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Abstract. In this paper, we present a directed Markov random field
model that integrates trigram models, structural language models (SLM)
and probabilistic latent semantic analysis (PLSA) for the purpose of sta-
tistical language modeling. The SLM is essentially a generalization of
shift-reduce probabilistic push-down automata thus more complex and
powerful than probabilistic context free grammars (PCFGs). The added
context-sensitiveness due to trigrams and PLSAs and violation of tree
structure in the topology of the underlying random field model make the
inference and parameter estimation problems plausibly intractable, how-
ever the analysis of the behavior of the lexical and semantic enhanced
structural language model leads to a generalized inside-outside algorithm
and thus to rigorous exact EM type re-estimation of the composite lan-
guage model parameters.

Keywords: Language modeling, structural language model, trigram,
probabilistic latent semantic analysis.

1 Introduction

Natural language perhaps is one of the most intriguing and complex stochas-
tic processes (Chomsky 1956, Jelinek 1998). It was first studied by Shannon
(1948) as a Markov chain model when he introduced information theory to il-
lustrate many of its features. Since then various kinds of generative probabilistic
language models have been proposed to capture different aspects of natural lan-
guage regularity. The dominant motivation for language modeling has tradition-
ally come from the field of speech recognition (Jelinek 1998), however statistical
language models have recently become more widely used in many other appli-
cation areas, such as information retrieval, machine translation, optical charac-
ter recognition, spelling correction, document classification, and bioinformatics.
The most recent advance is the work by Wang et al. (2005), where they have
proposed a first generative probabilistic model of natural language, a directed
Markov random field model, that combines trigram models, PCFGs and PLSAs
(Hofmann 2001) and simultaneously exploits the relevant lexical, syntactic and
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semantic information of natural language with tractable parameter estimation
algorithm.

Jelinek and Chelba (Chelba and Jelinek 2000, Jelinek 2004) have developed a
structural language model that exploits syntactic structure incrementally while
traversing the sentence from left to right, and used it to extract meaningful infor-
mation from the word history, thus enabling the use of sentence level long range
dependencies. SLM is essentially a generalization of shift-reduce probabilistic
push-down automata and is non-context free (Jelinek 2004). A thorough com-
parative study between this model with PCFGs has been presented in (Abney
et al. 1999). The probabilistic dependency structure in SLM is more complex
than that in a PCFG. When SLM was originally introduced (Chelba and Je-
linek 2000), it operated with the help of a set of stacks containing partial parses
from which less probable sub-parse trees are discarded. The parameters were
trained by a procedure based on n-best final parses. It has been shown that the
use of SLM results in lower perplexities as well as lower error rates in speech
recognition. When SLM is combined with trigram model with linear interpola-
tion (Chelba and Jelinek 2000) or integrated with trigram model and semantic
language model, which carry complementary dependency structure, under max-
imum entropy estimation paradigm (Khudanpur and Wu 2000) with SLM as a
preprocessing tool to extract syntactic structure, almost additive results have
been observed in perplexity or word error reductions. Later, Jelinek (2004) stud-
ied various stochastic properties of the SLM, in particular he generalized the
CKY algorithm (Younger 1967) to obtain a chart which is able to directly com-
pute the sentence probability thus making the stack unnecessary, moreover he
derived a generalized inside-outside algorithm which leads to a rigorous EM type
re-estimation for the SLM parameters.

Inspired by the works by Jelinek (2004) and Wang et al. (2005), we study
the stochastic properties of a composite generative probabilistic language model
which integrates trigram model, PLSA models with SLM. Similar as for PCFG
(Jelinek et al. 1992) and SLM (Jelinek 2004), among the stochastic properties
with which we study are the following ones:

– The probability of the generated sentence based on a generalization of the
CKY algorithm.

– The probability of the next word given the sentence prefix.
– The probability of the most probable parse.
– Training algorithm for the statistical parameters of the composite language

model.

The added context-sensitiveness due to trigrams and PLSAs and violation of
tree structure in the topology of the underlying random field model make the
inference and parameter estimation plausibly intractable, in the following we
show that exact recursive algorithms do exist with the same order polynomial
time complexity as in the SLM for the study of stochastic properties of the lexical
and semantic enhanced SLM.
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2 Jelinek and Chelba’s Simplified Structural Language
Model

In this section, we briefly describe the simplified structural language model
(SSLM) which was introduced by Jelinek and Chelba (Chelba 1999, Chelba and
Jelinek 2000, Jelinek and Chelba 1999, Jelinek 2004). SSLM is completely lexical,
that is, phrases are annotated by headwords but not by non-terminals. As the op-
eration of the SSLM proceeds, it generates a string of words, w0, w1,· · · , wn, wn+1,
where ∀i = 1, · · · , n, wi ∈ V , w0 =< s >, and wn+1 =< /s >, where V is the
set of vocabulary, < s >, < /s > are start and stop markers of the sentence, at
the meantime, it also generates a parse consisting of a binary tree whose nodes
are marked by headwords of phrases spanned by the subtree stemming from the
leafs. The headword of a phrase can be any word belonging to the span of the
phrase and the headword at the apex of the final tree is < s >. The SSLM op-
erates from left to right, builds up the phrase structure in a bottom-up manner
and it has two type of operations, constructor moves and predictor moves.

1. Constructor moves: The constructor looks at the pair of right most exposed
headwords, h−2, h−1 and takes an action a ∈ A ={adjoin right, adjoin left,
null} with probability θ(a|h−2h−1). The operations of these three actions are
defined as the following:

– adjoin right: create an apex marked by the identity of h−1 and connect it by
a leftward branch to its leftmost exposed headword h−2 and by a rightward
branch to the exposed headword h−1. Increase the indices of the current
exposed headwords h−3, h−4, · · · by 1. These headwords together with h−1
become become the new set of exposed headwords.

– adjoin left: create an apex marked by the identity of h−2 and connect it
by a leftward branch to its leftmost exposed headword h−2 and by a right-
ward branch to the exposed headword h−1. Increase the indices of the new
apex and those of the current exposed headwords h−3, h−4, · · · by 1. These
headwords become become the new set of exposed headwords.

– null: leave headword indexing and current parse structure unchanged and
pass control to the predictor.

If a ∈ {adjoin left}, adjoin right}, the constructor stays in control and chooses
the next action with probability θ(a|h−2h−1). If a = null, the constructor stops
and the control is passed to the predictor. A null move ensures that the right-
most exposed headword will eventually be connected to the right and an adjoin
move makes the right-most exposed headword being connected to the left.

2. Predictor moves: The predictor generates the next word wi with prob-
ability θ(wi|h−2h−1), wi ∈ V∪ < s >. The indexes of the current headwords
h−1, h−2, · · · are decreased by 1 and the newly generated word becomes the
right most exposed headword. Control is then passed to the constructor.

As in (Wang et al. 2005), let X denote a set of random variables (Xτ )τ∈Γ

taking values in a (discrete) probability spaces (Xτ )τ∈Γ where Γ is a finite set of
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states. We define a (discrete) directed Markov random field to be a probability
distribution P which admits a recursive factorization if there exist non-negative
functions, kτ (·, ·), τ ∈ Γ defined on Xτ ×Xpa(τ), such that

∑
xτ

kτ (xτ , xpa(τ)) = 1
and P has density p(x) =

∏
τ∈Γ kτ (xτ , xpa(τ))

If the recursive factorization respects to a graph G, then we have a Bayesian
network (Lauritzen 1996). But broadly speaking, the recursive factorization can
respect to a more complicated representation other than a graph which has a
fixed set of nodes and edges.

All of the weighted grammars and automata can be described as directed
Markov random fields, so is the (simplified) structural language model as devel-
oped by Jelinek and Chelba (Chelba and Jelinek 2000, Jelinek 2004).

3 Simplified Lexical and Semantic Enhanced Structural
Language Model

We now describe the composite simplified structural language model enhanced
by trigrams and PLSA models, which respectively encode the local lexical infor-
mation of word co-occurrence and global-spanning semantic content at document
level over the entire corpus.

When we combine trigram and PLSA models with SSLM to build a new gen-
erative language model, the constructor moves remain unchanged, the predictor
however generates the next word wi not only depending on the two left-most ex-
posed headwords h−2, h−1 but also the previous two words wi−2, wi−1 as well as
the current semantic content gi ∈ G with probability θ(wi|wi−2wi−1h−2h−1gi).
Figure 1 illustrates the structure of the simplified lexical and semantic enhanced
structural language model.
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Fig. 1. Simplified lexical and semantic enhanced structural language model where the
hidden information is the parse tree t and semantic content g

3.1 Computing the Probability of a Sentence

The inside probability pθ(d, wj
i+1, y[i, j]|wi, x) of sentence W in document d is

defined as the probability of the word subsequence wj
i+1 = wi+1, · · · , wj are

generated and y becomes the headword of the phrase wi, · · · , wj given that x
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is the last exposed headword preceding time i and the word wi is generated.
Figure 2 illustrates two situations on how the phrase wi, · · · , wj is generated.

The first way as illustrated in Figure 2 to generate wi+1, · · · , wj and create
a phrase spanning < i, j > whose headword is y, given that the headword of
the preceding phrase is x and the word wi is generated is the following: (i) a
string wi+1, · · · , wl is generated, (ii) a phrase spanning < i, l > is formed whose
headword is y, (iii) the word wl+1 is generated from its preceding two words
wl−1, wl and preceding two headwords x, y by averaging all possible semantic
content g in document d, (iv) the string wl+1, · · · , wj is generated and the span
< l + 1, j > forms a phrase whose headword is z, (v) finally, the two phrases are
merged into one phrase with headword y via constructor move, adjoin left.
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Fig. 2. Diagram illustrating inside probability recursions: adjoin left vs adjoin right

The second way as illustrated in Figure 2 to generate wi+1, · · · , wj and create
a phrase spanning < i, j > whose headword is y, given that the headword of
the preceding phrase is x and the word wi, is conceptually the same as the first
situation with modular chance, that is, in (ii) a phrase spanning < i, l > is
formed with headword is u, then in (iii) the word wl+1 is generated from its
preceding two words wl−1, wl and preceding two headwords x, u by averaging
all possible semantic content g in document d, thus (iv) the string wl+1, · · · , wj

is generated and the span < l + 1, j > forms a phrase whose headword is y,
(v) finally, the two phrases are merged into one phrase with headword y via
constructor move, adjoin right.

Thus the inside probability pθ(w
j
i+1, y[i, j]|wi, x), ∀j > i, i = 0, 1, · · · , n can be

recursively computed by the following formula,

pθ(d,wj
i+1, y[i, j]|wi, x) =

j−1∑

l=i

∑

z

( ∑

gl+1∈G
θ(wl+1|x, y, wl−1, wl, gl+1)θ(null|x, y) (1)

θ(gl+1|d)
)
pθ(d,wl

i+1, y[i, j]|wi, x)pθ(d, wj
l+2, z[l + 1, j]|wl+1, y)θ(left|y, z)

+
j−1∑

l=i

∑

z

( ∑

gl+1∈G
θ(wl+1|x, u, wl−1, wl, gl+1)θ(null|x, u)

θ(gl+1|d)
)
pθ(d,wl

i+1, u[i, j]|wi, x)pθ(d, wj
l+2, y[l + 1, j]|wl+1, u)θ(right|u, y)
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The boundary conditions for the above recursion are given as

pθ(d,wi
i+1, y[i, i]|wi, x) = pθ(d, h(wi) = y|w,h−1(T i−1) = x) = 1 ∀x ∈ W (i−1), y = wi

and the probability of a sentence W in document d is given by

pθ(d, W ) = pθ(d, wn+1
2 , < /s > [1, n + 1]|w1, < s >)

(
∑

g1∈G
θ(w1| < s > g1)θ(g1|d)

)

(2)

3.2 Computing the Probability of Next Word Given the Sentence
Prefix

In order to compute the left-to-right probability of a word given the sentence
prefix, define pθ(d, wi+1

0 , x) to be the probability that the sequence w0, w1, · · · ,
wi, wi+1 in document d is generated such that the last exposed headword of
the parse tree for the string w0, w1, · · · , wi is x and define the set of words
W (i) = {w0, w1, · · · , wi}. Then ∀x ∈ W (i), we have the following recursive
formula,

pθ(d, wl+1
0 , x) =

l∑

i=1

∑

y∈W (i−1)

pθ(d, wi
0, y)pθ(wl

i+1, x[i, l]|wi, y)

( ∑

gl+1∈G
θ(wl+1|y, x, wl, wl−1, gl+1)θ(null|y, x)θ(gl+1|d)

)
(3)

with the initial conditions

pθ(d, w1
0 , x) =

⎧
⎨

⎩

∑

g1∈G
θ(w1| < s > g1)θ(g1|d)if x =< s >

0 otherwise

Thus we have

pθ(d, w0, w1, · · · , wi, wi+1) =
∑

x∈W (i+1)

pθ(d, wi+1
0 , x)

and

pθ(d, wi+1|w0, w1, · · · , wi) =
∑

x∈W (i+1) pθ(d,wi+1
0 , x)

∑
x∈W (i+1) pθ(d, wi

0, x)
(4)

3.3 Finding the Most Probable Parse

Denote p̂θ(w
j
i+1, y[i, j]|wi, x) as the probability of the most probable sequence of

moves that generate the words wi+1, · · · , wj with y being the headword of the
phrase wi, wi+1, · · · , wj . Then finding the most probable parse can be recursively
obtained by changing the sum sign in the inside probability computation into a
max sign (Kschischang et al. 2001).
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p̂θ(d, wj
i+1, y[i, j]|wi, x) (5)

= max
{

max
l∈{i,j−1},z

[( ∑

gl+1∈G
θ(wl+1|x, y,wl−1, wl, gl+1)

θ(null|x, y)θ(gl+1|d)
)
p̂θ(d, wl

i+1, y[i, j]|wi, x)p̂θ(d,wj
l+2, z[l + 1, j]|wl+1, y)θ(left|y, z)

]
,

max
l∈{i,j−1},z

[( ∑

gl+1∈G
θ(wl+1|x, u, wl−1, wl, gl+1)

θ(null|x, u)θ(gl+1|d)
)
p̂θ(d, wl

i+1, u[i, j]|wi, x)p̂θ(d,wj
l+2, y[l+1, j]|wl+1,u)θ(right|u, y)

]}

The boundary conditions for the above recursion are given as

p̂θ(d,wi
i+1, y[i, i]|wi, x) = pθ(d, h(wi) = y|w,h−1(T i−1) = x) = 1 ∀x ∈ W (i−1), y = wi

then the probability of most probable parse in sentence W in document d is
given by

pθ(d, W, T̂ ) = p̂θ(d, wn+1
2 , < /s > [1, n + 1]|w1, < s >)

(
∑

g1∈G
θ(w1| < s > g1)θ(g1|d)

)

(6)

3.4 Training Algorithm for Simplified Lexical and Semantic
Enhanced Structural Language Model

Without writing down explicit formula of likelihood function, Jelinek (2004) has
derived an EM-type parameter estimation algorithm for SLM whose structure
is considerably more complex than that of a probabilistic context free gram-
mar, and it is a generalization of the inside-outside algorithm (Baker 1979). The
derivation is conceptually based on relevant frequency counting for discrete data
which is a common practice for estimating PCFGs (Lari and Young 1990). In
this section, we derive parameter estimation algorithm for the composite simpli-
fied lexical and semantic enhanced structural language model from the general
EM algorithm (Dempster et al. 1977). This leads to a further generalization of
inside-outside algorithm proposed by Jelinek (2004).

Similar as in the composite trigram/PCFG/ PLSA model (Wang et al. 2005),
the likelihood of the observed data W under this composite language model can
be written as below:

L(W, θ) =
∏

d∈D

⎛

⎝
∏

l

⎛

⎝
∑

Gl

(
∑

T

pθ(d, Wl, Gl, T )

)⎞

⎠

⎞

⎠ (7)

where

pθ(d,Wl, Gl, T ) =
∏

d∈D

⎛

⎝
∏

l

⎛

⎝
∏

g∈G
θ(g|d)c(d,Wl,g)

∏

u,v,h−2,h−1∈V,g∈G

θ(w|uvh−2h−1g)c(uvwh−2h−1g;d,Wl,T )
∏

h2,h1∈V,a∈A
θ(a|h−2h−1)c(h−2h−1a;d,Wl,T )

⎞

⎠

⎞

⎠
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where pθ(d, Wl, Gl, T ) is the probability of generating sentence Wl in document
d with parse tree T and semantic content sequence Gl, c(d, Wl, g) is the count of
semantic content g in document d, c(uvwh−2h−1g; d, Wl, T ) is the count of tri-
grams uvw with w’s two left most exposed headwords h−2h−1, parse tree T and
semantic content g in sentence Wl of document d, and c(h−2h−1a; d, Wl, T ) is
the count of constructor move a conditioning on h−2h−1 in sentence Wl of docu-
ment d with parse tree T . The parameters θ(g|d), θ(w|uvh−2h−1g), θ(a|h−2h−1)
are normalized so that

∑
w∈V θ(w|uvh−2h−1g) = 1,

∑
a∈A θ(a|h−2h−1) = 1 and∑

g∈G θ(g|d) = 1.
Following Lafferty’s (2000) derivation of the inside-outside formulas for up-

dating the parameters of PCFGs and Wang et al.’s (2005) derivation of the
generalized inside-outside formulas for updating the parameters of the compos-
ite trigram/PCFG/PLSA models from a general EM (Dempster et al. 1977)
algorithm, we derive the generalized inside-outside algorithm for the simplified
lexical and semantic enhanced structural language model.

To apply the EM algorithm, we consider the auxiliary function

Q(θ′, θ) =
∑

d

∑

l

∑

Gl

∑

T

pθ(Gl, T |d, Wl) log
pθ′(d,Wl, Gl, T )
pθ(d, Wl, Gl, T )

Because of the normalization constraints, the re-estimated parameters of the
composite model are then the normalized conditional expected counts:

θ′(a|h−2h−1) =

∑

d∈D

∑

l

∑

Gl

∑

T

pθ(Gl, T |d, Wl)c(h−2h−1a; d, Wl, T )

normalization over a

θ′(w|uvh−2h−1g) =

∑

d∈D

∑

l

∑

Gl

∑

T

pθ(Gl, T |d, Wl)c(uvwh−2h−1g; d,Wl, T, g)

normalization over w
(8)

θ′(g|d) =

∑

l

∑

Gl

∑

T

pθ(Gl, T |d, Wl)c(d, Wl, g)

normalization over g

Thus we need to compute the conditional expected counts, the numerators
of (8).

In general, the sum requires summing over an exponential number of parse
trees due to combinatorial explosion of possible parse trees. However, just as with
standard PCFGs (Lafferty 2000) and composite trigram/PCFG/PLSA model
(Wang et al. 2005), it is easy to check that the following equations still hold

∑

Gl

∑

T

pθ(Gl, T |d, Wl)c(h−2h−1a; d, Wl, T )=
θ(a|h−2h−1)

pθ(d, Wl)
∂pθ(d, Wl)

∂θ(a|h−2h−1)
, (9)

∑

Gl

∑

T

pθ(Gl, T |d,Wl)c(uvwh−2h−1g;d, Wl,T,g)=
θ(w|uvh−2h−1g)

pθ(d, Wl)
∂pθ(d,Wl)

∂θ(w|uvh−2h−1g)
,

∑

Gl

∑

T

pθ(Gl, T |d, Wl)c(d, Wl, g) =
θ(g|d)

pθ(d, Wl)
∂pθ(d, Wl)

∂θ(g|d)
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and it turns out that there is an efficient and exact way of computing the partial
derivative on the right-hand side, the generalized inside-outside algorithm.

Now the central problem then becomes to recursively represent the probability
of a sentence, W in a document, pθ(d, W ), in terms of its parameters. Following
Jelinek’s derivation for structural language model (Jelinek 2004), we first derive
formulas for computing pθ(d, W, x, y[i, j]), the probability that W is produced
by some tree T that has a phrase spanning < i, j > whose headword is y and its
immediately preceding exposed headword is x. More formally,

pθ(d, W, x, y[i, j]) .= pθ(d, w0, w1, · · · , wn+1, h−1(w0, · · · , wi−1) = x, h(wi, · · · , wj) = y)

= pθ(d, w0, w1, · · · , wn+1, h−1(w0, · · · , wi−1) = x)

pθ(d, wi+1, · · · , wj , h(wi, · · · , wj) = y|wi, h−1(w0, · · · , wi−1) = x)

pθ(d, wj+1, · · · , wn+1|h−1(w0, · · · , wi−1) = x, h(wi, · · · , wj) = y)

The middle term is an inside probability and can be recursively calculated.
We need a way to compute the “outside probability” which is the product of the
outer terms of the above equation,

pθ(d, wi
0, w

n+1
j+1 , x[i − 1]; y[i, j]) .= pθ(d, w0, w1, · · · , wn+1, h−1(w0, · · · , wi−1) = x) (10)

pθ(d,wj+1, · · · , wn+1|h−1(w0, · · · , wi−1) = x, h(wi, · · · , wj) = y)

We thus have

pθ(d,W ) =
∑

i,j

pθ(d, W,x, y[i, j])

=
∑

i,j

pθ(d, wi
0, w

n+1
j+1 , x[i − 1]; y[i, j])pθ(d, wj

i+1, y[i, j]|wi, x) (11)
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Fig. 3. Diagram illustrating outside probability recursions: first term in (11) is recur-
sively computed with adjoin left and adjoin right being used respectively

Figures 3- 4 illustrate four cases that the outside probability pθ(d, wi
0, w

n+1
j+1 ,

x[i − 1]; y[i, j]) can be recursively obtained by the inside and outside probabili-
ties. In the first two cases, the first term in the definition of outside probability,
pθ(d, w0, w1, · · · , wn+1, h−1(w0, · · · , wi−1) = x) remains unchanged and it is the
second term that is recursively represented by inside and outside probabilities,
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Fig. 4. Diagram illustrating outside probability recursions: second term in (11) is re-
cursively computed with adjoin left and adjoin right being used respectively

and the difference between these two cases is on whether constructor move, ad-
join left, or adjoin right is used. Similarly in the last two cases, the second term in
the definition of outside probability, pθ(d, wj+1, · · · , wn+1|h−1(w0, · · · , wi−1) =
x, h(wi, · · · , wj) = y) remains unchanged and it is the first term that is recur-
sively represented by inside and outside probabilities, and again the difference
between these two cases is on whether constructor move, adjoin left, or adjoin
right is used. This leads to the four double sums on the right-hand side of the
following recursive formulas,

pθ(d, wi
0, w

n+1
j+1 , x[i − 1]; y[i, j]) (12)

=
i−1∑

k=1

∑

z∈W i−k−1

[
pθ(d,wi−1

0 , wn+1
j+1, z[i−k−1]; x[i−k, j])pθ(d, wi−1

i−k−1, x[i−k, i−1]|wi−1 ,z)

( ∑

gi∈G
θ(wi|z, x,wi−2, wi−1, gi)θ(null|z, x)θ(gi|d)

)
θ(left|x, y)

]

+
i−1∑

k=1

∑

z∈W i−k−1

[
pθ(d, wi−1

0 , wn+1
j+1, z[i− k− 1]; y[i−k, j])pθ(d, wi−1

i−k−1, x[i−k, i−1]|wi−1,z)

( ∑

gi∈G
θ(wi|z, x,wi−2, wi−1, gi)θ(null|z, x)θ(gi|d)

)
θ(right|x, y)

]

+
n−j+1∑

m=i

∑

z∈W
j+m
j+1

[
pθ(d, wi

0, w
n+1
j+m+1, x[i−1]; y[i, j+m])pθ(d, wj+m

j+2 , u[j+1, j+m]|wj+1,y)

( ∑

gj+1∈G
θ(wj+1|x, y, wj−1, wj , gj+1)θ(null|x, y)θ(gj+1|d)

)
θ(left|y, u)

]

+
n−j+1∑

m=i

∑

z∈Wj+m
j+1

[
pθ(d,wi

0, w
n+1
j+m+1, x[i−1]; u[i, j+m])pθ(d, wj+m

j+2 , u[j+1, j+m]|wj+1,y)

( ∑

gj+1∈G
θ(wj+1|x, y, wj−1, wj , gj+1)θ(null|x, y)θ(gj+1|d)

)
θ(right|y, u)

]

with the boundary condition
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pθ(d,w1
0 , wn+2

n+1 , x[0]; y[1, n + 1]) =

⎧
⎨

⎩

∑

g1∈G
θ(w1| < s > g1)θ(g1|d)if x =< s >, y =< /s >

0 otherwise

By (12), the outside probability can be recursively represented by a full set of
model parameters. Thus by (11), calculating the derivative of the probability of
a sentence Wl can be done recursively via calculating the derivative of outside
probability. Then by (9), we have

∑

Gl

∑

T

pθ(Gl, T |d, Wl)c(h−2h−1a; d, Wl, T ) =
∑

i

∑

j

cl(d, x, y, i, j,a) ∀ a ∈ A,

∑

Gl

∑

T

pθ(Gl, T |d, Wl)c(uvwh−2h−1g;d, Wl, t, g) =
∑

i

∑

j

cl(d, x, y, i, j,null)

δ(u = wj−1, v = wj , w = wj+1),
∑

Gl

∑

T

pθ(Gl, T |d, Wl)c(d, Wl, g) =
∑

i

∑

j

cl(d, g, i, j)

where the quantities cl(d, x, y, i, j,a) and cl(d, g, i, j) are calculated by the fol-
lowing recursions,

cl(d, x, y, i, j, a = left) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

∑

z

i−1∑

k=1

[
pθ(d, wi−1

0 , wn+1
j+1 , z[i − k − 1]; x[i − k, j])pθ(d, wi−1

i−k−1, x[i − k, i − 1]|wi−1, z)

( ∑

gi∈G
θ(wi|z, x, wi−2, wi−1, gi)θ(null|z, x)θ(gi|d)

)
θ(left|x, y)

]
,

cl(d, x, y, i, j, a = right)) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

∑

z

i−1∑

k=1

[
pθ(d, wi−1

0 , wn+1
j+1 , z[i − k − 1]; y[i − k, j])pθ(d, wi−1

i−k−1, x[i − k, i − 1]|wi−1, z)

( ∑

gi∈G
θ(wi|z, x, wi−2, wi−1, gi)θ(null|z, x)θ(gi|d)

)
θ(right|x, y)

]
,

cl(d, x, y, i, j, a = null) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

∑

u

n−j+1∑

m=i

[
pθ(d, wi

0, w
n+1
j+m+1, x[i − 1]; y[i, j + m])pθ(wj+m

j+2 , u[j + 1, j + m]|wj+1, y)

( ∑

gj+1∈G
θ(wj+1|x, y, wj−1, wj , gj+1)θ(null|x, y)θ(gj+1|d)

)
θ(left|y, u)

]

+
∑

u

n−j+1∑

m=i

[
pθ(d, wi

0, w
n+1
j+m+1, x[i − 1]; u[i, j + m])pθ(d, wj+m

j+2 , u[j+ 1, j+ m]|wj+1, y)

( ∑

gj+1∈G
θ(wj+1|x, y,wj−1, wj , gj+1)θ(null|x, y)θ(gj+1|d)

)
θ(right|y, u)

]
,

cl(d, g, i, j) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)
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∑

u

n−j+1∑

m=i

[
pθ(d, wi

0, w
n+1
j+m+1, x[i − 1]; y[i, j + m])pθ(wj+m

j+2 , u[j + 1, j + m]|wj+1, y)

(
θ(wj+1|x, y, wj−1, wj , g)θ(null|x, y)θ(g|d)

)
θ(left|y, u)

]

+
∑

u

n−j+1∑

m=i

[
pθ(d, wi

0, w
n+1
j+m+1, x[i − 1]; u[i, j + m])pθ(d, wj+m

j+2 , u[j+ 1, j+ m]|wj+1, y)

(
θ(wj+1|x, y, wj−1, wj , g)θ(null|x, y)θ(g|d)

)
θ(right|y, u)

]
,

In order to be consistent to the recursive formula for SSLM derived in (Jelinek
2004), we consider wj+1 to derive the formula for cl(d, g, i, j). An alternative
formula exists if we consider wi instead.

cl(d, g, i, j) =
1

pθ(d, Wl)
pθ(d, wj

i+1, y[i, j]|wi, x)

∑

z

i−1∑

k=1

[
pθ(d, wi−1

0 , wn+1
j+1 , z[i − k − 1]; x[i − k, j])pθ(d, wi−1

i−k−1, x[i − k, i − 1]|wi−1, z)

(
θ(wi|z, x,wi−2, wi−1, g)θ(null|z, x)θ(g|d)

)
θ(left|x, y)

]

+
∑

z

i−1∑

k=1

[
pθ(d, wi−1

0 , wn+1
j+1 , z[i − k − 1]; y[i − k, j])pθ(d, wi−1

i−k−1, x[i − k, i − 1]|wi−1, z)

(
θ(wi|z, x,wi−2, wi−1, g)θ(null|z, x)θ(g|d)

)
θ(right|x, y)

]

Then by (9), we get the re-estimates

θ′(a|h−2 = x, h−1 = y) =

∑

d

∑

l

∑

i

∑

j

cl(d, x, y, i, j, a)

∑

a′∈A

∑

d

∑

l

∑

i

∑

j

cl(d, x, y, i, j, a′)

θ′(w|uvh−2 = x, h−1 = y) =
∑

d

∑

l

∑

i

∑

j

cl(d, x, y, i, j,null)δ(u = wj−1, v = wj , w = wj+1)

∑

w′∈V

∑

d

∑

l

∑

i

∑

j

cl(d, x, y, i, j, null)δ(u = wj−1, v = wj , w = w′)

θ′(g|d) =

∑
l

∑
i

∑
j cl(d, g, i, j)

∑
g′∈G

∑
l

∑
i

∑
j cl(d, g′, i, j)

4 Extension of Training to Complete Lexical and
Semantic Enhanced Structural Language Models

We now extend our results to the complete structural language model which has
more complex constructor than SSLM and an additional module, the tagger.
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Each headword h is replaced by heads h = (h1, h2) where h1 is a headword and
h2 is a tag or a non-ternimal. The operation of complete lexical and semantic
enhanced structural language model,

– Depending on the last two exposed heads h−2,h−1, the two preceding words
wi−2, wi−1 as well as current semantic node gi, the predictor generates the
next word wi with probability θ(wi|wi−2wi−1h−2h−1gi).

– Depending on the last exposed head h−1 and current word wi, the tagger
tags wi by a part of speech f ∈ F with probability θ(f |wih−1), shifts heads
left one position i.e., h′

−i−1 = h−i, i = 1, · · · and generates a new last exposed
head, h′

−1 = (h1
−1, h

2
−2) = (wi, f).

– The constructor operates with a probability θ(a|h−2h−1) where a ∈ A =
{(right||γ), (left||γ), (up||γ),null} where γ ∈ Γ , the set of non-terminal
symbols.

The increased complexity of the complete lexical and semantic enhanced SLM
mainly arises from the enlargement of headword vacabulary. The recursive for-
mulas however can be updated with simple modular modifications.

5 Conclusions and Further Directions

We have shown how to integrate trigrams and PLSAs with the structural lan-
guage model to build a composite generative probabilistic language model. The
resulting composite language model has even more complex dependency struc-
ture but with more expressive power than the original SLM. We have studied
its various stochastic properties and extended various recursive formulas with
conceptually simple modular modifications, i.e., replacing θ(wi|h−2h−1) with∑

gi∈G θ(wi|wi−2wi−1h−2h−1gi)θ(gi|d), while remaining the same order compu-
tational complexity. Even though the added context-sensitiveness due to tri-
grams and PLSAs and violation of tree structure in the topology of the underly-
ing random field model make the inference and parameter estimation problems
plausiblely intractable, these recursive formulas are nevertheless exact to solve
these problems for the lexical and semantic enhanced SLM. The main reason ren-
dering this being true is that the computation of the probability of a sentence
can be factorized into two parts where each part can be recursively calculated
and no overlapping features exist when performing the computation recursively.

Statistical latural language processing is an empirical field, nevertheless some
famous published papers in NLP only described the algorithms without any ex-
perimental justification for the usefullness. For example, James Baker’s 4 pages
paper (Baker 1979) showed the nowadays well known inside-outside algorithm
with no empirical results. Similarly in Jelinek’s paper (Jelinek 2004), there is
no any experimental results too, mainly due to its O(n6) complexity where n
is the length of a sentence. Our paper is in the same flavour of theirs, empha-
sizing algorithmic aspect. Similar as analyzed in (Jelinek 2004) for SLM, the
complexity of the generalized inside-outside algorithm for the lexical and se-
mantic enhanced SLM is in the same order as in SLM and is propotional to n6.
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context free

Tractable
Turing machine

regular

n3)O(
O(n6)

context sensitive

Fig. 5. In the Chormsky’s hierarchy of grammars nested according to the increasing
restrictions placed on the production rules in the grammar, there is a subclass of
probabilistic context sensitive grammars which is tractable

Figure 5 illustrates the Chormsky’s hierarchy of grammars in terms of compu-
tational complexity (Hopcroft and Ullman 1979) where there exist a tractable
subclass of probabilistic context sensitive grammars with n6 time complexity as
well as a subclass of probabilistic context sensitive grammars with cubic time
complexity. The n6 order complexity makes all the algorithms developed in this
work and in (Jelinek 2004) impractical. However various schemes as suggested
in (Jelinek 2004) can be used to prune substantial fraction of entries from the
charts by thresholding in the computation of inside and outside probabilities and
limiting non-terminal productions. We plan to report experimental results by us-
ing these various techniques to approximately perform parameter estimations for
the lexical and semantic enhanced SLM in the future.
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