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Abstract

This paper presents a unified framework for human ac-
tion classification and localization in video using structured
learning of local space-time features. Each human action
class is represented by a set of its own compact set of lo-
cal patches. In our approach, we first use a discriminative
hierarchical Bayesian classifier to select those space-time
interest points that are constructive for each particular ac-
tion. Those concise local features are then passed to a Sup-
port Vector Machine with Principal Component Analysis
projection for the classification task. Meanwhile, the ac-
tion localization is done using Dynamic Conditional Ran-
dom Fields developed to incorporate the spatial and tem-
poral structure constraints of superpixels extracted around
those features. Each superpixel in the video is defined by the
shape and motion information of its corresponding feature
region. Compelling results obtained from experiments on
KTH [22], Weizmann [1], HOHA [13] and TRECVid [23]
datasets have proven the efficiency and robustness of our
framework for the task of human action recognition and lo-
calization in video.

1. Introduction

There are two dominant approaches reported in the liter-
ature of action recognition, one is based on the global con-
text of the human shape to infer the actions [1][9][8], while
the other looks at how the local key points contribute to the
overall action [3][13][4][16][18]. The former group focuses
on the whole biological structure of human body, and the
human action recognition is based on finding a 3D kine-
matic model associated with each type of action. The ad-
vantage of this approach lies in the fact that, once the model
is built, any kind of actions can be inferred from that root,

and the analysis result is meaningful and comprehensible
by human. However, since input camera source is often in
2D, building a concrete 3D model from these source is not
a trivial task, and in fact, video data from realistic context
(as seen in Figure 1 for TRECVid dataset) containing large
amount of occlusion makes it nearly an impractical task to
model the entire body structure. That drawback recently
turns computer vision attention to using local features de-
tected at different locations in the video, those features are
developed to be invariant to scale, less sensitive to illumi-
nation, and can be easily represented as well as analyzed.

Figure 1. Snapshots from Event Detection task - TRECVid dataset

Adapting similar concepts from the image domain like
Harris Corner detector, Scale Invariant Feature Transform
(SIFT), many good local feature detection for video have
been developed [12][3] to find the the most interesting lo-
cal regions in the video that can be potential search space
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(a) Step 1: STIPs detected as green
circles with centers at red points

(b) Step 2: HBFS eliminates those
irrelevant features in yellow circles

(c) Step 3: PCA-SVM decides if
this sequence is of class Embrace

(d) Step 4: CRF weighs features
and localizes action by thresholding

Figure 2. Our system framework for Action Classification and Localization, demonstrated on action Embrace of TRECVid dataset

for the action. The feature detection step is normally fol-
lowed by a classification task using different machine learn-
ing techniques. The classification stage incorporates the de-
tected local features into different kinds of model, in an at-
tempt to generate the compact representation of high dimen-
sional training data. Common approaches feed the detected
local features directly into some kind of discriminative clas-
sifier, like Support Vector Machine in [13], bag-of-words
based in [3], or shape transformation in [19][17]. Although
reported results from those methods demonstrate the valida-
tion of those approaches, it is easily noted that the datasets
used in those experiments are too simple compared to real
world recognition scenarios, which dataset recently made
public in [15][14].

Sharing the same view, we tackle human activity recog-
nition in video from the real-world perspective, that is,
given a very noisy dataset, our aim is to build a model that
can depict the core characteristic of each action class and
use them to build a probabilistic model for classifying and
localizing their instances in unknown video. In this paper,
we will show that it is more effective for the task of action
classification, especially in challenging scenarios, if we add
an additional step for filtering out noisy local features. We
combine classification and localization into a unified frame-
work with four main steps shown in Figure 1, and our main
contribution in this work is twofold. Firstly, we extend a Hi-
erarchical Bayesian Feature Selection (HBFS) developed by
[2][4] for 2D object detection to the case of 3D Space-Time
Interest Point (STIP) [12] action features, as described in
Section 2 and 3. Those filtered local features are passed to
a non-linear Support Vector Machine with Principle Com-
ponent Analysis projection (PCA-SVM) [21], described in
Section 4, to classify different classes of human action, sim-
ilar to other traditional approaches. Secondly, we develop a
Dynamic Conditional Random Field (DCRF) [11] to weigh
each local feature using the combination of its motion-shape
descriptor and its neighborhood superpixels, this will be
elaborated in Section 5.

2. STIP for Human Action Representation
Visual information of a video V is defined by a collec-

tion of its pixels I , that is V ⊃ I(r, c, t, i) with coordinates
(r, c, t) (row, column, time) and intensity i. We approach
video action in an analogous way, decomposing an actionA
into local salient patches x, extracted around interest points.
Among many local feature choices, we use Space Time In-
terest Points (STIP) developed from Laptev [12] to repre-
sent human action in video, since it yields more informative
analysis over the motion in complex background, which is
our main goal. The main idea of STIP is to extend Harris
interest point detector from 2D image to 3D video, trying to
find the point which has significant changes in both direc-
tions of space and time [12]. The interest points are detected
by searching for the area with high gradient change in shape
and motion.

Within each detected local patch x, there can be a range
of information that can be embedded from the video do-
main, and together, all these elements will build up the
distinctive characteristics of the underlying action. An lo-
cal feature x in our design is defined by a feature vector
x(r, c, t, s, z), where r, c, and t indicate the geometric posi-
tion of x, s specifies its scale in region radius, z is the fea-
ture description, z = (hog, hof), storing shape and motion
information of x as Histogram of oriented Gradients (HoG)
and Histogram of oriented Flows (HoF) respectively. Us-
ing this representation, the first step in our framework is to
extract all STIPs from the video and store in x ∈ X .

Figure 3 shows few result snapshots of STIP extracted
from TRECVid dataset at different scale levels.

3. HBFS for concise Action Features
In the current works on human activity analysis, there

has been a little number of public dataset that gives the cor-
rect annotation of the action class, KTH [22] and Weizmann
[1] are probably the two only datasets that have close to
complete annotation of when the actions occur in the video
shots, Hollywood Human Action (HOHA) [15] is a newly
developed dataset trying to include more realistic scenarios,
but the annotation is still limited. In fact, video labeling is



Figure 3. Sample STIPs detected in green circles on TRECVid

much more tedious and time-consuming than the traditional
object masking in image recognition. The vast amount of
growing video has also brought in the need for a technique
that can learn the most representative local features of each
action class and be able to catch similar motion pattern in
completely unknown environment.

Among many popularly known classification techniques,
Bayesian learning approach seems to fit most to our interest
of semi-supervised learning task, since it is more flexible
in representing the divergence of learning and testing data
source, and explicitly shows the link between each hypoth-
esis with its computed score. The core idea of Bayesian
approach is to analyze the approximation of the posterior
distribution based on multiple trained hypotheses. We ex-
tend the Hierarchical Bayesian idea of object recognition in
image from Carbonetto et al. [2] into human action recogni-
tion in video with more constraints on the structure among
interest points in both space and time. Each action class will
have one classifier trained from its small supervised set, the
negative samples are randomly sampled from the pool of all
other classes.

For each interest point xi described as x(r, c, t, s, z)
in Section 2, there will be associated a class label yk

i ∈
{−1, 1}. The idea is to build a hierarchical Baysesian
classifier model with parameters learned from the limited
amount of available training data. Following Carbonetto et
al. [2], we adopt a sparse kernel machine for classification
purpose, with the function between the posterior probability
p and probit link Φ defined in Tham et al. [25]:

p(yi = 1|xi, β, γ) = Φ(f(xi, β, γ)) (1)

with f is the regression function

f(xi, β, γ) =
N∑

k=1

βkγkψ(xi, xk) (2)

and ψ(xi, xk) = exp(−(xi − xk)/σ), the Gaussian kernel
function of xi with N feature points in the sampling. The
two parameters of this classification model are the regres-
sion coefficients β , [β1β2...βN ] and the feature selection
vector γ , [γ1γ2...γN ], γk ∈ {0, 1}, implying the sparsity
of this classification [2].

In order to increase the flexibility of the model, we adopt
the idea described in Carbonetto et al. [10] to assign both
parameters β and γ with relevant distributions, respectively
β with an inverse Gamma distribution, and γ with Beta dis-
tribution. The binary classification of label yi as shown in
[2] is now the calibration of regression function f(xi, β, γ)
(Equation 2) over zero.

yi =

{
1 if f(xi, β, γ) > 0
−1 otherwise

(3)

The discriminative classification now becomes calcula-
tion of the probability of a new point x′ based on training
data {x, yk}, and model parameters θ = {β, γ}

p(y′|x′, x, yk) =
∫
p(y′|x′, θ)p(θ|x, yk)dθ (4)

The computation of equation 4 is clearly explained in [2]
using Markov Chain Monte Carlo sampling in addition with
a blocked Gibbs sampler as advised by Tham et al. in [25].
Figure 4 shows few snapshot results of action PersonRuns
in TRECVid, there are still different false labeling because
of the noisy background, but essentially the event region is
covered.

Figure 4. HBFS labels green circles as relevant features for action
PersonRuns, yellow circles for noise which will be removed

At this stage, we have represented an action instance in
video using a only the finest set of local features xwhich has
discriminative feature label y = 1. This additional feature



selection stage will be quantitatively evaluated in Section
6.2.

In most literatures of this bag-of-feature approach
[16][2], people often use the feature labeling results inde-
pendently and directly to classify the context. In our ap-
proach, we see that the contributing correlation among dif-
ferent local features is important to represent a human ac-
tion as a whole. Therefore, we apply an extra discriminative
classifier for this purpose, using a non-linear PCA-SVM,
similar approaches to Laptev et al. in [13].

4. PCA-SVM for Action Classification
After the feature labeling task, each video shot can be

seen as a sparse set of all event points i(r, c, t, s, d, l) with
label l = 1 indicating all these points belong to this ac-
tion class of interest. Using the Radial Basis Function
as the Support Vector Machine kernel [21] k(xi, xj) =
exp(−γ‖xi − x2

j‖), for γ > 0, we generate a classifier
model from the supervised part, and use it to classify un-
known event shots. The task of action classification is done
using one-against-all, that is, when one action is used to
build the classifier, all instances of other classes are consid-
ered as negative samples. Figure 5 shows the binary classi-
fication results of ObjectPut action classifier.

Figure 5. Using action model ObjectPut, PCA-SVM classifies the
left video shot (blue text with (+) sign) as a positive instance, and
the right shot (red text with (-) sign) as a negative

5. DCRF for Action Localization
Often in the image object recognition task, objects are

detected and localized at certain bounding boxes which are
helpful to show the exact object location, and also, can be
used as a ground-truth data for further detection. However,
in video processing domain, the concept of human activity
or human event is rather abstract and loosely defined, espe-
cially for those videos obtained from the web [14] or real
world surveillance scenarios TRECVid [23], the automatic
retrieval of event regions is very essential and helpful for
the activity analysis society.

In the classification task described in the previous sec-
tion, local features are independently projected and used to
find the support vectors, those best discriminate one action

class from others. Meanwhile, with the challenging task of
action localization, the aim is to retrieve only the features
that directly construct the action regions. In order to de-
cide which features should be used to construct the action
rectangular cuboid, we introduce a concept of feature rel-
evancy weight w ∈ [0, 1] represents the relevance of each
feature with the action. In our approach, we call the ac-
tion cuboid Integral Volume, which basically is a bound-
ing cuboid of all features x|w(x) > η, with η is the rel-
evancy weight threshold of features, distinctive for each
action class. Estimation of w is done by formalizing the
two observations about features of a common human ac-
tion. The first observation is spatial dependency, neighbor-
ing features x, y|y ∈ Nx, d(x, y) < τ) are likely to have
similar contribution weight to an action region, here Nx is
the spatial neighborhood set of x, d is the normalized Eu-
clidean distance and τ is the neighborhood distance thresh-
old. The second observation is temporal dependency, the
action regions in adjacent frames normally do not have large
variance in size and location, in other words, same features
across time dimension xk and xk+1 tend to have similar
weights, here k indicates time frame.

By encoding spatial and temporal dependencies of
neighboring features into the selection process, we have
converted the localization task into structured learning with
latent variables. The hidden parameter in our model is the
feature weight w, and the structured dependencies are de-
composed into spatial and temporal constraints. Among
many structured learning techniques, Conditional Random
Fields (CRF) [11] are most appealing to our case of depen-
dent sparse local features. For the task of object localization
in images, Carbonetto et al. [2] had successfully applied a
standard CRF to model spatial constraints. Specifically for
our action localization task with additional temporal con-
straints, we employ the approach in [26] to develop a Dy-
namic Conditional Random Fields (DCRF) with an extra
temporal constraint. Wang and Ji in [26] uses DCRF for
the problem of object segmentation from video with dense
features, which are in fact all the pixels in the video. In our
case, we use sparse local superpixels x, the 3D cuboid ex-
tracted around STIP, as the feature observations, shown as
small green rectangles in Figure 6(a), to find the bounding
cuboid of the action instance in the video shot.

Formally, we denote z as the feature observation, z =
(hog, hof) in our case for Histogram of oriented Gradients
hog and Histogram of oriented Flows hof representing fea-
ture shape and motion respectively. The feature weight w is
now a random field globally conditioned on z. Using the
Hammersley-Clifford theorem and considering only one-
pixel and two-pixel potentials, we now can represent the
posterior probability p(wk|z1:k) of the feature weight given



z by a Gibbs distribution as

p(wk|z1:k) ∝ exp{−
∑
x∈X

[ϕx(wk(x)|z1:k)+∑
y∈Nx

ϕx,y(wk(x), wk(y)|z1:k)]} (5)

In this equation, X is the local feature domain, z1:k is
the observed feature sequence up to time k, ϕx(wk(x)|z1:k)
is the one-pixel potential function for each superpixel x,
ϕx,y(wk(x), wk(y)|z1:k) is the two-pixel potential func-
tion representing the spatial constraint between a pair of
two neighboring features. The temporal constraint is
formulated as two potentials ϕx(wk+1(x)|wk(N ′

x)) and
ϕx,y(wk+1(x), wk+1(y)) and encoded in the state transition
probability as developed by Wang and Ji

p(wk+1|wk) ∝ exp{−
∑
x∈X

[ϕx(wk+1(x)|wk(N ′
x))+∑

y∈Nx

ϕx,y(wk+1(x), wk+1(y))]} (6)

with N ′
x is the temporal neighborhood set of x, contain-

ing neighbors of x in the adjacent state. Apart from the pos-
terior and state transition function, the likelihood function
p(wk|zk) is also derived similarly to [26] as

p(zk|wk) ∝ exp{−
∑
x∈X

[ϕx(zk|wk(x))+∑
y∈Nx

ϕx,y(zk(x), zk(y)|wk(x), wk(y))]} (7)

where ϕx(zk|wk(x)) and
ϕx,y(zk(x), zk(y)|wk(x), wk(y)) are similarly the one
and two-pixel potentials representing the spatial con-
straints of shape-motion observation and feature weights.
Since motion and shape are retrieved independently, the
likelihood function can be further decomposed to

p(zk|wk) = p(hogk, hofk)|wk)
= p(hogk|wk)p(hofk|wk) (8)

The optimization process is carried out similarly to the
segmentation sampling described in [26], by approximating
the mean field probability qx(wk(x)|z1:k)

p(wk|z1:k) ≈
∏
x∈X

qx(wk(x)|z1:k) (9)

ŵk(x) = arg max
e
qx(wk(x) = e|z1:k) (10)

where e is the initialization value, qx(wo(x) = e), and
is set to 0.5 for all superpixel x in our case. The calcu-
lated ŵk(x) is the final feature weight of all superpixels in

the video shot, which will be passed through the weight fil-
ter η as described previously. The final Integral Volume is
caluclated as the as the approximate bounding rectangular
cuboid that contains all those high weight features. Figure
6 illustrates the localization results using DCRF for an in-
stance of action Embrace from TRECVid dataset.

(a) Extracted rectangular cuboids at
STIP location. Note that all these
cuboids already selected by the pre-
vious HBFS

(b) DCRF results, grayscale color
of the cuboids represent different
feature weights, Integral Volume is
drawn in green rectangle

Figure 6. Feature Relevancy Weighting using DCRF

6. Experimental Results
6.1. Dataset selection and Experiment Setup

In order to evaluate the performance of our proposed ap-
proach, we run action classification and localization tasks
on four main datasets which represent different character-
istics of testing scenarios. For the fundamental and com-
plete set of human action recognition, we choose KTH [22]
and Weizmann [1] dataset. KTH has about 2400 grayscale
video shots with 6 actions: boxing, handwaving, handclap-
ping, jogging, running, walking, performed by 25 persons
under 4 different contexts and subdivided into 4 intervals.
Weizmann has about 90 colored video shots with 10 ac-
tions: bend, jack, jump, pjump, run, side, skip, wave1,
wave2, walk, performed by 9 persons. For the realistic set,
we choose Hollywood Human Action HOHA1 dataset [13],
which we can find more publicly reported works than its de-
scender HOHA2 [15], HOHA1 contains 8 action classes,
namely AnswerPhone, GetOutCar, HandShake, HugPer-
son, Kiss, SitDown, SitUp, and StandUp, distributed in
around 250 training and testing samples. For a even more
challenging scenario of action recognition in surveillance
video, we pick TRECVid Event Detection Development set
[23], recorded from 5 cameras at Gatwick airport in the
United Kingdom. Using the provided annotation file to-
gether with 20 video shots recorded in 4 different days from
4 main cameras, excluding camera 4 looking only at the ele-
vator and has very little action, we extract all the associated
samples to build a dataset of 5584 action samples of 8 dif-
ferent action events, namely CellToEar 398 shots, Embrace
449 shots, ObjectPut 984 shots, OpposingFlow 15 shots,
PeopleMeet 1246 shots, PeopleSplitUp 761 shots, Person-



(a) Stage 1: Original Frame (b) Stage 2: STIP (c) Stage 3: HBFS (d) Stage 4: SVM Classification

(e) Stage 5: Superpixels (f) Stage 6: CRF Feature Weighting (g) Stage 7: Integral volume (h) Stage 8: Action Localization

Figure 7. Detailed steps for recognizing action PersonRuns from TRECVid Event Detection Track

Runs 281 shots, and Pointing 1452 shots.
Figure 7 shows 8 detailed output stages of our action

classification and localization framework. The classifica-
tion and localization results obtained from running our sys-
tem on the 4 datasets are then used to evaluate the perfor-
mance of our system compared with state-of-the-arts in the
field.

6.2. Action Classification

In order to provide a fair comparison with other ap-
proaches, the task of action classification on each dataset is
performed with different amount of training and testing. On
KTH, we use 2/3 Split, that is, 1800 shots for training and
900 shots for testing, dividing based on person and context
variation. On Weizmann, we use Leave-One-Out scheme
to train and test all sequences. On HOHA, we use the same
number of training and testing that Laptev et al. used in [13]
and for TrecVID, we use 2/3 Split for each action class.

The results obtained from running the classifier on three
datasets are shown in 4 confusion matrices of Figure 8. We
can easily see that our system performs much better on
KTH (93.83%) and Weizmann (98.2%), which is reason-
able since those two dataset does not have occlusion and
only one actor is visible at a time. We use the average clas-
sification accuracy to compare with reported state-of-the-art
systems in Table 1. We can see that on KTH and HOHA,
our system outperforms [13] (91.80% on KTH, and 18.88%
on HOHA) and [3] (81.20% on KTH, and 6% on HOHA)
which both use STIP as local features. This has proved the
effectiveness of the additional HBFS step that we added be-
fore the discriminative classification. Finally, it is noticed
that the performance on TRECVid dataset is a quite low,

(a) KTH average rate 93.83% (b) Weizmann average rate 98.2%

(c) HOHA average rate 26.63% (d) TRECVid average rate 23.25%

Figure 8. Confusion Matrix for Action Classification Performance

nearly 23.25% in average, showing the challenging char-
acteristic of this dataset with frequent occlusion and low
resolution video quality.

6.3. Action Localization

Action localization from video shot is carried out as de-
scribed in Section 5. The evaluation is carried out on those
true positive video samples from the 4 datasets.

The labeling task for groundtruth localization data is
highly time-consuming, so we only select a portion of each
dataset to quantitatively test the proposed localization ap-



(a) Step 1: STIP Detection (b) Step 2: HBFS (c) Step 3: PCA-SVM (d) Step 4: CRF Weighting (e) Step 5: Localization

Figure 9. Classification and Localization of Action CellToEar in TRECVid Camera 1

(a) Step 1: STIP Detection (b) Step 2: HBFS (c) Step 3: PCA-SVM (d) Step 4: CRF Weighting (e) Step 5: Localization

Figure 10. Classification and Localization of Action CellToEar in TRECVid Camera 2

(a) Step 1: STIP Detection (b) Step 2: HBFS (c) Step 3: PCA-SVM (d) Step 4: CRF Weighting (e) Step 5: Localization

Figure 11. Classification and Localization of Action CellToEar in TRECVid Camera 3

(a) Step 1: STIP Detection (b) Step 2: HBFS (c) Step 3: PCA-SVM (d) Step 4: CRF Weighting (e) Step 5: Localization

Figure 12. Classification and Localization of Action CellToEar in TRECVid Camera 5

proach. With KTH and Weizmann, the scenario only con-
tains one actor in a video scene, so we run an automatic
motion detection with filters to find the human area, and
consider the bounding mask as the groundtruth data. Mean-
while, for HOHA and TRECVid, we develop a video label-
ing tool to segment region of events in both frame num-
ber and action bounding box. The localization is eval-
uated as finding the overlapping proportion of calculated
bounding box (on positively classified video shots) with the
groundtruth, an overlapping region higher than 50% is said
to be a correct localization.

Table 2 summarizes the localization results together with
number of evaluated video shots. Similar to classification
task, localization on KTH and Weizmann provide higher

performance, especially on Weizmann with 100%. Nev-
ertheless, localization on HOHA and TREVid are actually
promising providing that those video shots are normally full
of noise. These results indicate the robust performance of
our proposed localization framework using DCRF, and can
be further developed to use as a semi-supervised labeling
tool for action recognition. Figure 9 to 12 show good local-
ization output snapshots for CellToEar action in TRECVid
dataset, recorded on 4 different cameras.

7. Conclusion

In this paper, we have presented a unified approach to-
wards solving the human action recognition and localiza-



Approach KTH Weizmann
Ours 93.83 98.2
Sun and Hauptmann [24] 94 97.8
Grundmann et al. [6] 93.52 96.39
Laptev et al. [13] 91.80 *
Jhuang et al. [7] 91.70 98.8
Wang and Mori [27] 91.17 98.33
Fathi and Mori [5] 90.50 100
Rapantzikos et al. [19] 88.30 *
Jiang et al. [8] 84.40 *
Niebles et al. [16] 81.50 72.8
Dollar et al. [3] 81.20 *
Ke et al. [9] 80.90 *
Schuldt et al. [22] 71.70 *

Table 1. Human Action Classification Performance of state-of-the-
art approaches on KTH and Weizmann

Dataset Evaluated Shots Avg. Accuracy
KTH 400 96.25
Weizmann 80 100
HOHA 120 77.5
TRECVid 600 71.83

Table 2. Action Localization on selected subsets of 4 datasets

tion together in one framework. By introducing an addi-
tional discriminative feature selection HBFS step, we have
greatly improve the overall recognition over traditional ap-
proach. In addition, with an application of DCRF, the chal-
lenging task of action localization can now be tackled and
evaluated statistically. Results on both research and real-
world datasets have shown that our proposed approach is
highly competitive with the state-of-the-art approaches, as
well as promising for practical applications in the case of
human activity analysis in video.
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