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ABSTRACT

We develop a robust technique to find similar matches of

human actions in video. Given a query video, Motion History

Images (MHI) are constructed for consecutive keyframes.

This is followed by dividing the MHI into local Motion-
Shape regions, which allows us to analyze the action as a

set of sparse space-time patches in 3D. Inspired by the idea

of Generalized Hough Transform, we develop the Implicit
Motion-Shape Model that allows the integration of these local

patches to describe the dynamic characteristics of the query

action. In the same way we retrieve motion segments from

video candidates, then project them onto the Hough Space

built by the query model. This produces the matching score

by running Parzen window density estimation under different

scales. Empirical experiments on popular datasets demon-

strate the efficiency of this approach, where highly accurate

matches are returned within acceptable processing time.

Index Terms— Action Matching, Implicit Motion-Shape

Model, Motion History Image, Generalized Hough Transform

1. INTRODUCTION

In this paper we consider the problem of finding similar

matches of human actions, an important yet challenging task

in automatic analysis and retrieval of video content.

Motion History Image (MHI), developed by Bradski and

Davis [1], is an effective technique in combining the motion

characteristics over consecutive time interval. In fact, many

techniques have adopted this silhouette-based concept to ex-

tract the motion regions for each video, and use the obtained

motion field as a 2D shape for recognition [1, 2, 3, 4, 8]. De-

spite the fact that these approaches are quite fast and simple,

they are heavily dependent on how good the motion extrac-

tion, and are sensitive to motion noises.

Recent works [7, 9, 11, 12, 13] have focused on using

local space time features to detect salient motion regions in

video, and using scale-invariant local descriptors to capture

the video content. The detected points are then fed into a
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trained classifier to infer the matching possibility of unknown

data. These works rely on the intensive analysis of sparse re-

gions, which focuses mainly on how to derive the characteris-

tics of each common part of the action model and use them to

differentiate between different actions, under different forms

of integral optimization [11, 12]. In these approaches, the en-

tity of each separate part is well defined, but the global struc-

ture is often neglected. This generally makes them vulnerable

under circumstances when the core parts cannot be detected

(occluded or weakly distinctive), or when actions having sim-

ilar elements but totally different behaviors.

Our main contribution in this work is the development of

a nonparametric model for action matching, which integrates

local scale-invariant motion features (using Histogram of

Oriented Gradients and clustered description on MHI) with

global implicit structure of the action (implemented as the

Hough Space projection). We developed a complete video

search system based on the proposed matching algorithm,

which performs competitively to the state-of-the-arts on stan-

dard testbeds such as KTH [12] and Weizmann [3] datasets.

2. MOTION-SHAPE FEATURES FOR VIDEO

Human action in our perspective is represented as a sparse

set of local Motion-Shape features. Those are the selective

patches detected at different scale from the Motion History

Image (MHI), each contains information about the motion

field and the shape of the actor, hence we loosely use the term

Motion-Shape to describe. By analyzing these local attributes

and their global configuration, we can conceptually articulate

the behavior of the formulated action. Figure 1 describes our

feature extraction algorithm. From the query video 1(a), we

compute a collection of MHIs following [1]. For each MHI,

there will be detected the dominant motion region and its cen-

ter point (white rectangle and circle in Figure 1(b)). This mo-

tion blob and its center are used as references for Motion-
Shape searching. In our design, we call those center points

Local Action Centers, as opposed to Global Action Center,

the mean position of all Local Action Centers in each video.

Sliding the window search at different scales in Figure

1(c) will help to produce a collection of Motion-Shapes,

drawn as the thin colored circles. Each Motion-Shape m is
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(a) Query Video: Action Model

will be built based on this video

(b) MHI: nominate action search

region with Local Action Center

(c) Motion-Shape: extracted as

m(x, y, t, c, ω); circle color rep-

resents cluster identification

(d) Hough Space: represented as

Lookup Table, 3-tuple m(x, y, t)
is filled using index pair m(c, ω)

Fig. 1. Constructing Hough Space for Action Model

defined by its relative position (x, y, t) to the Action Centers.

Since each Motion-Shape by its nature is a motion field, we

easily compute the Histogram of Oriented Gradients (HOG),

and also the orientation ω of the most dominant gradient in

each patch. Using HOG values obtained from each patch,

we cluster the patches into different representative group,

each defined by a cluster identification number c. Figure 1(c)

shows the cluster id of Motion-Shape circles using different

colors. At this stage, a video shot is genuinely decomposed

into a set of Motion-Shapes m(x, y, t, c, ω), which will be

encoded into our model, described in the next section.

3. IMPLICIT MOTION-SHAPE MODEL

In order to produce a generic design for modeling the human

action, we extend the Generalized Hough Transform [1] tech-

nique to detect the 3D action structure formed by different

distinctive Motion-Shapes. Using Global Action Center as the

reference point in our 3D structure, we build a Hough Space

to quantitatively represent the relative position of all Motion-
Shapes in the action model, illustrated as the Lookup Table in

Figure 1(d). In that coordinate system, each Motion-Shape is

indexed by a key pair I = (c, ω) consisting of its cluster id c
and gradient orientation id ω. The 3−tuple entries (x, y, t) in

the Lookup Table are filled by those Motion-Shapes attributes

extracted from the model video based on index key value.

Providing this Hough Space, the action matching task now

becomes projecting the Motion-Shapes collected from video

candidate to this space, matching value will be calculated as

how well those projected points fit in the model. Figure 2

illustrates the main steps of the matching task, starting with

(a) MHI: repeat the steps in 1(b)

to find the search space, no Action
Center is needed this time

(b) Hough Projection: calculates

mo(co, ωo) to retrieve vote val-

ues from the filled Hough Space

(c) Density Search: voted Action
Centers as white points, Fitting
Region is found in yellow square

(d) Action Segmentation: extract

those Motion-Shapes contributing

to the Model Fitting Region

Fig. 2. Fitting Video Candidate to Model

the MHI construction (Figure 2(a)) to calculate new Motion-
Shapes in 2(b). Using the filled Model Hough Space (top left

of 2(b)), a particular Motion-Shape mo (circled in white) will

use its index key (co, ωo) to find its corresponding entries

in the Lookup Table. Formally, with each hypothesis about

Action Center position γ, we can factor the marginalization

probability p(γ|m, l) using Motion-Shape evidence e and its

location l = (x, y, t) based on the pair index I = (c, ω), this

factorization is adopted from Leibe et al. [10]

p(γ|e, l) =
∑

i

p(γ|e, Ii, l)p(Ii|e, l) (1)

=
∑

i

p(γ|Ii, l)p(Ii|e) (2)

In our case, p(Ii|e) is simply the calculation of (c, ω) from

detected Motion-Shapes, and p(γ|Ii, l) is the retrieval of Ac-
tion Center location l using index key Ii. The quantitative

matching score of an unknown motion compared to the action

model is then defined as the summation of all Motion-Shape
entities and Action Center locations

score(γ) =
∑

k

∑

j

p(γj |ek, lk) (3)

In our design, we run mean-shift Parzen window density es-

timation to find the Model Fitting Region, which is the pro-

jected region that has the highest density of voted Action

Centers (Figure 2(c)). In our model, we adopt two kinds of

reference points, Global Action Center and Averaging Local
Action Centers. While the former runs 3D volume density

searches using 3-tuple (x, y, t) location of a Global Action
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Center, the latter runs 2D area searches using 2-tuple (x, y)
location of all Local Action Centers on multiple MHIs and

the average of all best matching will be used. We will discuss

the effects of these two referencing systems in section 4. The

search criteria for mean-shift is the ratio r of vote counts on

searching region. In our video search system, we rank video

relevancy based on this ratio in ascending order, best match

has the highest r.

4. EXPERIMENTAL RESULTS

We developed a complete video search system based on the

proposed action matching algorithm, Figure 4 shows a snap-

shot of its user interface. On the left panel, the Query Video

is loaded and processed to generate the codebook dictionary

of Motion-Shapes (in this particular query, there are 289 clus-

ters obtained); also a Segmentation thumbnail is generated to

illustrate the relative position of the nominated Action Center.

The right panel shows the video from the database that have

high matches with the query video. There are three different

views for each match (Original, Motion-Shapes, or Segmen-

tation). The results are ordered according to the matching

score r and the relative matching correspondence is implied

by the yellow square Model Fitting Regions.

In order to attain a thorough evaluation of our technique,

we use this Video Search system to run the tests on the two

datasets KTH [12] (2400 video shots of 6 actions) and Weiz-

mann [3] (92 video shots of 10 actions). The common bench-

mark train/test amount for these two datasets is 2/3 Split on

KTH, 16 persons for training and 9 persons for testing, and

leave-one-out on Weizmann, 8 persons for training and 1 per-

son for testing. Since we are carrying out searching task, we

only need one training sample per query. Therefore, in or-

der to produce fair comparison with reported works, we do a

random selection (with equal samples of each action) of the

search queries, and run the search on the same testing amount.

In our evaluation process, we are also interested in un-

derstanding the accuracy-time tradeoff relationship and view

change sensitivity. We conduct three independent test runs

based on three principal methods, namely, Global.Mirrored,

Local.Mirrored, and Local.NonMirrored. The first term indi-

cates whether the Global or average of Local Action Centers
is used as reference point, the second term specifies if the

search is mirrored in left-right direction, that is, each video

candidate will be flipped horizontally to generate a mirror of

itself, the test is then done on both instances, and the max-

imum matching score is used. Empirical results show that

on average, the Global search requires double the process-

ing time of Local search, while the Mirrored algorithm is 1.5
times slower than NonMirrored. Figure 3 summarizes the per-

formance of three techniques on KTH and Weizmann using

the Receiver Operating Characteristic (ROC) curve.

Tests on Weizmann dataset generally return better results

than KTH, which is quite reasonable since the backgrounds
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Fig. 3. Matching Performance on KTH and Weizmann

in Weizmann are static, while the cameras in KTH are not

stable. It is also shown that using Global Action Center as

a reference for 3D point cloud search does yield better result

than averaging individual 2D Local Action Centers. The per-

formance decline in two NonMirrored techniques does imply

that our technique is sensitive to view change, which is ex-

pected since we rely on the motion field shape to analyze ac-

tion behavior, this drawback can be overcome with Mirrored
method, sacrificing an overhead portion of processing time.

The black straight line in Figure 3 is called Cut-off Line
which connects the two ends of True Positive Rate [0, 1] and

True Negative Rate [1, 0], intersections of this line with ROC

curves are called Cut-off points (represented as black circles),

indicating the position where Sensitivity is equal to Speci-

ficity, and we use those points to analyze the average perfor-

mance of our system specific for each action and as compared

to other reported works on KTH and Weizmann. The perfor-

mance of Global.Mirrored are elaborated as per action at Cut-
off points using the Confusion Matrix with normalized sum on

each row and column, as shown in Figure 5.

(a) KTH 92.17% (b) Weizmann 98.9%

Fig. 5. Matching Results based on Action

Using the average accuracy, we also conduct a compari-

son survey between our methods and reported state-of-the-art
action recognition approaches, as shown in Table 4. Inter-

estingly, while other works seem to work well for either one

of the datasets, our system performs equally well, having the
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Fig. 4. Video Search GUI for Example using KTH boxing Action: Left Panel shows the loaded Query Video with nominated

Action Centers. Right Panel displays the Best Matches returned, ranked using ratio r of vote counts in Fitting Regions

second best classification score on both KTH and Weizmann.

Methods KTH Weizmann
Global.Mirrored 92.17 98.9
Local.Mirrored 85.93 94.75
Local.NonMirrored 79.2 85.12
Schuldt et al. [12] 71.70 *

Ke et al. [8] 80.90 *

Niebles et al. [11] 81.50 72.8

Jiang et al. [6] 84.40 *

Fathi and Mori [2] 90.50 100

Jhuang et al. [5] 91.70 98.8

Wang and Mori [14] 91.17 98.33

Laptev et al. [9] 91.80 *

Grundmann et al. [4] 93.52 96.39

Table 1. Comparison with state-of-the-art

5. CONCLUSION AND FUTURE DIRECTION

We tackled the problem of action matching in videos using a

nonparametric approach generalized from the Hough Trans-

form algorithm. Dictating a query video by the its structured

motion fields, we have successfully integrated local invariant

motion features with global action configuration. Our system

does not rely on any particular model parameter, hence makes

it highly dynamic and generative. Ongoing work is improv-

ing the current system performance to realtime, producing a

complete visual-based system for video search.
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