subset-based
PnL approach as well as a series of linear-formulation-based PnL
approaches inspired by their PnP counterparts. (3) The proposed
linear-formulation-based methods can be easily extended to deal
with the line and point features simultaneously.

Index Terms— Perspective-3-Line, Perspective-n-Line, Config-
uration Analysis, Camera Pose Estimation

I. INTRODUCTION

In a broad range of applications including computer vision
[1], robotics [2] and augmented reality [3], [4], it is cru-
cial to determine the pose of a calibrated camera. This is
usually performed by analyzing n correspondences between
3D reference features and their 2D projections, where the
features are either points or lines. When the point features
are employed, it becomes the well-studied Perspective-n-Point
(PnP) problem [5], [6], [7], [8]. Meanwhile for line features, it
corresponds to the Perspective-n-Line (PnL) problem, which
remains a challenging topic. Recent works such as [9] man-
ifest that line feature carries rich information, thus plays an
indispensable role in camera pose estimation. The aim of this
paper is dedicated to studying the PnL problem.

When the number of line correspondences is three (n = 3),
it is known as the Perspective-3-Line (P3L) problem, and its
solution plays a fundamental role in dealing with the general
PnL problem. Given three 2D/3D line correspondences, we
first derive a generic P3L polynomial by parameterizing the
camera orientation with respect to the model coordinate frame
as two rotation angles. It is known that the order of the
general P3L polynomial is 8 [10], higher than that of the
4-th order P3P polynomial. To study the complexity of the
P3L polynomial, it is necessary to carry out a complete 3D
configuration analysis. Our analysis reveals that the order of
the P3L polynomial can be reduced to 4, 2 or 1 depending
on the 3D line configurations. We also show that a number of
existing analyses can be included as addressing special cases
of the complete picture. In particular, when three lines lie on
a plane and form a triangle, the P3L problem degenerates to
a P3P problem and produces a 4-th order polynomial.

When n ≥ 4, there are many open issues: (a) The small line
sets are sensitive to noise; (b) The computational complexity

to discover the global optimum is expensive; (c) The outliers
of 2D/3D line correspondences should be effectively detected
and removed. To tackle these issues, a series of new PnL
approaches are proposed in this paper, which can be classified
into the following two categories:

(i) Subset-based PnL approach. An Accurate Subset-
based PnL approach (ASPnL) is proposed here inspired by
RPnP [7]. In this framework, lines are separated into triplets
by selecting a rotation axis, then a sixteenth order cost function
is constructed from a set of P3L polynomials, and an optimum
solution is retrieved from its local minima. In the presence of
an uncentred small set of n lines, the performance of ASPnL is
significantly better than the state-of-the-art methods which are
more prone to local minima. Nonetheless it is very sensitive
to outliers. ASPnL is extended from our previous work [11].

(ii) A series of linear-formulation-based approaches. By
exploring the similarity between PnL and PnP in terms of
linear formulation, we propose a series of linear-formulation-
based PnL approaches (LPnL) inspired by the state-of-the-art
PnP methods including EPnP [5] and REPPnP [8]. Although
the linear-formulation based method is not robust to small line-
set, it is efficient and able to deal with large line-set with up
to 50% of outliers with the help of a built-in outlier removal
module. Furthermore, the proposed linear-formulation-based
approaches can be easily extended to deal with line and point
correspondences simultaneously.

II. RELATED WORK

The problem of estimating camera pose from 2D/3D
line correspondences has been addressed for more than two
decades. There are six degrees of freedom for camera pose
in 3D space. To get a finite set of camera pose solutions,
at least three correspondences should be given because each
correspondence offers two dimensions of constraint on the
pose parameters [12]. In one of the earliest works, Dhome et
al. [13] proposed a closed-form solution for the P3L problem
by a polynomial approach. To derive the P3L polynomial, 3D
lines were transformed into a model coordinate system and
2D lines were transformed into a virtual image plane in the
viewer coordinate system. Later, Chen [10] proposed to derive
the P3L polynomial by introducing a canonical configuration.
Unfortunately, the description of the overall rotation was
unclear because three rotation axes in Eq.(4) of [10] were
neither aligned with the camera coordinate frame nor aligned
with the world coordinate frame, and some extra rotations were
required to align the coordinate systems. For three lines in
certain configurations, there exist special geometric properties
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which can be applied to reduce the complexity of the P3L
problem. Caglioti [14] addressed a special case of the P3L
problem where three lines lie in a common plane and intersect
at a common point, which is called the planar 3-line junction
perspective problem. Qin and Zhu [15] proposed a solution
of another special situation of the P3L problem, where three
lines form a Z-shape in space, i. e. two lines are parallel and
the third line intersects with both of them. Recently, Zhang
and Koch [16] addressed the problem of estimating vanishing
point (i. e. camera orientation) in a Manhattan world where
lines should be either parallel or orthogonal to each other.
In this work, we will provide a complete analysis of all the
special line configurations under a unified framework.

One well-known fact is that the solutions to the P3L
problem are not uniquely determined [10]. Thus at least four
line correspondences should be established for a unique pose
solution. Generally, there are two kinds of approaches (itera-
tive and non-iterative algorithms) to solve the pose estimation
problem when a large number of correspondences are given.
To optimize the pose solution, geometric errors (such as
reprojection error) or algebraic errors should be minimized.

Liu et al. [17] proposed to estimate the camera orientation
and then the translation in an iterative manner. Kumar and
Hanson [18] proposed an improved iterative algorithm that es-
timates the camera orientation and translation simultaneously
(named as R and T). The iterative methods of [19], [20] can
estimate the camera pose with either a weak perspective or
a para-perspective camera model. These iterative algorithms
require an initialization and may converge to a local minimum.
Besides, in the absence of a good initialization, the computa-
tional cost of the iterative algorithms is generally high.

For non-iterative approaches, the most straight-forward al-
gorithm is the Direct-Linear-Transformation (DLT) algorithm
[17], [21] which requires six or more line correspondences
as input. An improved algorithm was presented in [22] that
works for four or more line correspondences, by employing
a lifting approach to convert the polynomial system to a
linear system of the elements from the rotation matrix. This
algorithm has O(n2) computational complexity and its per-
formance is very sensitive to image noises. Phong et al. [23]
presented a method for optimally estimating the camera pose
by representing rotation and translation with a dual number
quaternion. Recently, Mirzaei and Roumeliotis [24] presented
an algebraic approach to estimate the global optimum of the
camera pose. The algorithm is non-iterative and possesses
O(n) computational complexity. The rotation is represented by
the Cayley-Gibbs-Rodriguez (CGR) parametrization in their
work. After relaxing the constraints on the rotation matrix,
three cubic equations with three unknowns are generated to
form a polynomial system with 27 candidate solutions. In their
latter work [25], they showed that the original polynomial
system (i. e. without relaxation) consists of three 5-th order
equations and one cubic equation with four unknowns, which
yields 40 candidate solutions. In their work, the polynomial
system was solved using algebraic geometry techniques and
the optimal solution is chosen out of the candidates in a least-
square sense. Nevertheless, the polynomial system is computa-
tionally very expensive, mainly due to the construction of the

120×120 Macaulay matrix. It also returns too many candidate
solutions.

PnL is closely related to the PnP problem. Kneip et al.
[26] proposed a novel P3P solution which computes the 3D
transformation in one step. Zheng et al. [27] proposed an
global optimal O(n) solver using quaternion parametrization
whose two-fold symmetry property was exploited. Kneip et
al. [28] proposed an closed-form solution for generalized PnP,
which unified the properties such as global optimality, linear
complexity, completeness and singularity-free. Inspired by the
success of the RPnP approach [7] for the PnL problem, the
RPnL approach was proposed in [11] which retrieved the
optimal solution from a sixteenth order cost function.

Most of the proposed algorithms are designed to robustly
estimate the camera pose when image noise exists. Yet, the
problem of dealing with outliers in the 2D/3D line corre-
spondences has not been directly handled. An independent
preliminary step based on RANSAC [12] is generally required.
The main drawback of this two stage strategy is that the
efficiency of the PnL algorithm is not fully exploited. Most
recently, Ferraz et al. [8] proposed an efficient PnP solution
by integrating the outlier rejection within the pose estimation
pipeline. We seek to similarly address the more challenging
PnL problem in this paper.

In what follows we start by presenting the P3L problem.

III. THE PERSPECTIVE-3-LINE PROBLEM

A. The general P3L polynomial

The coordinate frames are defined as follows: The
camera coordinate frame OcXcY cZc, the world coordi-
nate frame OwXwY wZw, and the model coordinate frame
OmXmY mZm (which is an auxiliary coordinate frame shar-
ing its origin with OwXwY wZw). The rotation of the camera
frame with respect to the model frame is denoted as Rc

m, the
rotation of the model frame with respect to the world frame
is Rm

w , and similarly Rc
w denotes the rotation of the camera

frame with respect to the world frame, as Rc
w = Rc

mRm
w , with

all these three rotations being 3× 3 real matrices.
Given a calibrated camera and three reference lines

Li (i ∈ {0, 1, 2}) with their corresponding 2D projections
on the image plane as li, the camera pose can be solved
by utilizing these known 3D/2D correspondences (Li ⇔ li).
The problem consists of two parts: estimating the rotation
matrix Rc

w and the translation vector t ∈ R3. As will become
clear later, the rotation matrix Rc

w is solved by exploiting the
geometric constraints between the lines. In general, it involves
solving nonlinear equations of 8-th order polynomials. The
translation t is then obtained by solving linear equations.

As illustrated in Fig.1, let Li = (vi, Pi) be a 3D line, where
vi ∈ R3 is the normalized vector giving the direction of the
line and Pi ∈ R3 is any point on the line. The coordinates of
the line vector vi in the world, model and camera coordinate
frames are denoted as vwi , vmi and vci , respectively. Here vwi
is known from the input, vmi = Rm

wvwi , and vci = Rc
mvmi .

Similarly, the coordinates of Pi in the world, model and
camera coordinate frames are denoted as Pwi , Pmi and P ci ,
receptively. Pwi is known from the input, Pmi = Rm

wP
w
i , and
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Fig. 1
THE GEOMETRY OF THE P3L PROBLEM: THE 2D/3D LINE

CORRESPONDENCES AND THE THREE COORDINATE FRAMES.

P ci = Rc
mP

m
i + t. Denote the projection of Li on the image

plane as li, in which pis and pie are the endpoints of li1.
For a given li, its projection plane Πi is determined by the
projection center Oc, li and Li. The normal of Πi is denoted
as ni. The coordinate of ni in the camera frame is denoted as
nci which can be easily calculated from the input li.

By selecting a 3D line L0, we form the model coordinate
frame (OmXmY mZm) whose Zm-axis aligns with v0 and
whose origin is located at the origin of the world frame. The
rotation matrix from the world frame to the model frame can
be determined as Rm

w = [e1, e2,v
w
0 ] where e1 ∈ R3 and

e2 ∈ R3 are one pair of the orthogonal bases of the null space
formed by the linear system vw0

Tei = 0 (i ∈ {1, 2}).
Considering the constraint that the line L0 lies on the

projection plane Π0, the unknown rotation matrix Rc
m can

be parameterized as

Rc
m = R′Rot(X,α)Rot(Z, β) , (1)

in which R′ =

 r′11 r′12 r′13
r′21 r′22 r′23
r′31 r′32 r′33

 is an arbitrary orthogonal

rotation matrix whose first column [r′11, r
′
21, r

′
31]T equals to

nc0, Rot(X,α) denotes a rotation around the X-axis, and
Rot(Z, β) denotes a rotation around the Z-axis. Hence, Rc

m

can be determined by the two rotation angles α and β.
By using the geometric constraint that vci (i = 1, 2) should

be perpendicular to the normal nci of the plane Πi, we have
the following two constraints{

nc1
Tvc1 = nc1

TRc
mvm1 = 0

nc2
Tvc2 = nc2

TRc
mvm2 = 0.

(2)

Letting nc1
TR′ = [n′x1, n

′
y1, n

′
z1], nc2

TR′ = [n′x2, n
′
y2,

n′z2], vm1 = [vx1, vy1, vz1]T and vm2 = [vx2, vy2, vz2]T , and
substituting Eq.(1) into Eq.(2), we have

1The endpoits pis and pie can be chosen as any two points on line li.

{
σ1 cosβ + σ2 sinβ + σ3 = 0

σ4 cosβ + σ5 sinβ + σ6 = 0,
(3)

where

σ1 = vy1 n
′
y1 cosα+ vy1 n

′
z1 sinα+ vx1 n

′
x1

σ2 = vx1 n
′
y1 cosα+ vx1 n

′
z1 sinα− vy1 n′x1

σ3 = vz1 n
′
z1 cosα− vz1 n

′
y1 sinα

σ4 = vy2 n
′
y2 cosα+ vy2 n

′
z2 sinα+ vx2 n

′
x2

σ5 = vx2 n
′
y2 cosα+ vx2 n

′
z2 sinα− vy2 n′x2

σ6 = vz2 n
′
z2 cosα− vz2 n

′
y2 sinα.

By solving Eq.(3), we have

cosβ =
σ2σ6 − σ3σ5
σ1σ5 − σ2σ4

, sinβ =
σ3σ4 − σ1σ6
σ1σ5 − σ2σ4

. (4)

By substituting Eq.(4) into cos2 β + sin2 β = 1, we have

(σ2σ6 − σ3σ5)2 + (σ3σ4 − σ1σ6)2 = (σ1σ5 − σ2σ4)2. (5)

By substituting sin2 α = 1−cos2 α into Eq.(5) and rearranging
the terms, we have

4∑
k=0

uk cosk α = sinα
3∑
k=0

vk cosk α, (6)

where uk ∈ R and vk ∈ R are coefficients which can be
computed from n′xi, n

′
yi, n

′
zi, vxi, vyi and vzi for i = 1, 2.

Taking the squares of both sides of Eq.(6) and letting x =
cosα, an eighth order polynomial can be constructed as:

f(x) =

8∑
k=0

δkx
k = 0, (7)

where δk ∈ R can be computed from uk and vk:

δ0 = u20 − v20
δ1 = 2(u0u1 − v0v1)
δ2 = u21 + 2u0u2 + v20 − v21 − 2v0v2
δ3 = 2(u0u3 + u1u2 + v0v1 − v1v2 − v0v3)
δ4 = u22 + 2u0u4 + 2u1u3 + v21 + 2v0v2 − v22 − 2v1v3
δ5 = 2(u1u4 + u2u3 + v1v2 + v0v3 − v2v3)
δ6 = u23 + 2u2u4 + v22 − v23 + 2v1v3
δ7 = 2(u3u4 + v2v3)
δ8 = u24 + v23 .

(8)
Eq.(7) is called the P3L polynomial. Although for lines in
some special configurations (such as orthogonal, parallel or
intersection), a lower order of polynomial may be derived as
discussed in the sequel (Sec.III-E), the P3L polynomial will
not be lower than 8-th order for three spatial lines in general
configurations. It is worth to point out that we decompose the
overall rotation from the world frame to the camera frame
into a sequence of simple rotations by an approach different
from [10], [13]. Our decomposition is simpler than theirs
despite the fact that the same constraints are enforced: the
orthogonal constraint that the plane normal is orthogonal to
the line direction, and the triangular constraint that the square
sum of sine and cosine equals to 1.
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Fig. 2
GEOMETRY OF THE P3P PROBLEM

B. Solving translation vector

After solving the rotation matrix, the translation vector t can
be solved using the constraint that P ci should be perpendicular
to nci , we have

nci
T (Rc

mP
m
i + t) = 0 (i = 0, 1, 2),

based on which we have

N t = −

 nc0
TRc

mP
m
0

nc1
TRc

mP
m
1

nc2
TRc

mP
m
2

 , (9)

where N = [nc0 nc1 nc2]. In general cases, Rank(N) = 3, the
translation vector can be solved from Eq.(9). In a specific case
that the three lines pass through a joint point in 3D space, or
the projections of the lines form a junction, det(N) = 0 and
t has infinite amount of candidate solutions.

In the P3L problem, the rotation and translation are solved
sequentially. Note that the rotation can be estimated even
when the translation cannot be solved. Besides, the Euclidean
transformation defined by (Rc

w, t) may transform the scene in
front of the camera or behind it. Only the candidate solutions
which transform the scene in front of the camera are of
interest.

C. Comparing the P3P and P3L problems

The well-known P3P problem is equivalent to a specific P3L
sub-case that lines lie on a plane and form a triangle (refer to
Sec.III-E, case A.2.c). As can be seen in Fig.2, three lines Li
(i ∈ {0, 1, 2}) lie on a plane, and their intersections are P01,
P12 and P02. The intersections of li are p01, p12 and p02. It
can be easily proven that the feasible solutions of P3L(Li, li)
satisfy the constraints of P3P (Pij , pij), and vice versa.

It is known that the maximum number of candidate solutions
of P3L is 8, while that of P3P is 4. In order to discuss P3P and
P3L in the same framework, let’s consider the P3P equation
system first [29]: t20 + t21 − t0t1 cosα01 = d201

t21 + t22 − t1t2 cosα12 = d212
t22 + t20 − t2t0 cosα20 = d220,

(10)

in which ti denotes the distance of point Pi(i = 0, 1, 2) to
camera centre, dij denotes the length of edge PiPj , and αij
denotes the angle ∠PiOcPj . According to Bezout Theorem
[30], the P3P equation system has at most 8 candidate so-
lutions. It is noteworthy that the candidate solutions of P3P
are symmetric. For any t = [t0, t1, t2]T being the solution of
Eq.(10), t̄ = −t is also a solution. By utilizing the symmetric
property, the parameter space of P3P can be divided into 2
parts (t0 > 0 and t0 < 0), and the complexity of Eq.(10) can
be easily reduced to form a 4-th order polynomial [31].

Inspired by the symmetric property of P3P, let’s consider
a question: Can we find a symmetric structure in the P3L
parameter space to reduce the order of the P3L polynomial?
The symmetric property of P3L is closely related to the
parameterization of the solution and the 3D configuration of
lines, which is discussed in what follows.

D. Symmetric property of the P3L problem

To investigate the symmetric property of the P3L problem,
the solution of P3L can be parameterized into two different
forms:

(1) Rotation matrix Rc
w: Parameterize the rotation matrix.

For example, Rc
w can be parameterized as Euler angles,

Quaternion or CGR parameter [32], [24]. In our solution for
the general P3L polynomial, two rotation angles α and β are
used to parameterize Rc

w.
(2) Direction of the lines Vc: Parameterize the line direction

vectors Vc = [vc0,v
c
1,v

c
2] in the camera frame.

Rc
w is the final solution of P3L, while Vc is the intermediate

solution which contributes to understand the geometry of
the solution intuitively. Denoting the line direction vectors
in the world frame as Vw = [vw0 ,v

w
1 ,v

w
2 ], according to

the Euclidean transform, we have Vc = Rc
wVw. Since the

direction of a line is symmetric, i. e. (vi, Pi) and (−vi, Pi)
represent the same line, we have

VcM = ΩVw,

where Ω is a possible rotation solution, and M is the sym-
metric kernel which has 8 possible combinations:

M ∈


diag[ 1, 1, 1], diag[ 1,−1,−1],
diag[−1,−1, 1], diag[−1, 1,−1],
diag[−1, 1, 1], diag[ 1, 1,−1],
diag[1,−1, 1], diag[−1,−1,−1]

 . (11)

Here, diag[m1,m2,m3] means a diagonal matrix. Assuming
that Vw is a full rank matrix, the candidate solution for Rc

w

is

Ω = VcM(Vw)−1. (12)

In different line configurations, only a subset of matrices in
Eq.(11) ensures that Ω is a rotation matrix in SO(3) [33], i. e.

SO(3) = {Ω ∈ <3×3|ΩTΩ = I,det(Ω) = 1}.

From Eq.(12), we have

det(Ω) = det(VcM(Vw)−1) = det(M) det(Rc
w).
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Since the determinant of a rotation matrix equals 1, we have
det(M) = 1. Therefore, the number of possible M is reduced
to 4:

M ∈
{

diag[ 1, 1, 1], diag[1,−1,−1],
diag[−1,−1, 1], diag[−1, 1,−1]

}
. (13)

The 3D configuration of Vw is closely related to the
symmetric kernels M in Eq.(12). Our primary results are as
follows, and the proofs of following lemmas can be found in
Sec.I of the supplementary material:

Lemma 1: When vw0 ⊥ vw1 , vw0 ⊥ vw2 and vw1 ⊥ vw2 ,
the symmetric kernels in Eq.(12) are exactly the 4 possible
candidates given in Eq.(13).

Lemma 2: When rank(Vw) = 3, vw0 ⊥ vw1 , vw0 ⊥ vw2
and vw1 6⊥ vw2 , the symmetric kernel in Eq.(12) belongs to a
further reduced set M ∈ {diag[1, 1, 1], diag[1,−1,−1]}.

Lemma 3: When rank(Vw) = 3, vw0 6⊥ vw2 , vw1 6⊥ vw2 , the
symmetric kernel in Eq.(12) can only be M = diag[1, 1, 1].

Lemma 4: When rank(Vw) = 2 and vw0 6‖ vw1 6‖ vw2 , two
full rank matrices can be constructed as:

V̂c = [vc0 × vc1, vc0, vc1], V̂w = [vw0 × vw1 , vw0 , vw1 ],

The rotation solution is Rc
w = V̂cM(V̂w)−1 with symmetric

kernel M ∈ {diag[1, 1, 1], diag[1,−1,−1]}.

E. A complete 3D configuration analysis

The complexity of the P3L polynomial and the geometrical
attribute of the P3L solution are closely related to the 3D
configuration of lines. In this section, we will provide a
complete 3D configuration analysis from three aspects:

(1) Junction: The complexity of the P3L polynomial is
closely related to the condition that whether the three lines
pass through a spatial joint point, or the projections of the
lines form a junction.

(2) Rank(Vw): The rank of Vw = [vw0 ,v
w
1 ,v

w
2 ] has a

direct impact on the number of P3L candidate solutions. When
Rank(Vw) = 1, all three lines are parallel in space and the
P3L problem has infinite solutions. Therefore, we consider
only two valid configurations: (i) Rank(Vw) = 3 and (ii)
Rank(Vw) = 2.

(3) Spatial relationship: The spatial relationships (orthog-
onal or parallel) between the 3D lines directly affect the
symmetric property of the P3L solution space.

In what follows, we first divide the 3D configuration space
of P3L into two classes according to whether the three lines
form a junction. Each class is further split into two subspaces
based on Rank(Vw). Each subspace is then partitioned into
several cases, where each case addresses a distinct scenario
hinged on the relationship among the 3D lines. For each case,
we analyze the complexity of the P3L polynomial and the
maximum number of candidate solutions of Rc

w by parame-
terizing the rotation matrix. In the following classification, the
line direction vectors are expressed as vi, vj or vk, where
i, j, k ∈ {0, 1, 2} are indexes of the lines.

To emphasize the main results of the configuration analysis,
in Tab.I we first summarize the maximum number of candidate
solutions of the rotation matrix Rc

w and the order of the

simplified P3L polynomial. Detailed derivation can be found
in the rest of this section as well as in Sec.II & III of the
supplementary material.

Class A: No Junction
In this class, three lines do not form a junction in space

or on the projection plane. Here the rotation matrix and the
translation vector can be solved. The cases discussed in class
A are listed in the first part of Tab.I. To illustrate the main
strategy employed in our analysis, the solution of Rc

w for case
A.1.a is presented below.

The solution of Rc
w: Since three lines are orthogonal to

each other in case A.1.a, we can form a model coordinate
frame in which vm0 aligns to Zm-axis, vm1 aligns to Xm-
axis and vm2 aligns to Y m-axis. We have vm1 = [1, 0, 0]T and
vm2 = [0, 1, 0]T . The constraint equation (3) can be simplified
to {

σ1 cosβ + σ2 sinβ = 0

σ4 cosβ + σ5 sinβ = 0,
(14)

with 
σ1 = n′x1
σ2 = n′y1 cosα+ n′z1 sinα

σ4 = n′y2 cosα+ n′z2 sinα

σ5 = −n′x2.

By solving Eq.(14), we have

σ1σ5 − σ2σ4 = 0. (15)

By substituting sin2 α = 1− cos2 α into it, we have

u2 cos2 α+ u0 = v1 cosα sinα.

Taking the squares of both sides and defining x = cos2 α, a
2-nd order polynomial can be constructed as:

f(x) = δ2x
2 + δ1x+ δ0 = 0.

There exist at most two feasible solutions for cos2 α and at
most four feasible solutions for cosα. For each candidate
solution of α, there exist two symmetric solutions for β as
Eq.(14) is homogeneous. Therefore, Rc

w has at most 2×2×2 =
8 feasible solutions.

The P3L solution space for the other cases in class A can
be analyzed similarly following the same strategy as above.
Detailed analysis of these cases can be found in Sec.II of the
supplementary material.

Class B: Junction
In this class, three lines all pass through a spatial joint point,

or the projections of the lines meet at a junction. The rotation
matrix can be solved, however the translation vector cannot
be determined.

The parameterization of Rc
w for the junction class is similar

to that of the non-junction class. The difference is that here we
introduce a virtual camera C ′ (similar to the virtual camera in
[34]) to simplify the complexity of the P3L polynomial. Let
pcjoint denote the junction of the three projected lines on the
image plane. Now we create a virtual camera frame C ′ whose
image plane is perpendicular to the ray from the camera center
Oc to the joint point pjoint, and its Y c

′
-axis aligns to Π0 as

shown in Fig.3. The virtual camera C ′ shares its origin with
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TABLE I
SUMMARY OF THE 3D CONFIGURATION ANALYSIS. “#P3L” DENOTES THE ORDER OF THE SIMPLIFIED P3L POLYNOMIAL, “#Rc

w” DENOTES THE

MAXIMUM NUMBER OF CANDIDATE SOLUTIONS OF Rc
w . THE INDEXES OF LINES ARE i, j, k ∈ {0, 1, 2}.

Classes Configurations Case ID Spatial Relationship #P3L #Rc
w

N
o

Ju
nc

tio
n

Rank(Vw) = 3
A.1.a vwi ⊥ vwj , vwi ⊥ vwk , vwj ⊥ vwk 2 8
A.1.b vwi ⊥ vwk , vwj ⊥ vwk , vwi 6⊥ vwj 4 8
A.1.c vwi 6⊥ vwk , vwj 6⊥ vwk 8 8

Rank(Vw) = 2
A.2.a vwi ‖ vwj , vwi ⊥ vwk 1 4
A.2.b vwi ‖ vwj , vwi 6⊥ vwk 2 4
A.2.c vwi 6‖ vwj 6‖ vwk 4 8

Ju
nc

tio
n Rank(Vw) = 3

B.1.a vwi ⊥ vwj , vwi ⊥ vwk , vwj ⊥ vwk 1 8
B.1.b vwi ⊥ vwk , vwj ⊥ vwk , vwi 6⊥ vwj 2 8
B.1.c vwi 6⊥ vwk , vwj 6⊥ vwk 4 8

Rank(Vw) = 2
B.2.a vwi ‖ vwj , vwi ⊥ vwk 1 4
B.2.b vwi ‖ vwj , vwi 6⊥ vwk 1 4
B.2.c vwi 6‖ vwj 6‖ vwk 2 8

'cY
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jop

Normalized 
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Virtual
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cZ
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cY

'cX

'cZ

int

c

jop

'

0
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0
Π

Fig. 3
ILLUSTRATION OF THE VIRTUAL CAMERA FRAME. THE RAY Ocpcjoint IS

PERPENDICULAR TO THE VIRTUAL IMAGE PLANE AND l′0 IS PARALLEL TO

Y c′ -AXIS.

C. The projection of the joint point in C ′ is denoted as pc
′

joint

which is at the principal point of the virtual camera. Let the
normal vector of Πi in C ′ be nc

′

i , we have nc
′

0 = [1, 0, 0]T ,
nc

′

1 = [n′x1, n
′
y1, 0]T , nc

′

2 = [n′x2, n
′
y2, 0]T , because the optical

axis of C ′ passes though the junction. The rotation matrix Rc
c′

and nc
′

i can be directly calculated from the input.
Similar to Sec.III-A, a model coordinate frame

OmXmY mZm is created whose Zm-axis aligns with
v0. The solution is Rc

w = Rc
c′R

c′

mRm
w , where Rc

c′ and Rm
w

can be calculated easily. To solve Rc′

m, we note that it can be
parameterized as

Rc′

m = Rot(X,α)Rot(Z, β) , (16)

where Rot(X,α) denotes a rotation around the X-axis, and
Rot(Z, β) denotes a rotation around the Z-axis. By using the
geometric constraint that vc

′

i (i = 1, 2) should be perpendicular

to the normal of Πi, we have{
nc

′

1 · vc
′

1 = nc
′

1

T
Rc′

mvm1 = 0

nc
′

2 · vc
′

2 = nc
′

2

T
Rc′

mvm2 = 0.
(17)

The primary difference between class B and class A is
that the third element of nc

′

i equals zero (i. e. n′zi = 0)
in class B, so that the complexity of the P3L polynomial
can be effectively simplified. The cases discussed in class B
are listed in the second part of Tab.I. Detailed analysis of
the P3L solution for this class is provided in Sec.III of the
supplementary material.

F. Discussion of the P3L solution

In this section we provide a complete analysis on three
spatial lines configurations, which also connects the previous
approaches under a unified framework: In [15], the situation
of three lines in Z-shape configuration is addressed which
turns to be a special situation of case A.2.b. Our derivation
is also much simpler than the method in [15]. When the three
lines form a triangle in space [35], it can be considered as a
special situation of case A.2.c. In our case A.2.c, three lines
are parallel to a common plane, but they are not necessary
lying on the same plane. The method in case A.2.c is more
general than P3P, but with the same complexity (a quartic
polynomial), which offers an alternative approach for the P3P
problem. Caglioti [14] focuses on the situation of three lines
lying on the same plane and intersecting at a point to form
a junction, which is a special situation of case B.2.c. In our
case B.2.c, we find the maximum number of feasible rotation
solutions is eight, while in [14] only two candidate solutions
of the rotation matrix are obtained as it ignores the symmetric
property of the line direction.

It must be pointed out that in our analysis, we only consider
the line configurations in 3D space, their projections in the
image plane are not completely addressed because elaborating
all the situations would be cumbersome. In [29], the authors
showed how complex it could end up with by enumerating
all the configurations of three points and their projections for
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P3P, and they even gave up to present all their results of the
two step geometric approach (c.f. Sec.5 of [29]). Since P3P
is only a very special case of the more general P3L problem
considered in our context, one can imagine how tedious it
will be to enumerate all the configurations of lines both in
2D and 3D. Furthermore, at this point only the configuration
of three lines are considered. [36] discussed some critical sets
of n(> 3) line configurations and their maximum number of
candidate solutions. In what follows we will focus on the more
general scenarios of n > 3.

IV. PERSPECTIVE-N-LINE ALGORITHMS

In this section, we propose an Accurate Subset-based PnL
solution (ASPnL), a series of linear-formulation-based PnL
solutions, and an efficient O(1) camera pose refinement
method.

A. Accurate Subset-based PnL Solution

Select a rotation axis to form the model frame: Given n
reference lines Li (i = 1, . . . , n) which are projected onto
the normalized image plane as li, we firstly select a line
Li0 from {Li} as a rotation axis v0, based on which the
model coordinate frame OmXmY mZm is created (see Fig.1).
Usually the line with the longest projection length |pispie| is
selected as the rotation axis because longer edges are less
affected by noise on their endpoints. Furthermore, the line
with the second longest projection length is selected as an
auxiliary line Li1, so as to construct a polynomial equation
system together with the rest of lines. The auxiliary line is
introduced to keep the complexity of the proposed ASPnL
algorithm linear in the number of line correspondences.

Determining the rotation axis: The line set {Li} can
be divided into n − 2 triplets {Li0Li1Lj |j = 1, . . . , n; j 6=
i0 & j 6= i1}. According to Eq.(7), each triplet yields an eighth
order polynomial:

f1(x) =
∑8
k=0 δ1kx

k = 0

f2(x) =
∑8
k=0 δ2kx

k = 0

· · ·
fn−2(x) =

∑8
k=0 δ(n−2)kx

k = 0.

(18)

Instead of directly solving the nonlinear equation system
(18) by the linearization technique [22] that might lead to
an inconsistent result from redundant equations, we explore
the local minima of the system in terms of least-square
residuals: A cost function F is defined as a square sum of
the polynomials in Eq.(18), F =

∑n−2
i=1 f

2
i (x). The minima

of F can be identified by finding the roots of its derivative
F ′ =

∑n−2
i=1 fi(x)f ′i(x) = 0. F ′ is a 15-th order polynomial

which can be easily solved by the eigenvalue method [37].
Remark 1: The 16-th order polynomial F has at most eight

local minima.
Proof: Assuming F has m stationary points, in which

there are m1 minima and m2 maxima, m1+m2 ≤ m. As there
exists at least one maximum between two minima, we have
m1−1 ≤ m2. As the stationary points of F are the real roots
of F ′, we have m ≤ 15. Therefore, 2m1−1 ≤ m1+m2 ≤ 15,
and we have m1 ≤ 8.

In general, there are only a few real roots among the min-
ima. These real roots are chosen as the candidate solutions. As
soon as x is solved, the rotation angle α around the X-axis in
Eq.(1) can be calculated and the rotation axis v0 in the camera
frame can be determined, i.e. vc0 = R′Rot(X,α) [0, 0, 1]T .
The remaining unknown variables are the rotation angle β
around the axis v0 and the translation vector t.

Solving the rotation angle and the translation vector:
When the rotation axis v0 (i.e. Zm axis of the model coor-
dinate frame) is determined, from Eq.(1), the rotation matrix
from the camera to the model coordinate frame Rc

m can be
expressed as:

Rc
m = R̄Rot(Z, β)

=

 r̄11 r̄12 r̄13
r̄21 r̄22 r̄23
r̄31 r̄32 r̄33

 c −s 0
s c 0
0 0 1

 , (19)

with R̄ = R′Rot(X,α), c = cosβ and s = sinβ. Similar
to the solution of P3L in Sec.III-A, we have the following
constraints

nci
TRc

mvmi = 0, nci
T (Rc

mP
m
i + t) = 0, (20)

where t = [tx, ty, tz]
T . For n lines, by substitut-

ing Eq.(19) into Eq.(20) and stacking these constraints,
we get 2n homogeneous linear equations with parameter
vector [c, s, tx, ty, tz, 1]T . Letting nci = [nxi, nyi, nzi]

T ,
(nci

T R̄) = [n̄xi, n̄yi, n̄zi], Pmi = [pxi, pyi, pzi]
T and vmi =

[vxi, vyi, vzi]
T , we have:[

U1 U2

] [
c s tx ty tz 1

]T
= 0, (21)

in which

U1 =


· · · · · ·

n̄xivxi + n̄yivyi n̄yivxi − n̄xivyi
n̄xipxi + n̄yipyi n̄yipxi − n̄xipyi

· · · · · ·

 ,

U2 =


· · · · · · · · · · · ·
0 0 0 n̄zivzi
−nxi −nyi −nzi n̄zipzi
· · · · · · · · · · · ·

 .
The rotation angle β and the translation vector t can be

estimated by solving this linear system in Eq.(21) with SVD.
Then, the rotation matrix from the camera frame to the world
frame is computed as Rc

w = Rc
mRm

w . The estimated rotation
matrix Rc

w is further refined using the method described in
Sec. IV-C and the translation vector t can be determined by
Eq.(27). Then we have a few candidate solutions correspond-
ing to the minima of the polynomial system in Sec.IV-A. For
each candidate, we evaluate its orthogonal error

Eor =
n∑
i=1

(
nci
T Rc

w vwi

)2
. (22)

and select the one with the smallest Eor as our final solution.
Discussion: In Sec.III-E, a series of P3L polynomials are

derived for distinct configurations. If the line configuration
is known, we can simplify the complexity of the polynomial
system. For example, for Manhattan world configuration where
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A SIMPLIFIED ILLUSTRATION OF THE LOCAL MINIMA OF THE PNL

PROBLEM WITH RESPECT TO α. fi DENOTES THE P3L POLYNOMIAL IN

EQ.(18). THE CURVES OF f2i AND F = Σf2i ARE PLOTTED. THE LOCAL

MINIMA OF F ARE RELATED TO THE SOLUTIONS OF fi .

all spatial lines are either parallel or orthogonal to each other,
the polynomials of case A.1.a and case A.2.a can be employed
to simplify the cost function F which leads to at most two
local minima. For planar configuration where all spatial lines
lie on a plane, the polynomial of case A.2.c can be employed
to reduce the maximum number of local minima to four. For
the joint configuration, where all lines form a junction, the
polynomial of case B.1.c can be employed to produce at most
four local minima. In general, without constricting the spatial
lines to any specific configuration, the general P3L polynomial
of 8-th order can be used to form the cost function F and to
find the global minimum as the final solution.

The philosophy of the proposed ASPnL approach is closely
related to the previous works for perspective-n-point problem
[38], [35], [39], in which n points are divided into a set
of triplets, then unreasonable solutions are eliminated by
examining consistency among the triplets’ solutions. This idea
can be regarded as a “bottom up” approach. In [38], [35],
all 3-point subsets are solved individually, then a random
sampling scheme or the Hough transform method are used
to find the most consistent solution. Meanwhile [38] and [35]
fail to incorporate the global information of all the n points
in an equation system for a more accurate result. In [39], the
P3L polynomials of the subsets are stacked together to form a
system of nonlinear equations, and a linearization technology
is used to solve the equations, however the local minimum
problem stemming from the underlying nonlinear equations is
not considered.

On the other hand, the key parameter directly related to
the multiple candidate solutions of P3L and the local minima
of PnL is the rotation angle α. To illustrate the relationship
between the candidate solutions of the P3L polynomial fi in
Eq.(18) and the local minima of the cost function F = Σf2i ,
let’s consider a simplified case which contains only two 3-
line subsets with corresponding P3L polynomials f1 and f2.
Assuming that each fi has only two local solutions: the
solutions of f1 are (αa1 , α

b
1) , and the solutions of f2 are

(αa2 , α
b
2). The curves of f21 , f22 and F = Σf2i are plotted in

Fig.4. Clearly the local minima of F depend on the solutions

of fi. Moreover, the local minimum of F locating between
αa1 and αa2 is lower than the other local minimum locating
between αb1 and αb2, despite the fact that the individual values
of f1(αa1), f1(αb1),f2(αa2), and f2(αb2) are all the same. This
is because the distance between αa1 and αa2 is smaller, which
indicates these two triplets are more agreeable to each other. In
practice, fi has at most eight possible solutions, and F = Σf2i
has at most eight local minima accordingly (see Remark.1).
These local minima of F are examined one by one, so that an
optimal solution can be ensured as the output of our ASPnL
method.

B. Linear-formulation-based PnL Solutions

PnL problem is closely related to the well studied PnP
problem. Recently, the state-of-the-art PnP solver OREPnP [8]
has been shown to be robust against not only image noise but
also outliers. Meanwhile most existing PnL solvers are not
as stable to outliers. This inspires us to propose a series of
approaches based on linearized PnL formulation, among them
several are quite robust to outliers. We start by revisiting the
similarity between PnL and PnP problem.

PnP Linear Formulation: Let a 3D reference point be
Pw
i = [xwi ywi zwi ]T in the world frame, which is denoted

as Pc
i = [xci y

c
i z

c
i ]
T in the camera frame. The corresponding

2D projection of the point on the image plane is ui = [ui vi]
T .

By perspective projection constraint we have λiui
λivi
λi

 = A

 xci
yci
zci

 , (23)

where λi ∈ R is an unknown scaling factor, and A is a 3× 3
projection matrix. By substituting the third row of (23) into
the first two rows, the scaling factor λi can be eliminated
and we are left with two constrains equations for each point
correspondence Pi ↔ ui. To solve this problem, the unknown
camera pose can be parametrized in two forms:

(i) The camera pose can be parameterized by a 3 × 3
rotation matrix Rc

w and a 3 × 1 translation vector t, which
leads to a 3D point Pc

i = Rc
w Pw

i + t. The elements in
Rc
w and t can be vectorized to form an unknown vector

x = [r1 r2 · · · r9 tx ty tz]T of size 12 × 1 (where ri are the
elements of Rc

w in column-major order). By concatenating
constraint equations of n point correspondences, a linear
system is obtained

M x = 0, (24)

where M is a 2n × 12 matrix, and every two rows of M
corresponds to a projection constraint defined in Eq.(23).
The result of Eq.(24) is obtained with the standard DLT
method [21].

(ii) The camera pose can also be expressed as four control
points {Cc

j}, j = 1 · · · 4 as in [5], and each 3D point Pc
i

can be expressed as barycentric coordinates αij , i.e. Pc
i =∑4

j=1 αijC
w
j . By concatenating the coordinates of control

points {Cc
j} we have a vector x = [CT

1 · · ·CT
4 ]T of size 12×1.

It yields a linear system with the same form of Eq.(24) that
uncovers the linear formulation of [5], [8].
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PnL Linear Formulation: Let the endpoints of the ith 3D
reference line be (Pw

i ,Q
w
i )2 in the world frame and (Pc

i ,Q
c
i )

in the camera frame. Camera observation of the line can be
expressed as a projection plane passing through the camera
center and the line. Let the normal of the ith projection plane
be ni, and we have the two constraints for each line{

nTi Pc
i = 0

nTi Qc
i = 0.

(25)

Similar to PnP problem, we have the following two options
to construct a linear system for PnL:

(i) The camera pose can be parameterized as rotation R and
translation t. We have Pc

i = Rc
w Pw

i +t and Qc
i = Rc

w Qw
i +t.

By vectorizing the elements in Rc
w and t, and concatenating

the constraint equations of n line correspondences, we have a
linear system of the same form as Eq.(24).

(ii) Inspired by [5], [8], we express the end points of a
line by using barycentric coordinates Pc

i =
∑4
j=1 αijC

w
j

and Qc
i =

∑4
j=1 βijC

w
j . By concatenating the coordinates

of control points {Cc
j} we have an unknown vector x =

[CT
1 · · ·CT

4 ]T of size 12× 1 , which yields a linear system in
the same form as Eq.(24).

Null Space and Solution: The solution of the linear system
Eq.(24) resides in the null space of M. In noise free case, the
rank of null-space of M is one for n ≥ 6. Meanwhile in real-
world application, the rank of null-space of M could be zero
due to noise and outliers. Furthermore, the solution is supposed
to satisfy the geometric constraints among the elements of x.
There exist several strategies to solve M x = 0, with the two
commonly used ones listed below:

(a) The eigenvector corresponding to the smallest eigenvalue
is considered as the solution of x, which is a least square solu-
tion of Eq.(24) without considering the geometric constraints
among the elements of x, i. e. the same as DLT [21].

(b) A subset of eigenvectors {Γk} with the smallest eigen-
values are considered as the “effective null space” [5]. With the
size of effective null space being 1, 2 , 3 or 4, the solution is
then expressed as x =

∑
k ηkΓk as a linear combination of the

effective null space. The coefficients ηk can be determined by
an optimization scheme to enforce the geometric constraints
among the elements of x, i.e. in [5] the constraints are the
pair distances between the control points. A discussion about
the size of effective null space can be found in Sec.V of the
supplemental material. A maximum number of 4 eigen vectors
are suitable for PnL problem. It is interesting to mention
that for PnP problem of multi-camera system, the maximum
number of 5 null space vectors yields good result, and more
details can be found in [40].

Outlier Removal: Inspired by [8], we design an outlier
removal scheme for PnL problem, where the camera pose is
iteratively optimized by minimizing the following objective

x = arg min
x

‖W(x)M x‖2

s.t. ||x||2 = 1,

where W(x) = diag(· · ·wi, wi, · · · ) is a diagonal matrix of
size 2n × 2n whose diagonal elements depend on x. wi can

2The endpoits (Pw
i ,Q

w
i ) can be chosen as any two points on line Li.

be either 1 or 0, where wi = 1 means that the corresponding
2D/3D line correspondence is an inlier and wi = 0 means
the correspondence is an outlier. Let the residual vector be
M x = [τ1 · · · τ2n]T , and εi(x) = ||[τ2i−1 τ2i]|| be the residual
of ith line correspondence given x. The elements of W(x) are
updated as follows

wi =

{
1 if εi(x) ≤ τ∗
0 otherwise

where τ∗ is a threshold to determine whether a correspondence
is an inlier or an outlier. We set τ∗ = ρQκ%(ε1 · · · εn), where
ρ is a real number coefficient, and Qκ% denotes a value to
threshold off the lowest κ% data from the majority 1 − κ%
data. Empirically we found that ρ = 2 and κ = 30 yield
satisfying robustness. x and W(x) are updated iteratively
until the target function ||W(x)M x||2 cannot be further
minimized. Empirically the algorithm often converges within
5 iterations.

A series of new Linear-formulation-based PnL approaches
are introduced here by combining the options mentioned
above.3 They are
(1) LPnL DLT LS: Here x is parameterized using Rc

w,
t, and the linear system M x = 0 is solved by the least
square solver. This approach corresponds to the standard DLT
approach for the PnP problem [21].
(2) LPnL DLT ENull: Here x is parameterized using Rc

w, t,
and then be solved by the effective null space solver.
(3) LPnL Bar LS: Here x is parameterized with the
barycentric coordinates, and the linear system is solved by
the least square solver.
(4) LPnL Bar ENull: Here x is parameterized with the
barycentric coordinates, and the linear system is solved by
the effective null space solver. This approach corresponds to
EPnP+GN [5] for the PnP problem.
(5) RLPnL LS: This is the robust variant of LPnL Bar LS4

with outlier removal module. The geometric constraints
among the elements of x are not enforced in the iterations as
in [8]. This approach is corresponding to REPPnP [8] for the
PnP problem.
(6) RLPnL ENull This is the robust variant of
LPnL Bar ENull with outlier removal module. The
geometric constraints of x are enforced in each iteration.

Extension to Lines and Points: As the linear formulations
of PnL and PnP have the same form of Eq. (24), our LPnL
method can be easily extended to deal with lines and points
simultaneously by concatenate the linear system of lines and
points. Then the problem can be solved the same as mentioned
above.

C. Camera Pose Refinement

It is more accurate (and unfortunately also more time
consuming) to optimize the rotation and translation parameters
simultaneously than to optimize the rotation only [18]. By

3Please refer to supplemental material Sec. IV for pseudo-code.
4Generally speaking, the performances of Bar based methods are simi-

lar/better than that of DLT based methods. Therefore, in the robust variant
RLPnL we consider only Bar based methods for concise.
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expressing the translation vector in term of the rotation param-
eters in a least-square sense, the optimization can be efficiently
performed on only three rotation parameters. Moreover, it can
be used for both n-lines and n-points. We parameterize x using
rotation and translation, and the linear system can be split into
two parts [

A B
] [ r

t

]
= 0, (26)

Eq.(26) can be written in the following form A r = −B t,
and the least-square solution of t is

t = −(BTB)−1BTA r, (27)

Substituting Eq.(27) into Eq.(26), we have

D r = 0, (28)

where D = A−(BTB)−1BTA is a 2n× 9 matrix.
Let the rotation Rc

w = R̃c
w∆R, where R̃c

w is the initial
rotation, and ∆R is the compensation rotation. We express
∆R using CGR parameterization [24], [32]. It is known that
the CGR parameter degenerates when the rotation angle is
π/2, whereas it is stable in our application as R̃c

w is supposed
to be near Rc

w and the rotation angle of ∆R is small.
Let s = [s1 s2 s3]T be the CGR parameter vector5, we

have ∆R = ∆R̄/(1 + sTs), where the elements of ∆R̄ are
vectorized in column major order as [s21−s22−s23 +1, 2s1s2 +
2s3, 2s1s3−2s2, 2s1s2−2s3, −s21 +s22−s23 +1, 2s2s3 +2s1,
2s1s3 + 2s2, 2s2s3 − 2s1, −s21 − s22 + s23 + 1]. Then a cost
function F is constructed as the squared sum of Eq.(28)

F (s1, s2, s3) = rTDTD r.

As r can be expressed using the CGR parameter, F contains
three unknowns (s1 s2 s3) of order 4, thus the solution can be
obtained by optimizing the cost function F . The optimization
process can be efficiently performed using the Newton method:
(1) initialize with s0; (2) for each iteration k, compute the
gradient vector ∇F and the Hessian matrix H; (3) iteratively
update sk+1 = sk−H−1∇F until convergence or the iteration
number exceeds a threshold. This iterative refinement process
can be carried out in a very short time, because no matter how
large the number of lines n is, the size of DTD is constant,
and the complexity for each iteration is O(1).

V. EXPERIMENTS

A. Experiments with synthetic data

Given a virtual perspective camera with image size 640 ×
480 pixels and focal length 800 pixels, the 3D reference lines
are randomly generated in the camera coordinate frame. In the
centred case, the 2D projections of the end-points of the 3D
lines spread in region [0, 640]× [0, 480] pixels on image plane.
In the uncentred case, the 2D projections of the end-points
of the 3D lines scatter in region [0, 320] × [0, 240] pixels on
image plane. The depth of the lines are randomly distributed in

5For the unified PnP problem, Kneip et al. [28] proposed a geometrically
optimal quaternion-based formulation which can be extended for PnL refine-
ment. Details can be found in Sec.VI of the supplemental material.

range [4, 8] m in the camera coordinate frame. Different levels
of random noise are added to the end point locations of the
projected image lines. The outliers are incorrect 3D/2D corre-
spondences generated by randomly selecting correspondences
between the 3D and 2D features. All the plots are created by
running 500 independent simulations. The implementations of
our proposed methods are available on website.6

The error metric is defined the same as in [7], [8]. Rtrue
and ttrue denotes the ground truth rotation and translation,
and R, t the estimated results. Rotation error is defined as
ErrR = max{angle(Rtrue(:, i),R(:, i)} (i = 1, 2, 3), where :
follows the Matlab indexing notation, and angle(·, ·) denotes
the measured angle distance between the ith column vectors
of Rtrue and R. Translation error Errt = ||t−ttrue||/||ttrue||.
An estimation is counted as correct when ErrR < 5 deg, and
Errt < 5%.

The following methods are compared: Ansar [22], Bro-
nislav [41], Mirzaei [25], ASPnL described in Sec. IV-A, and
the Linear-formulation-based solutions described in Sec. IV-B.

(i). Centred and Uncentred Cases: The accuracy of the
compared methods in outlier-free case is shown in row (a)
and (b) of Fig. 5. Generally speaking, ASPnL is the most
accurate algorithm in both centred and uncentred cases. The
performances of ENull based methods come in second. Exper-
imental results show that the accuracies of LPnL Bar ENull
and LPnL DLT ENull are similar. For the LS based methods,
LPnL Bar LS outperforms LPnL DLT LS. The observation
suggests that the least square solution of the barycentric
coordinate based equation system is better than that of the
DLT based equation system. On the other hand, the effective
null space of both Bar and DLT based equation system are
similar. The accuracies of the LS based methods degenerate
significantly in uncentred case, but the ENull based methods
perform well in both centred and uncentred cases, and it is as
accurate as ASPnL when n > 10. In uncentred case, the pri-
mary difficulty lies in the local minima problem. Experimental
results suggest that the least-square solver is prone to local
minima, while the effective null space solver is an effective
tool to boost the performance of linear-formulation-based PnL
solver against local minima problem. We also observe that
Bronislav achieves relatively higher rotation accuracy than
other LS based methods in uncentred case when n > 16, and
it may due to the advantage of using of Plucker Coordinates.
While Bronislav needs at least 9 lines. (ii). Noisy Small
Line-set: The PnL solutions are prone to be unstable when
the inputs are noisy small line-sets, i.e. n = 4 or 5. As
can be seen in row (c) and (d) of Fig. 5, when n = 4, the
performance of ASPnL is significantly better than others, and
Mirzaei comes in second, meanwhile the rest methods fail.
The correct rate of ASPnL is around 94% when the image
noise σ reaches 10 pixels, and that of Mirzaei is about 77%.
When n = 5, ASPnL, Mirzaei and the ENull based methods
perform robustly, in which ASPnL is the best in both accuracy
and correct rate.

(iii). Outliers: In the outliers case, the following meth-
ods are compared: RANSAC3, RANSAC4, ASPnL, Bro-

6http://xuchi.weebly.com/rpnl.html.

http://xuchi.weebly.com/rpnl.html
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Fig. 5
SYNTHETIC EXPERIMENTAL RESULTS. n DENOTES THE NUMBER OF LINES, AND σ DENOTES THE STANDARD DEVIATION OF IMAGE NOISE. IN ROW (A)

AND (B), THE ACCURACIES OF THE COMPARED METHODS ARE TESTED IN CENTRED AND UNCENTRED CASES BY VARYING n FROM 4 TO 20. IN ROW (C)
AND (D), THE ROBUSTNESS AGAINST NOISY SMALL LINE-SET IS TESTED WITH n = 4 or 5, AND σ VARIES FROM 1 TO 15 PIXELS. IN ROW (E) AND (F),

THE ROBUSTNESS AGAINST OUTLIERS IS TESTED IN CENTRED AND UNCENTRED CASES BY VARYING OUTLIER RATE FROM 5% TO 60%.

nislavAOR [41], Mirzaei, RLPnL LS and RLPnL ENull. In
RANSAC3 our P3L solver is used in the RANSAC strategy,
and in RANSAC4 ASPnL with n = 4 is used. As can be seen
in row (e) and (f) of Fig. 5, ASPnL and Mirzaei are not robust

to outliers, but RLPnL ENull achieves satisfying performance
with reasonable amount of outliers. In the centred case, the
correct rate of RLPnL ENull is 93% with 50% outliers.
In the uncentred case, the performance of RLPnL ENull is
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Fig. 7
RUNNING TIME. IN (A), RUNNING TIME IS TESTED BY VARYING n FROM

10 TO 350 IN OUTLIER-FREE CASE. IN (B), n = 100 AND THE OUTLIER

RATE VARIES FROM 5% TO 60%.

negatively affected, and its correct rate is 90% with 30%
outliers. RLPnL LS is robust with up to 35% outliers in the
centred case, but it cannot deal with the uncentred case. The
performances of RANSAC3 and RANSAC4 are the best, both
have 100% correct rate with upto 60% outliers, but they are
not as efficient as the Linear-formulation-based methods.

(iv). Efficiency: The running time of the compared methods
in outlier-free case is shown (a) of Fig. 7. We can see that
the linear-formulation-based methods are very efficient, and
the running time of ASPnL and Mirzaei grows linear with
respect to n. Ansar is time consuming for large line-set as the
algorithm is O(n2). In outlier case, as shown in (b) of Fig. 7,
the linear-formulation-based methods are the most efficient in
the comparison list. RANSAC3 with our P3L solver is efficient
when the outlier rate ≤ 40%, and its running time increases
to 138 ms when the outlier rate reaches 60%.

B. Using Lines and Points

The experiments for pose estimation from lines and points
are shown in Fig. 6. PnX denotes Perspective-n-X, where “X”
denotes both line and point features. The compared meth-
ods are: LPnX DLT LS, LPnX DLT ENull, LPnX Bar LS,
LPnX Bar ENull, RLPnX LS, and RLPnX ENull. These
methods are corresponding to their PnL counterparts. The
number of features evaluated is n, and in our test 50%
are lines and 50% are points. Fig. 6 (a) shows that in
outlier-free case LPnX Bar LS outperforms LPnX DLT LS
as the Barycentric coordinate is used, while the perfor-
mances of LPnX DLT ENull and LPnX Bar ENull are sim-
ilar. Fig. 6 (b) shows the robustness of the compared meth-
ods against outliers. The correct rate of RPnX Enull slowly
decreases when the outlier rate increases. We observe that
it is helpful to improve the pose estimation performance by
combining point features: In Fig. 5 (e), RLPnL LS endures
35%-40% outliers using only line features, but in Fig. 6 (b),
RLPnX LS endures upto 45% outliers by using points and
lines simultaneously.

C. Experiments with real images

In order to compare the PnL solutions in real situations,
we apply the algorithms on a set of images with known
3D line model. For each image, we extract lines using the
LSD line detector [42], then establish the correspondences
between the image lines and the 3D line model. We test
the compared algorithms by using 4, 5 and all the available
line correspondences. In order to demonstrate the accuracy
of the results, we reproject the 3D line model into the
image by using the estimated camera pose. Fig.8 shows the
reprojection results on a sampled image from the image set.
As shown in Fig.8, when using only four pairs of 2D/3D line
correspondences, only ASPnL robustly estimates the camera
pose, i. e. the 3D line model is correctly projected into the
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Fig. 8
PERFORMANCE EVALUATION ON REAL IMAGE WITH SMALL LINE SET. THE

EXPERIMENTAL RESULTS ILLUSTRATE THE COMPARED PNL SOLUTIONS

FOR REAL IMAGES WHEN USING 4, 5 OR ALL THE AVAILABLE LINE

CORRESPONDENCES. THE RED LINES ARE THE USED 2D LINE SEGMENTS.
THE BLUE LINES ARE THE PROJECTION OF THE 3D LINE MODEL USING

THE ESTIMATED CAMERA POSE.

image. When using five pairs of correspondences, both ASPnL
and Mirzaei estimate the camera pose accurately. If all the
available line correspondences are used, then all the compared
methods can accurately estimate the camera pose. In Sec.VII
of supplementary material, we also test the performance of the
compared methods when outliers exist and the performance of
the proposed algorithm in real time applications.

VI. CONCLUSION

In this paper, we first derive a generic 8-th order P3L
polynomial to characterize the basic building block of PnL
involving only three spatial lines. The solution of this P3L
subproblem is discussed by a complete investigating of three
spatial lines in all possible configuration scenarios. In our anal-
ysis, the 3D configuration of the P3L problem is divided into
12 cases, and the order of the P3L polynomial can be further
reduced to 4, 2 or 1 in different cases. The analysis includes
a number of previous works as special P3L configurations in
a unified framework. The well-know P3P problem can also be
regarded as a special sub-case of case A.2.c in Sec.III-E.

For the n-line problem, we propose a series of PnL solu-
tions, and all of them have their advantages and disadvantages:
(i) ASPnL is accurate and efficient to the noisy small line set
(3 < n ≤ 5) in both centred and uncentred cases as it explores
the local minima. But this solution is not robust to outliers.
(ii) RLPnL LS is robust and very efficient for large line set
(n ≥ 100) with upto 35% outliers in centred case, but it is

not stable in uncentred case. RLPnL ENull is significantly
more robust and accurate than RLPnL LS in both centred
and uncentred cases as it explores the effective null space.
But RLPnL based methods are not suitable for small line-set.
(iii) Besides, though the RLPnL based methods are efficient
and robust to outlier, they are not guaranteed to converge to
a global optimum, and cannot guaranty 100% correct rate
when the outlier rate is more than 40%. Meanwhile the P3L
based RANSAC method achieves 100% correct rate with even
upto 60% outliers, and this observation again highlights the
significance of the P3L solution analysis.

In practice, we suggest a combination of the above men-
tioned methods to fully utilize their advantages: When n < 10
use ASPnL, otherwise use RLPnL ENull. If the outlier rate
is high, P3L based RANSAC is necessary.

The work presented in this paper is of both theoretical and
practical interests. The solution analysis of the P3L problem
reveals the complexity of the problem for different cases with
respect to the maximum number of solutions (Rc

w) and the
order of the simplified P3L polynomial. The proposed PnL
algorithms are suitable for applications that need to handle
either a small or a large number of line correspondences, such
as the line feature based object tracking or camera localization
in augmented reality.
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