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Abstract

In this paper, we present a robust framework for ac-
tion recognition in video, that is able to perform com-
petitively against the state-of-the-art methods, yet does
not rely on sophisticated background subtraction pre-
process to remove background features. In particular,
we extend the Implicit Shape Modeling (ISM) of [10]
for object recognition to 3D to integrate local spatio-
temporal features, which are produced by a weakly su-
pervised Bayesian kernel filter. Experiments on bench-
mark datasets (including KTH [11] and Weizmann [5])
verifies the effectiveness of our approach.

1. Introduction

Visual action recognition is a crucial problem in
video analysis and understanding. It is nevertheless
a challenge task due to the non-rigid object and mo-
tion shapes, variations due to changes in viewing an-
gles and distances, and is further complicated by cam-
era motion as well as background clutters. These dif-
ficulties prohibit practical attempts toward building a
rigorous global model for each action class, as they of-
ten bear limited capacities to capture non-rigid shapes
with varying poses, hence provides very little general-
ization for unknown data. Recent work such as [9, 11]
partially address these issues by utilizing local features
that are invariant to pose changes. On the other hand,
to obtain satisfactory recognition rate, a de facto pro-
cedure is to apply dedicate preprocess to each of the
video sequences using sophisticated background sub-
traction techniques, in order to extract accurate fore-
ground objects [4, 5, 6, 7]. This procedure often in-
volves heavy manual interactions and does not general-
ize well to novel videos.

In this paper, we propose a robust approach that is
capable of addressing both limitations. Start with lo-
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cal features invariant to view and scale changes, our
approach further applies an improved variant of the
weakly-supervised Bayesian Learning work of Car-
bonetto er al. [2, 8] in Object Detection to videos, to
focus on foreground actions with very little supervi-
sion. Moreover, we extend the Implicit Shape Model
of Leibe et al. [10] to 3D. This enable us to robustly in-
tegrate the set of local features into a global configura-
tion, while still being able to capture local saliency. Em-
pirical experiments convincingly demonstrate the com-
petitiveness of our proposed approach when comparing
with the best known results.

2. Local Features as Video Representation

A video shot in our perspective is a complex set
of local features under various configurations. Tack-
ling action recognition this way as we discussed earlier
helps to lighten the dependency on view and scale vari-
ance of action visual appearance. We adopt the existing
Space Time Interest Point (STIP) detection technique
from Laptev er al. [9] to detect points with high motion
change. In addition, by observing that the certain re-
gions around these detected points are also contributive
to the action context, we refine STIP detection results
with a post Inpainting procedure, which idea is similar
to Image Inpainting described in [3] by Criminisi et al.
The inpainting process starts on the boundary of con-
nected STIP point regions, base on the median scale and
frequency of these STIP points to generate hypothesis
about whether other points in the neighborhood should
be included. Figure 2 illustrates the effect of our im-
proved technique, inpainted Space Time Interest Point
(iSTIP), over the traditional STIP.

The surrounding areas of detected pixels are then
described using a concatenation of Histogram of Ori-
ented Gradients (HOG) and Histogram of Oriented
Flow (HOF) [9]. In order to better organize the inter-
est points in terms of their appearance, we use the ag-
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(a) STIP Detection

(b) iSTIP Detection

Figure 2. Feature Detection Improvement

glomerative clustering scheme from Agarwal and Roth
[1] to group similar interest regions based on pair-
wise Normalized Greyscale Correlation (NGC) values,
which helps to yield the highest similarity compactness
of pixel appearance regardless of the number of clus-
ters being produced. With this analysis, a video shot v
is now represented as a sparse set of all interest points
x;(¢, ¢) having cluster identity ¢ and 3D coordinate c.

3. Sparse Bayesian Learning

Among all detected interest points from the video
shots, there are usually motion noise from the scattered
background that do not contribute to the action motion.
In fact, those points normally make the modeling com-
putation much harder and in some cases might com-
pletely distract the core parts of the action. In order
to filter out these irrelevant elements, we develop an
extended version of the Sparse Bayesian Kernel Ma-
chine from Object Recognition work of Carbonetto ez
al. [2]. For each interest point z;(¢,c) as notated in
previous section, there will be associated a class label
y¥ € {—1,1}. The idea is to build a hierarchical Bay-
sesian classifier model with parameters learned from the
limited amount of available training data. Following
[2], we adopt a sparse kernel machine for classification
purpose, with the function between the posterior proba-
bility p and probit link ®:
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with f is the regression function

N
(2, B,7) = Zﬂk%w(ﬂ?i,ka) (2)

k=1

and ¥ (z;, x) = exp(—(x; —xzk) /o), the Gaussian ker-
nel function of z; with N feature points in the sampling.
The two parameters of this classification model and the
regression coefficients 3 £ [3;3,...0x] and the feature
selection vector ¥ £ [y;72...yn], & € {0,1}, implying
the sparsity of this classification [8]. The discriminative
classification now becomes calculation of the probabil-
ity of a new point ' based on training data {z, y; }, and
model parameters 0 = {3,~v}

p(y’lx’,x,yk):/p(y’|a:’,9)p(0|x,yk)d0 3)

Figure 3 shows our successful adoption of this Sparse
Bayesian Machine for the task of feature labeling on
Weizmann [5] dataset, all red colored circles represent
points noisy background while green circles are those
positively labeled as parts of the action configuration,
and denoted as action elements in our system.

Figure 3. Feature Filter on Weizmann
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4. Nonparametric Implicit Shape Model

The main part of our Action Recognition framework
is the Implicit Shape Model, designed to integrate local
attributes and global configuration of detected action el-
ements). The idea is motivated by the Implicit Shape
Model (ISM) approaches in the Object Categorization
field. We come up with a flexible modeling technique
that projects all action element properties onto an ac-
tion hyperspace that consists of their spacetime coor-
dinates ¢ and their cluster identification ¢. In this ap-
proach, by decomposing an action video into temporal
slices or key frames, a local action center is consid-
ered as the centroid of all action elements in each slice,
and a conceptual global action center is constructed as
the mean center point along the projected trajectory of
those local action centers. With these two notations, an
action element can then be projected along with its rel-
ative local and global action centers. Formally, for each
action center hypothesis at position x, we can factor the
marginalization probability p(x|e, ¢) for image patch e
and coordinate system c based on observed cluster iden-
tities I; according to [10]

ZP(CE‘|€, Iiv C)p(Ii|ea C)

p(zle, c) 4

> p(@lLi e)p(Lile) (5)

The calculation is done in a similar fashion to other
Generalized Hough Transform models with vote cast-
ing from all elements for the most possible action cen-
ter, and a 3D mean-shift search over the voting space is
applied as a Parzen window probability density estima-
tion to calculate the most voted action center volume,
which in other words, the quantitative matching score
of an unknown motion compared to the action model.

score(x) = Z Z p(xjle, cx)

k z;eX

(6)

Figure 4 illustrates this voting procedure, where rect-
angles are the action elements, their colors represent vi-
sual cluster identities, local action centers are where the
white lines converge and the big red circle is the nomi-
nated search space for global action centers.

5. Experimental Results

‘We run action classification on KTH [11] and Weiz-
mann [5] dataset to evaluate our system performance.
The KTH dataset contains nearly 2400 video shots of 6
different action classes, performed by 25 people under 4
different contexts. The Weizmann dataset has 92 video
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(a) run ido on Weizmann

(b) skip eli on Weizmann

Figure 4. Voting Space for Action Center

shots of 10 action classes, performed by 9 people. The
detailed step-by-step results are shown in Figure 7, and
the most representative action elements obtained from
16 actions of both datasets are displayed in Figure 5.
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Figure 5. Representative action elements

In order to produce a fair comparison with reported
fully-supervised action recognition systems, we allow
our training source to start with very little supervision
and get increased after each round to reach the bench-
mark train/test amount of these two datasets, that is, 2/3
Split on KTH, and leave-one-out on Weizmann. Figure
6 shows our classification confusion matrices obtained
with maximum amount of training on each dataset.
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(a) KTH 92.67% (b) Weizmann 98.9%

Figure 6. Action Classification Results

We also conduct a comparison survey shown in Ta-
ble 5 with average classification accuracy from our ap-
proach compared to the best reported works on these
two datasets, given the same amount of training. Inter-
estingly, while other works seem to work well for either
one of the datasets (Fathi and Mori’s got top for Weiz-
mann but bottom for KTH, Grundmann et al. has best
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Figure 7. Classification procedure for action run from KTH and Weizmann dataset

score on KTH but lowest result on Weizmann), our sys-
tem performs equally well on both datasets, having the
second best classification score on KTH and Weizmann.

| Author | KTH | Weizmann |
Ours 92.67 98.9
Fathi and Mori [4] 90.50 100
Jhuang et al. [7] 91.70 98.8
Wang and Mori [12] | 91.17 98.33
Grundmann et al. [6] | 93.52 96.39

Table 1. Classification Average Accuracy

In addition, we carry out a thorough analysis on the
robustness of our system toward supervision amount, to
see how training amount affects on the overall classi-
fication accuracy. The two plots in Figure 8 prove that
our system is able to pick up unknown data very quickly
and once certain training amount is learnt, as little as
31.25% on KTH (corresponding to 89% classification
accuracy) and 37.5% on Weizmann (with 93% accu-
racy), there is essentially no need to feed more training
data. This demonstrates the beauty of nonparametric
nature integrated in our Implicit Shape Model, highly
generative even with small training amount.
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6. Conclusion

In this paper we presented a new solution for the
challenge of action recognition in video. Relying on
two main components, Sparse Baysesian Machine and
Implicit Shape Model, our system has successfully in-
tegrated the rich local feature attributes with the com-
plex action global structure into one compact proba-
bilistic model. Results on standard benchmarks have
also demonstrated our approach can work under little
supervision and still be highly abundant for regression.
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