
Efficient Hand Pose Estimation from a Single Depth Image

Chi Xu
Bioinformatics Institute, A*STAR, Singapore

xuchi@bii.a-star.edu.sg

Li Cheng
Bioinformatics Institute, A*STAR, Singapore

School of Computing, NUS, Singapore
chengli@bii.a-star.edu.sg

Abstract

We tackle the practical problem of hand pose estimation
from a single noisy depth image. A dedicated three-step
pipeline is proposed: Initial estimation step provides an
initial estimation of the hand in-plane orientation and 3D
location; Candidate generation step produces a set of 3D
pose candidate from the Hough voting space with the help
of the rotational invariant depth features; Verification step
delivers the final 3D hand pose as the solution to an opti-
mization problem. We analyze the depth noises, and sug-
gest tips to minimize their negative impacts on the overall
performance. Our approach is able to work with Kinect-
type noisy depth images, and reliably produces pose esti-
mations of general motions efficiently (12 frames per sec-
ond). Extensive experiments are conducted to qualitatively
and quantitatively evaluate the performance with respect to
the state-of-the-art methods that have access to additional
RGB images. Our approach is shown to deliver on par or
even better results.

1. Introduction
3D hand pose estimation has a wide range of appli-

cations including avatar animation and graphics [22, 24],
robotic design [13], human-computer interaction, and Er-
gonomics. Despite of extensive research efforts as reviewed
in e.g. [17, 10, 9, 13] and references therein, it remains a
challenging problem, which is mainly due to the complex
and dexterous nature of hand articulations. Recent advances
in commodity-level RGB-D cameras such as Kinect [1] and
Xtion have greatly simplified the problem, which enable
a number of new developments to exploit this new source
of information [16, 25, 15, 4]. The Kinect-type depth im-
ages, on the other hand, come with noticeable depth noises
that significantly degrade the image quality, as illustrated in
Figure 1. In particular, regions are sometimes missing, and
there are ghost shadows around object boundaries – pixels
with undefined depth values.

In this paper, we focus on efficient hand pose estima-

tion from a single noisy depth image. Clearly this can
not be accomplished by a trivial re-implementation of ex-
isting methods e.g. from human pose estimation, as hands
are much smaller, flexible and there are many more self-
occlusions. Worse, we often only have access to noisy ob-
servations with large portion of missing values. This leads
us to propose a dedicated three-step pipeline: Initial esti-
mation step provides an estimation of the hand’s in-plane
orientation and 3D location using a Hough forest model;
Candidate generation step produces a limited set of plausi-
ble 3D poses from the voting space of a different Hough for-
est, using depth features that are now invariant to in-plane
rotations; Verification step delivers the final 3D hand pose
as the solution to an optimization problem. Experiments
are conducted using the depth channel of a Kinect sensor,
with some exemplar estimation results presented in Fig-
ure 1. Our system demonstrates its comparable or even bet-
ter performance with respect to the state-of-the-arts, which
usually make use of additional RGB information. Our sys-
tem works at a speed of 12 frames per second (FPS) on an
average desktop without multicore or GPU speedup. The
main contributions are:

• Our approach estimates 3D hand poses from a single
depth image, which is applicable to general motions
(i.e. activity-independent). To our knowledge, this is
the only such system to work with Kinect-type noisy
depth images and reliably produces pose estimations
of general motions 1.

• We analyze the depth noises, show that they are inher-
ited from the geometric layout of the on-board sensors,
and offer tips to minimize their negative impacts on the
overall performance.

• Different from the often-used hand kinematic model
in e.g. [18] where the palm is assumed flat, our model
is able to simulate palm arching (Figure 3) – which is
novel as e.g. discussed in sec. 2 of [20].

1More results are at http://web.bii.a-star.edu.sg/˜xuchi/handengine.htm.

1



Figure 1. Exemplar 3D hand estimation results of the proposed approach for hands from various gestures, orientations, as well as from different people.
The first row is the input depth images from Kinect, while the second row presents our corresponding results overlayed on the RGB images. The depth
images are very noisy and of low-resolution, nevertheless our approach produces satisfactory results. Note the RGB images are not used by our system, and
are shown here only for visualization purpose. The color tag is used to clearly visualize the extent of each finger as well as the upper and lower parts of the
palm.

• A dedicated three-step pipeline is devised to provide a
systematic solution. In particular, the depth features of
the second step are reformulated to become invariant
to in-plane rotations.

Related work In their work, Shotton et al. [19] focus on
the problem of body part labeling, and produce impressive
results. In particular, their method utilizes large-scale syn-
thetic data during the training stage, as well as adopts the
random forest paradigm of [5]. This framework is further
followed by [11] for directly regressing the 3D locations of
16 body joints for body pose estimation. It is similarly used
by Keskin et al. [15] to address the problem of hand ges-
ture recognition, i.e. to recognize a limited set of predefined
hand gestures. In particular its application focuses on letter
recognition from the American sign language.

The problem of estimating 3D hand pose from a sin-
gle RGB image has also been studied by e.g. [18, 21, 9]
for a single RGB image and by e.g. [8] for multiple cam-
eras. These approaches generally do not offer fast process-
ing speed as the hypothesis generation and verification in
this context is computationally rather demanding. More re-
cently, a tracking-based 3D hand pose estimation method
has been proposed in [16] by making use of both RGB and
depth channels of Kinect. It however requires an explicit
initialization to learn a hand skin model which may be cum-
bersome in some circumstances. By exploiting GPU par-
allel computing, their method is able to parse images at a
frame rate of 15 frames per second (FPS).

The commercially available 3Gear system [2] is able to
robustly estimate hand poses by accessing to the RGB-D
channels of two Kinects. It however supports only 6 prede-
fined gestures. The performance is excellent with these ges-
tures at various orientations, but becomes unbearable when
engaging with an unseen gesture. Leapmotion [3] is the
most recent commercial system designed for close-range
(within about 50cm in depth) hand pose estimation. As a

closed system, its inner working mechanism remains un-
clear. Our observation is that it is not well tolerant to even
moderate level of self-occlusions of finger tips, such that a
finger will not be detected if it touches other fingers or the
palm. In contrast, our system works beyond half a meter
in depth, and work well when some of the finger-tips are
occluded as it does not rely on detecting finger tips.

For the related problem of optical motion capture, Kinect
has been utilized together with existing marker-based sys-
tem [25], or multiple RGB cameras [4] for markerless opti-
cal motion capture.

2. Our Approach

Our approach starts with a preprocessing step to decrease
the discrepancies between synthetic and real depth images.
It then follows with a three-step pipeline: Step one provides
initial estimation of in-plane orientation and 3D location us-
ing a Hough forest; Step two makes usage of a different
Hough forest model to produce a set of 3D hand pose can-
didates, with the help of modified depth features that are
invariant to in-plane rotations; Step three delivers the final
pose estimation by solving an optimization problem.

One may wonder why having the three steps instead of
a single step, as what has been adopted for human body
estimation [19, 11]. One chief motivation is the fact that
a hand can easily roll sideways (i.e. in-plane rotation), a
somehow rare case for everyday human body motions. As
depth features are usually not rotational invariant, we in-
stead consider separate steps – thus our first two steps in
the pipeline. Furthermore, as a compound consequence of
small hand size and dense self-occlusions, mode-seeking in
the Hough voting space might not necessarily give the opti-
mal 3D hand pose. The third verification step is thus useful
to identify the best fit from a small pool of top-notch candi-
dates.

Before proceeding further, let us review some key exist-
ing techniques.



real

synthetic

w. noisew/o noise shadow by occlusion

syn
th

etic 3
D

 h
an

d

Surface normal is more perpendicular

noise type 1:

missig small regions

noise type 2:

Figure 2. Depth noises. Top left panel presents three depth images: A real,
a synthetic without noise, and a final synthetic with noise. Note the pixel
in a depth image is darker as it is closer to the viewing camera. The pixels
in pure black are those with unknown depth values. Two main sources of
noises: (1) Shadow by occlusion in green. (2) Missing small regions in
blue. See text for detail.

Depth features We adopt the same depth features as men-
tioned in [19]. That is, at a given pixel location x of an
image I , denotes its depth value as a mapping dI(x), and
construct a feature fI(x) by considering two 2D offsets po-
sitions u, v from x:

fI(x) = dI

(
x+

u

dI(x)

)
− dI

(
x+

v

dI(x)

)
. (1)

This feature is depth invariant. However, it is not rotational
invariant.

Regression model of Hough forest The regression model
of Hough forest is developed in [11] to estimate 3D loca-
tions of body joints. It is used in the first two steps of our
pipeline to create two different regression models.

2.1. Preprocessing: Analyzing the Depth Noises

Our approach relies on synthetic hand images for train-
ing the model, which is then applied to real depth images
for pose estimation. The assumption is synthetic and real
images are similar. However, there are noticeable noises
presented in typical Kinect-type depth images. As illus-
trated in Figure 2(a), they are in fact quite different. The
issue is further complicated by the fact that the Hough for-
est model tends to pick up features along depth boundaries
– which often coincide with the ares having large noises
(first row of Figure 1). Empirically we have observed that
simply ignoring their existence leads to much downgraded
performance.

The noises, especially those with unknown values, turn
out to be rather different from the typical image noises such
as Gaussian noise or salt-and-pepper noise. We have identi-
fied two major noise sources. The first type of noises is the

shadow around boundaries, as illustrated Figure 2 top-right,
which is due to the occlusion from the geometric layout of
the sensors: As shown in the green-colored area, the occlu-
sion is introduced by the displacement of the IR light source
and the CMOS imaging sensor. The second noise source
contributes to the disappearance of small regions. As de-
picted in Figure 2 bottom, rendered from certain view of
the synthetic 3D hand, the surface normal of every pixel is
calculated, and its perpendicular tendency w.r.t. the viewing
direction is measured. Those tend to be perpendicular are
less visible, therefore their depth values become unknown
(in black). As a result, often there are small regions sur-
rounded by these black unknown pixels, which are subse-
quently missing from the final depth map, due to limited
sample rate of the depth camera. By simulating accord-
ing to these noise sources, as in Figure 2 top-left panel, our
noise-added synthetic image is more similar to the real one,
where the index finger area shrinks to a small red region
due to perpendicular surface normals, then is entirely miss-
ing from the final synthetic depth image, as presented in
Figure 2 bottom row. During our experiments, the synthetic
images are added with these two source of depth noises.

2.2. Step 1: Initial Estimation

This step is to estimate the in-plane orientation and lo-
cation of the hand. The parameters to be estimated are (x1,
x2, x3, θ), in which x1, x2, x3 defines the 3D position of
the hand base (i.e. the bottom of a hand), and θ is the in-
plane orientation of the hand. A regression model of Hough
Forest [11] is used to predict these parameters, as follows:
Each image pixel is parsed by one of the T1 trees, lead-
ing to a path from the root to certain leaf node that stores
a collection of votes. Here each vote corresponds to a six-
dimensional vector. The voting space is then formed by
plainly mixing all the votes from every tree and every pixel,
and the standard mean-shift method [7] is used to find the
mode of the point cloud – the output of our initial estima-
tion.

In case there are h hands in a image, parameters of the
hands are obtained by identifying the top h sets of parame-
ters, after applying non-maximal suppression over their lo-
cations.

2.3. Step 2: Candidate Generation

Given the in-plane orientation θ, the hand can be re-
versely rotated to its canonical pose in Figure 3 (c), as
rotating each of the hand-related pixels x in-plane by −θ
along the hand base. The depth feature can thus be com-
puted from the processed image using Equation 1. Unfor-
tunately a whole image rotation is computationally rather
costly. Having this in mind, we instead redefine our depth



features as follows:

fI(x) = dI

(
x+

u′

dI(x)

)
− dI

(
x+

v′

dI(x)

)
, (2)

where u′ = Rot(u;x,−θ), v′ = Rot(v;x,−θ). Here
Rot(u;x, θ) defines a mapping from the x-based relative 2D
pixel location u to its new 2D location, as in-plane rotat-
ing u along the pixel x by θ. Note his new depth feature
does not implement exactly the image rotating scenario de-
scribed above. Nevertheless it is an efficient approximation,
and as a result, our depth features becomes invariant to in-
plane rotations.

A second regression model of Hough forest is then con-
structed to produce a pool of 3D hand pose candidates: Each
image pixel is parsed by one of the T2 trees, leading down
the tree path to certain leaf node that stores a collection of
27-dimensional votes. The voting space is similarly formed
as in step 1, and the standard mean-shift method [7] is used
to find k local modes of the point cloud as the output pool of
3D hand candidates. We note that during training stage of
this step, the out-of-plane orientations (i.e. a hand’s palmar
and dorsal sides as well as every orientation in-between)
are each considered as a unique training example. Besides,
we only need to consider the canonical hand poses with
small in-plane perturbations, as the in-plane rotation issue
has been explicitly addressed by step 1. In what follows,
we discuss our 3D hand model.

Kinematic chain vs. 3D location of joints Instead of es-
timating the 3D location of body joints from a depth im-
age [11], our model predicts the parameters of a prede-
fined hand kinematic chain, which is then used to build
the 3D hand. There are two main motivations for doing
so. First, a kinematic chain model is better at dealing with
self-occlusion, an scenario often seen in hand pose estima-
tion. Comparing to 3D location of joints, kinematic chain
is a global representation and is more tolerant to small lo-
cal perturbations. Second, for human pose estimation, once
the body location is known (i.e. the torso is fixed), the limbs
and the head can be roughly considered as independent sub-
chains: e.g. a change from left hand will not affect the other
parts significantly. In contrast, motions of the five fingers
and the palm are tightly correlated.

Our 3D hand model A widely-used hand kinematic
chain model has been proposed by Rehg and Kanade [18],
which has 21+6 degree-of-freedom (DoF). Unfortunately,
in this kinematic model, the palm is assumed to be a rigid
object, making it unable to mimic gestures with perceivable
palm arching. This works well in scenarios with a exten-
sion (i.e. flat hand) type gestures. The limitation is however
quite pronounced in the scope of activity-independent gen-
eral motions, as e.g. when the fingers are in flexion motions

A) Hand anatomy B) Kinematic model

1 DoF

2 DoF

6 DoF

C) Skinned mesh model

Palm arching

(1 DoF)

Figure 3. Our 3D hand contains 21+6 degrees of freedom, including the
hand root position and orientation (6), and the relative angles of individual
joints (21). From (A) to (C): The hand anatomy, the underlying skeleton
kinematic model, and the skinned mesh model.

(i.e. curled inwards, column 1 & 5 of Figure 1) that are fre-
quently seen in everyday activities of a hand.

Here we devise a new kinematic model. As illustrated
as the red curved arrow in Figure 3 (b) connecting the last
two metacarpus bones, our model explicitly considers the
distal transverse arch [6], crucial for bending the palm. As
e.g. discussed in Section 2 of [20], this has not been seen
in existing literature. In our kinematic model, four DoF
are attached to each finger from bottom up in Figure 3 (b):
For each of the four fingers (i.e. index to pinky fingers),
two DoF are used for the metacarpophalangeal (MCP) joint,
and one each is for the proximal interphalangeal (PIP) joint
and the distal interphalangeal (DIP) joint, respectively. The
thumb, on the other hand, has a different structure from the
other four: Two DoF are assigned to the trapeziometacarpal
(TM) joint, and one each is for the MCP joint and the in-
terphalangeal (IP) joint, respectively; Together 20 DoF are
used for modeling the articulation of the five fingers, and 1
for palm bending. Similar to [18], the remaining 6 DoF are
reserved for the global orientation and position of the hand.
These model parameters collectively form a 27-dimensional
vector denoted as Θ. It is the vote stored in the leaf node of
step 2, and is also used to represent each of the 3D hand
candidates.

2.4. Step 3: Verification by Minimization

Grenander and co-workers [12] have advocated the idea
of “estimation by synthesis”, which are used in many vision
works. For example, it is adopted by [25] for motion capture
and by [9] for estimating hand pose from one RGB image. It
often involves the minimization of a discrepancy measure,
ρ, between the observed and the synthetic depth image,

Θ∗ = arg min
Θ

∑
x

ρ
(
dIsyn(x; Θ) − dI(x)

)
, (3)

where Isyn denotes the synthetic image, and there are many
options for φ, including the standard square loss function,
and the robust M-estimators [14] such as the Huber loss
function. For convenience we adopt the square loss func-
tion during our experiments.



This is a non-convex optimization problem in our con-
text, as elements in the unknown vector of random variables
Θ are tightly coupled. The usual way to address this prob-
lem is by iteratively descending along a direction related to
current gradient, in searching for the fix-point solution in
a continuous space. In practice it becomes unfortunately
the time-consuming bottleneck [9], and especially so in our
context as candidate poses are to be rendered on the fly.
We instead consider a crude approximation alternative, by
searching within a finite space of only k candidates handed
over from step 2, and pick the one that minimizes Equa-
tion (3). This simple strategy has been empirically sup-
ported with satisfactory performance, meanwhile it greatly
accelerates the processing speed.

3. Experiments
Datasets and Setup Based on an open source SDK Lib-
hand [23], we have developed a new rendering engine to
generate synthetic data. Our synthetic sets are randomly
sampled from different orientations as well as a wide range
of gestures: The kinematic model of over thirty American
sign language letter and number gestures (after removing
the dynamic guestures and and a few duplicate gestures)
are adopted as bases. A number of random pairs are then
selected, and from each pair, we smoothly interpolate over
each of the joints to obtain a series of new gestures in-
between. This way we construct our pool of synthetic hand
gestures.

In our experiments, the number of trees for both Hough
forests are the same as T1 = T2 = 5, the tree depth is fixed
to 20, and the candidate pool size k = 10. To train the first
Hough forest in the initial estimation step, 20k synthetic im-
ages with different gestures, orientations and scales were
randomly generated for each tree. The range of in-plane
rotation is [-90, 90] degrees. For the second forest in the
candidate generation step, 100k synthetic images were ran-
domly for each tree, thus totally 500k images for the entire
forest. The in-plane rotation was set in a small range of [-
10, 10] degrees to account for small perturbations, which
enhances the system stability as illustrated in Figure 4. For
both forests, 512 pixels are randomly sampled from each
synthetic image, which roughly are evenly distributed over
a hand image. The tree is grown in a way similar to [19]. At
a decision node, the number of candidate tests is 1024, from
which a best feature (a test & threshold pair) is selected.

Our 12 FPS performance is obtained from a desktop with
Intel Core i7 CPU 960 3.20GHz and 24GB memory. We
note that our code is not optimized, and with only 1 CPU
being used during the experiments.

Effects of varying the internal parameters To examine
the influence of the internal parameters, we have conducted
a series of study. As depicted in the first row of Figure 5,

Initial
Estimation

Pose
Estimation

Figure 4. First row depicts exemplar results from initial estimation for
in-plane rotation and 2D location of a hand. Second row presents the fi-
nal estimation results. Sometimes, small in-plane rotation estimation error
might occur such as the top-right subplot, this however will not affect the
final result (bottom-right subplot). due to the introduction of local random
perturbation to the in-plane rotation angle in the training set of the second
forest, which significantly enhances the system stability.

600 650 700 750 800 850 900
0.5

1

1.5

2

2.5

3

3.5

4

4.5
Average translation error

distance (mm)

tr
an

sl
at

io
n 

er
ro

r 
(%

)

(a)

600 650 700 750 800 850 900
16

16.2

16.4

16.6

16.8

17

17.2

17.4

17.6

17.8

18
Average joint error

distance (mm)
jo

in
t e

rr
or

 (
de

gr
ee

s)
(b)

0 2 4 6 8
0

20

40

60

80

100

120

140

160

180
Distribution of translation error

translation error (%)

(c)

5 10 15 20 25 30 35
0

20

40

60

80

100

120
Distribution of joint error

joint error (degrees)

(d)
Figure 5. First two plots: Average translation error and average joint error.
Average joint error is defined as the average error of the rotation of all
hand joints. Distance is between hand and camera. The last two plots: The
distribution of translation error and joint error, where the distances are both
fixed to 700mm, as the red triangle locations in the first two plots.

the estimation errors and in particular the translation error
of hand base (in %) & the average error of joints (in degrees)
are evaluated as a function of distances. Due to the physical
limitation of Kinect, the minimum depth is 0.5 meter, and
the the hand area becomes too small beyond 1-1.2 meter in



Figure 6. Exemplar results on good and failure cases of our approach.
In particular, thet two columns on the right present incorrect estimation
results.

depth. So we set our distance range to 0.6-0.9 meter. To
produce the two plots, we take measure after every 50mm,
and each time our system (which is trained at around 0.7m
distance) is used to make predictions on 512 randomly sam-
pled synthetic images. The error at a point is obtained by
averaging over these predictions. The relative error metric
for translation, %, is computed by dividing the absolution
distance error by current distance, the horizontal value of
the plot. In other words, the error metric is more sensitive
when the hand is close, and is less sensitive when the hand
is farther away from the camera. It is not a surprise to ob-
serve a nice test performance at around 700 mm distance,
the same as what our system is trained with. The errors ap-
pear to become larger as the distance grows. However, the
changes are both within relatively small ranges. To exam-
ine further, we also plot the empirical error distributions at
700 mm distance. The majority of the results seem to lead
to small errors: Within 2% for location error, and within
20 degrees for angular error. Overall, our system performs
rather robustly with respect to the change of depth.

Visual analysis of our results It is practically very im-
portant to consider the depth noises and in particular the
missing of small regions in our synthesized training data.
As with column 1 of Figure 6, the index finger tip is miss-
ing from the Kinect raw image, nevertheless our approach
can still successfully estimate a proper 3D hand pose that is
nicely aligned with the RGB image in hindsight. Moreover,
the incorporating of palm arching parameter in our 3D hand
model also turns to be very helpful in estimating the ges-
tures with bending palm. Column 2 of Figure 6 provides
such an example.

Our system may fail to estimate the right orientation for
hand gestures with similar frontal and back sides in the
depth map, as in the third column of this figure. Sometimes
several fingers heavily overlap with each other, as the cross-
finger case in the fourth column, they may be estimated as
a single finger instead.

Figure 7. Comparing with the state-of-the-arts. First row: Our results.
Second row: results of 3Gear [2]. Third row: results of Oikonomidis and
Argyros [16].

Comparisons with the state-of-the-arts Our results are
visually compared with Oikonomidis and Argyros [16],
3Gear [2] on test images from Kinect. Some results are dis-
played in Figure 7. As expected, 3Gear [2] performs poorly
on these hand poses, as the gestures are outside of the 6
predefined ones, at the expenses of employing two Kinects.
[16] seems very difficult to pick up some gestures & orien-
tations in tracking, as shown in this figure, as sell as in the
supplementary videos. We hypothesize this is mainly due
to the dense self-occlusions of fingers in these images.

4. Conclusion and Future Work

We have proposed a systematic approach to estimate 3D
hand poses of general motions from a single depth image.
Empirical simulations demonstrate that our system is able
to deliver fast and accurate estimation results, and its per-
formance is comparable with the best available systems that
have access to additional RGB images. This is made pos-
sible by a carefully designed three-step pipeline, as well as
a detailed analysis of the depth noises. On future work, we
plan to exploit prior knowledge of hand motion constraints
to work in a reduced parameter space, as well as to extend
the current work to deal with scenarios where one hand is
interacting with physical objects including other hands. We
also plan to make available a GPU computing version for
more efficient processing.

Acknowledgements

This research was partially supported by A*STAR JCO
and IAF grants. We would like to thank Andrei Lucian
Ionita for helpful discussions.



References
[1] Kinect. http://www.xbox.com/en-US/kinect/, 2011.
[2] 3gear. http://www.threegear.com/, 2012.
[3] Leapmotion. http://www.leapmotion.com/, 2013.
[4] L. Ballan, A. Taneja, J. Gall, L. Gool, and M. Pollefeys. Motion

capture of hands in action using discriminative salient points. In
ECCV, 2012.

[5] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[6] E. Chao, K. An, W. Cooney, and R. Linscheid. Biomechanics of the

Hand: A Basic Research Study. World Scientific, 1989.
[7] D. Comaniciu and P. Meer. Mean shift: A robust approach toward

feature space analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24:603–619, 2002.

[8] T. de Campos and D. Murray. Regression-based hand pose estimation
from multiple cameras. In CVPR, 2006.

[9] M. de La Gorce, D. Fleet, and N. Paragios. Model-based 3d hand
pose estimation from monocular video. IEEE Trans. Pattern Anal.
Mach, 33(9):1793–1805, 2011.

[10] A. Erol, G. Bebis, M. Nicolescu, R. Boyle, and X. Twombly. Vision-
based hand pose estimation: A review. Comput. Vis. Image Underst.,
108(1-2):52–73, 2007.

[11] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon.
Efficient regression of general-activity human poses from depth im-
ages. In ICCV, 2011.

[12] U. Grenander. Pattern Theory: From Representation to Inference.
Oxford University Press, 2007.

[13] A. Gustus, G. Stillfried, J. Visser, H. Jorntell, and P. van der Smagt.
Human hand modelling: kinematics, dynamics, applications. Bio-
logical Cybernetics, 106(11-12):741–755, 2012.

[14] P. Huber. Robust Statistics. Wiley Press, 1981.
[15] C. Keskin, F. Kirac, Y. Kara, and L. Akarun. Hand pose estimation

and hand shape classification using multi-layered randomized deci-
sion forests. In ECCV, 2012.

[16] N. Oikonomidis and A. Argyros. Efficient model-based 3d tracking
of hand articulations using kinect. In BMVC, 2011.

[17] V. Pavlovic, R. Sharma, and T. Huang. Visual interpretation of hand
gestures for human-computer interaction: A review. IEEE Trans.
Pattern Anal. Mach. Intell., 19(7):677–695, 1997.

[18] J. Rehg and T. Knade. Visual tracking of high dof articulated struc-
tures: an application to human hand tracking. In European Confer-
ence on Computer Vision, pages 35–46, 1994.

[19] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose recog-
nition in parts from single depth images. In CVPR, 2011.

[20] B. Siciliano and the DEXMART team. Kinematic modelling of
the human hand. Technical report, University of Naples, 2009.
http://www.dexmart.eu/index.php?id=13735.

[21] B. Stenger, P. Mendonca, and R. Cipolla. Model-based 3d tracking
of an articulated hand. In CVPR, 2001.

[22] S. Sueda, A. Kaufman, and D. Pai. Musculotendon simulation for
hand animation. In SIGGRAPH, pages 83:1–83:8, 2008.

[23] M. Šarić. Libhand: A library for hand articulation, 2011. Version
0.9.

[24] R. Wang and J. Popović. Real-time hand-tracking with a color glove.
In SIGGRAPH, pages 63:1–63:8, 2009.

[25] W. Zhao, J. Chai, and Y. Xu. Combining marker-based mocap and
rgb-d camera for acquiring high-fidelity hand motion data. In Euro-
graphics Symposium on Computer Animation, 2012.


