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Fusion of Magnetic and Visual Sensors for
Indoor Localization: Infrastructure-Free

and More Effective
Zhenguang Liu, Luming Zhang, Qi Liu, Yifang Yin, Li Cheng, and Roger Zimmermann

Abstract—Accurate and infrastructure-free indoor positioning
can be very useful in a variety of applications. However, most
existing approaches (e.g., WiFi and infrared-based methods) for
indoor localization heavily rely on infrastructure, which is neither
scalable nor pervasively available. In this paper, we propose a
novel indoor localization and tracking approach, termed VMag,
that does not require any infrastructure assistance. The user can
be localized while simply holding a smartphone. To the best of
our knowledge, the proposed method is the first exploration of
fusing geomagnetic and visual sensing for indoor localization. More
specifically, we conduct an in-depth study on both the advantageous
properties and the challenges in leveraging the geomagnetic field
and visual images for indoor localization. Based on these studies,
we design a context-aware particle filtering framework to track
the user with the goal of maximizing the positioning accuracy.
We also introduce a neural-network-based method to extract
deep features for the purpose of indoor positioning. We have
conducted extensive experiments on four different indoor settings
including a laboratory, a garage, a canteen, and an office building.
Experimental results demonstrate the superior performance of
VMag over the state of the art with these four indoor settings.

Index Terms—Convolutional neural network, indoor
localization, magnetic field, particle filter, visual image.

I. INTRODUCTION

ACCURATE and reliable indoor positioning can be very
useful in a variety of applications [1], [2]. Examples in-

clude localizing survivors inside a building in case of fire, guid-
ing robots in a fully automated factory where there is no human
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presence on-site, navigating a person to a room in an unfamiliar
building, and finding a parking space for a car in an underground
structure.

However, precise indoor positioning is still an open chal-
lenge. In outdoor environments, GPS is commonly used for
navigation. However, GPS can not provide accurate localiza-
tion for indoor environments because satellite signals are likely
to be blocked by walls and ceilings. WiFi, infrared and ultra-
sound based approaches have shown great promise in indoor
positioning. However, due to the limited coverage of a single
signal transmitter/receiver, these approaches heavily depend on
specific infrastructure, which is both expensive and difficult
to maintain. Moreover, it might be infeasible to deploy signal
transmitters/receivers in certain buildings due to safety or pri-
vacy concerns.

In this paper we propose a novel indoor localization and
tracking system termed VMag for smartphone users, free from
any infrastructure assistance. To the best of our knowledge, our
work is the first to integrate both magnetic and visual sensing
for indoor localization. The motivation for utilizing magnetic
and visual sensing is twofold. 1) Both visual images and the
geomagnetic field are omnipresent across the globe. They can be
conveniently captured by common sensors of a smartphone. 2)
Images and the geomagnetic field are complementary in indoor
localization because images are usually distinguishable across
distant locations while magnetic signals are known to be more
locally distinctive [1], [3], [4].

Toward an infrastructure-free and accurate solution for indoor
localization utilizing visual, magnetic and inertial sensors of a
smartphone, three main challenges are yet to be addressed as
follows.

Low resolution of magnetic sensor readings: The magnetic
field signal m measured by a smartphone magnetometer con-
sists of three components 〈mx,my ,mz 〉, which correspond to
the magnetic intensities (in units of μT ) in x, y and z direc-
tions, respectively. The low dimensional vector m is usually
not reliable to form a unique location signature [1].

Noisy sensor readings: Sensor noise is unavoidable primarily
due to hasty movements of a smartphone user and the inher-
ent bias of different smartphone sensors [5]. Specifically, gy-
roscopes and accelerometers may exhibit noisy sensor readings
due to user sway and movement irregularities.

Diverse walking patterns: It is well known that users of dif-
ferent physical attributes such as gender, age, and height may
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possess different gait patterns [6], [7]. During user tracking, the
gait pattern, especially the step length, is very informative in
predicting a person’s new location. Using a generic gait model
to estimate the step length of a specific user may introduce
non-negligible errors.

The key contributions of the introduced solution can be sum-
marized as follows. 1) We propose to fuse geomagnetic field
measurements and visual sensing for the purpose of indoor po-
sitioning. 2) We develop a novel context-aware particle filter
approach as opposed to the typical first-order Markov assump-
tion of standard particle filtering. Instead of presuming that the
location Xt at time t depends only on location Xt−1 of the
immediately previous time step t − 1, we further incorporate
available contextual information such as past traces, the latest
measurements, and floor plans of a building. 3) Most existing vi-
sual based methods for indoor localization leverage handcrafted
image features such as color histograms and SIFT [8], [9]. In
contrast, we incorporate deep learning methods to extract deep
features from empirical data for the indoor localization task.

Extensive experiments have been systematically carried out
to evaluate the effectiveness of our proposed VMag system.
Experiments with four different indoor settings that cover a wide
range of situations (a research laboratory, a garage, a canteen
and an office) demonstrate that VMag achieves a promising
performance where 91% of the localization errors occur within
0.85 m, 1.34 m, 1.34 m and 0.85 m, respectively, for the four
typical settings.

Assumptions: VMag focuses on accurate indoor tracking of
a smartphone user free from any infrastructure assistance. The
only requirement is for a user to hold her smartphone in a
vertical portrait position and capture images only along the
main direction of her path (which should be easy for the user
and maximize localization accuracy). VMag follows the com-
monly adopted (e.g., [10]–[12]) fingerprint-based framework of
infrastructure-free indoor localization systems, thus fingerprints
need to be collected before performing localization. Moreover,
since VMag focuses on user tracking, we only consider all the
possible paths in buildings rather than covering all possible lo-
cations. Note that there are paths even within rooms. The two
main opposing directions of a path are treated as two different
paths. For a crossing, we collect the fingerprints along the main
directions of each of the paths that intersect at the crossing,
respectively.

II. EMPIRICAL EVALUATION ON STRENGTHS AND CHALLENGES

OF GEOMAGNETIC FIELD AND VISUAL IMAGES

Before introducing VMag, we conduct an in-depth empirical
evaluation of the strengths and challenges of visual and magnetic
measurements for indoor localization.

A. Strengths of Magnetic Field

Our empirical evaluation suggests that the properties of a
geomagnetic field which are advantageous for the purpose of
indoor localization are as follows.

1) Drastic Geomagnetic Field Changes Across Locations: To
study the variability of the geomagnetic field in space, we have

Fig. 1. Drastic changes of the magnetic field m = 〈mx , my , mz 〉 across
locations. Values of m were measured while walking in a corridor.

Fig. 2. Magnetic field at three different locations. The magnitudes were mea-
sured at two different times, four weeks apart.

measured the geomagnetic field m = 〈mx,my ,mz 〉 intensities
while walking in a corridor. Fig. 1 illustrates the measured geo-
magnetic field intensities. Clearly the magnetic field intensities
change drastically across locations, and there exist many local
anomalies in the magnetic field due to local disturbances. This
re-confirms prior reports of similar observations in the literature
(e.g., [1], [4]),

2) Stable Geomagnetic Field: To evaluate the stability of the
geomagnetic field across locations, we have measured the mag-
netic field m at 20 randomly selected locations in three different
buildings of NUS (the National University of Singapore). The
first round of measurements was acquired on 21 February 2016,
which was followed by a second round of repeated measure-
ments four weeks later. Since similar magnetic field properties
were observed for the 20 locations, we illustrate the magnetic
field signals of three locations as examples to show the findings.
The left panel of Fig. 2 shows the field magnitudes ||m|| (the
Euclidean norm of magnetic field m) measured on 21 February
2016, while the right panel displays the magnitudes measured
four weeks later. The figure clearly shows that the field mag-
nitudes at the same location at two different times are almost
the same. The stability of the magnetic field has been similarly
reported in the literature (e.g., [1], [4]).

3) Limited Influence of Common Objects on the Geomag-
netic Field: Existing literature [1], [3] has reported that moving
objects such as cars, lifts, trolleys and people bear little influ-
ence on the geomagnetic field values a few meters away. Here
we instead focus on the influence from common indoor objects
such as turning on/off computers, printers, and refrigerators.
We continuously measured the magnitude while turning on/off
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Fig. 3. Influence of turning on/off indoor equipment at a distance of 1.5 m.

Fig. 4. Average similarity between the ith image of a path and the midpoint
image of the path. The average is calculated based on 13 different paths from
three different buildings.

a computer, a printer and a refrigerator, respectively. We varied
the distance between the measuring location and the equipment
from 0 m to 3 m with an interval of 0.5 m, and found that
the influence of turning common equipment on/off is negligible
when the distance goes beyond 1.5 m. Fig. 3 shows the change
of magnitude at a distance of 1.5 m.

B. Strengths of Visual Images

The inspiration of considering visual data for localization
purposes stems from the fact that human beings can often easily
identify locations at first glance. Our empirical evaluation sug-
gests a plethora of strengths of visual images as demonstrated
below. It is noteworthy to mention that in this experimental
study, each collected image is transformed into a 4096 dimen-
sional vector using a convolutional neural network (i.e., the
Places-CNN network proposed in [13]). For illustration simplic-
ity the similarity of two images is measured by the cosine sim-
ilarity between their corresponding 4096 dimensional vectors.

1) Distinct Visual Images of Different Locations: To study the
variability of images across locations, images were collected
from every meter along 13 different paths of three different
buildings. Let 〈a(j )

1 , a
(j )
2 , · · ·, a(j )

m 〉 denote the sequential im-

ages collected on the jth (1 � j � 13) path, and a
(j )
mid be the

image collected at the mid-point location of the jth path. We
calculate the similarity s(a(j )

i , a
(j )
mid) between each image a

(j )
i

and the mid-point image a
(j )
mid of the same path. Then the av-

erage similarity 1
13

∑13
j=1 s(a(j )

i , a
(j )
mid) is computed to reflect

the similarity between the ith image and the mid-point image
of a same path. Fig. 4 shows the empirical results. Consistent
with human experience, Fig. 4 suggests that images at different

Fig. 5. Four images in the upper row were taken while people were walking
in a corridor. The four images in the lower row were taken at two different times
to evaluate the influence of displaced chairs and closed doors. The percentage
values denote the similarity between two images.

locations are often distinct, while images of nearby locations
are usually more similar than those farther away.

Note that since floor identification is a well-studied topic
(e.g., [14], [15]), here we only focus on studying the variability
of images from the same floor.

2) Stable Visual Properties: In order to study the stability
of the visual properties for indoor locations, we have collected
images from 20 distinct locations on 22 February 2016 and 14
March 2016, respectively. Subsequently we calculated the sim-
ilarity between every pair of images. Experimental results show
that the similarities between two images, which were collected
at the same location but at different times, are all higher than
87.05%. In contrast, the similarities between two images that
were collected at different locations are all lower than 63.36%.

3) Limited Influence of Mobile Objects on Visual Images: It is
of interest to study the visual influence of mobile objects, such as
a walking person, open and closed doors, and the displacement
of objects. Our experiments were carried out as follows. First,
four images of a corridor with walking people were collected as
displayed in the upper row of Fig. 5. The similarity between each
occluded image and its original image is demonstrated in the
three ellipses that are shown above the images. For comparison,
we also computed the similarities between the images from two
different locations, which are illustrated in the three rectangular
labels of Fig. 5. We can see that the occluded and unoccluded
images of the same location are still significantly more similar
than those of different locations.

Second, we collected a pair of images for a location at the
start and end of a time interval during which the chairs in the
image were displaced. The two images are shown on the left of
the lower row of Fig. 5. We also collected another pair of images
for a location where the two doors in the image have been opened
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Fig. 6. Geomagnetic field and image similarity between all pairs of locations. Locations 1–63 are from a corridor and locations 64–75 are from another corridor.
(a) Geomagnetic field similarity. (b) Image similarity. (c) Fusion similarity.

and closed, respectively. The images are shown as the right two
images of the lower row of Fig. 5. The similarities of each pair
of images are shown in the two ellipses below the figures. We
can see that the perturbed images of the same location are still
significantly more similar than those from different locations.
We have conducted analogous experiments at 19 other locations,
which provided similar results.

C. Fusion of Geomagnetic Field Signals and Visual Images

The fundamental reason that geomagnetic field signals and
visual images can be combined for indoor localization lies in
their complementary nature. Visual images of nearby locations
tend to be significantly more similar than those from remote
locations, while remote locations may have a similar magnetic
field signal but nearby locations may have a different one. Fig. 6
provides an exemplar illustration of this phenomenon.

The images and geomagnetic fields of two corridors were
collected. The location indices of the first corridor are 1–63 and
those of the second corridor are 64–75. Fig. 6(a) and 6(b) show
the magnetic field and image similarities between each pair of
locations, respectively. Fig. 6(c) depicts the fusion similarity
between each pair of locations, where the fusion similarity is
obtained as a linear combination of the magnetic field and image
similarities. In Fig. 6(a), the similarity between two magnetic
fields m1 and m2 is measured by 1/(1 + ||m1 − m2 ||).

From Fig. 6(a), we observe that remote locations may have a
similar magnetic field signal while nearby locations may have a
different one. From Fig. 6(b), we can see that images of nearby
locations are usually significantly more similar than those of re-
mote locations. In Fig. 6(c), the yellow area around the diagonal
indicates the high probability locations where the measurements
may come from. We observe that the yellow area in Fig. 6(c) is
much more narrow compared to Fig. 6(b), which implies that
the high probability locations are much more concentrated after
fusion.

D. Challenges

The first challenge concerns the low resolution of magnetic
measurements: The measured magnetic field signal m is usually
not reliable enough to form a unique location signature due to its
low dimensionality [1]. In order to address this shortcoming, we
first add magnitude ||m|| as a new dimension of the magnetic

field, and then combine the magnetic field with visual images
to form a more unique location signature.

The second issue is noisy sensor readings: Sensor noise is
almost inevitable. In order to deal with the noise of inertial
sensors, we adopt a probabilistic model, which employs particle
filtering. In other words, we maintain a set of potential user
locations and their associate probabilities instead of only one
certain location.

The third issue relates to diverse gait patterns: It is well un-
derstood that users of different physical profiles exhibit different
gait patterns [6]. Always using a generic gait model to estimate
the step length of a specific user may produce notable errors in
user location prediction. Thus we propose to start with a generic
gait model initially and then train personalized gait models ded-
icated to individuals as more data becomes available.

III. VMAG SYSTEM

After the empirical evaluation of the strengths and challenges
of both visual images and the geomagnetic field, we are now
ready to present our VMag system. Throughout this paper, a
measurement for a location is defined as the image and the
magnetic field collected by a smartphone (using the smartphone
camera and magnetometer) at that location.

A. Overview of VMag System

VMag consists of two phases, i.e., offline preparation and on-
line positioning. In the offline preparation, the measurement fin-
gerprints for each location are collected manually using smart-
phones and then stored at the server end. The floor plan of the
building is also collected and stored, and the positioning models
(on the server side) are built and trained. All these operations
of the offline phase can be finished in advance, so they do not
consume any time during the online positioning.

In online positioning, a user holds her phone, in which the
VMag application is installed, in a portrait orientation and points
it in the direction she is walking (i.e., along a path). After each
step (step detection has been well studied and we adopt the step
detection approach proposed in [6]), the VMag application takes
an image and measures the magnetic field at the current location.
The image and magnetic field constitute a measurement and are
sent to the server for localization. The motion data (e.g., the
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Fig. 7. Architecture of VMag system.

detected step heading) and the trajectory data are also sent to
the server to support tracking of the user.

Fingerprint collection in the offline preparation: A finger-
print is a pair of a measurement and its corresponding location.
To collect the fingerprints for each location, VMag divides all
spaces of a building into a grid of 60 cm × 60 cm cells. Each
grid cell is regarded as a unique location and assigned a location
label. Recall that there are paths even in the rooms. For each
location, we randomly collect measurements 10 times inside
its corresponding grid cell while holding the smartphone verti-
cally and pointing into the main direction of the path. The 10
measurements are termed the measurements of the location. All
the collected measurements and their associated location labels
form the fingerprint map.

The overall architecture of VMag is depicted in Fig. 7. VMag
consists of mobile clients and a server. Each mobile client col-
lects the measurements and the motion data and performs tra-
jectory data logging. Motion data mainly includes step headings
detected by using the readings of the smartphone gyroscope and
accelerometer. The trajectory data logging module keeps a slid-
ing window of the most recent gait information to facilitate user
tracking.

The server end consists of three major components, namely
the step model, the measurement model and the context aware
particle filter (also referred in short as CPF). The step model
estimates the step length and heading of the user. The measure-
ment model transforms a measurement into a deep feature vector
and defines the measurement similarity between measurements.
The CPF tracks the user by utilizing a set of particles to simulate
the probability distribution of the potential user locations. Once
a user step is detected, CPF invokes the step model to predict
the new location of the user and then revises the prediction in
light of the new measurement obtained at the current location
by processing it through the measurement model. The details of
the three components are introduced below.

B. Step Model

The step model estimates the step length and heading utiliz-
ing the motion data, the user trajectory and the floor map of the
building. The step model is primarily responsible for estimat-
ing the location displacement after one user step in CPF user
tracking.

Step detection and step heading detection have been well
studied and we adopt the step detection approach proposed

in [6]. Since observations show that a user is very likely to
walk along the main direction of a path rather than perpendicu-
lar to it [1], we select the direction among all the main directions
of the paths that are closest to the detected step heading as the
final step heading.

For the step length estimation, VMag uses an initial generic
step length (which is 60 cm) at the very beginning and then trains
a personalized step length when more personal data has been
collected. Formally, let 〈Pt−k , Pt−k+1 , · · ·, Pt−1〉 be the most
recent gait trajectory, where Pi is the estimated user location
after the ith step, and let ||Pi − Pi−1 || be the Euclidean distance
between locations Pi and Pi−1 . First, VMag calculates the con-
tinuity of the recent gait trajectory. The trajectory is continuous
iff ||Pi − Pi−1 || � τ for all t − k + 1 � i � t − 1. Here τ is
the maximum possible step length of a user, which is set to 2 m
in our settings. Second, step length � is estimated as follows.

1) If the trajectory is continuous, � is estimated as the weighted
average of distances between Pi and Pi−1 . Precisely

� =
t−1∑

i=t−k+1

wi ||Pi − Pi−1 || (1)

where wi = mi∑ t−1
i = t−k + 1 mi

and mi = exp (− (t−i)2

8 ). The setting

of wi is based on the idea that a more recent step length
||Pi − Pi−1 || should have a higher weight wi .

2) If the trajectory is not continuous, VMag organizes the
locations in the trajectory into location communities and then
tries to find which one is the right community. To this aim,
VMag first constructs an undirected and unweighted graph G.
The vertexes of G are the locations of the trajectory. The edges
of G are determined in the following manner. If the distance
||Pi − Pj || � τ (t − k + 1 � i, j � t − 1), then we add an edge
between Pi and Pj , otherwise the edge is omitted. Subsequently
VMag conducts a connected component analysis in graph G.
The connected component C that has the maximum number
of locations is regarded as the right location community, and
the weighted average distance between each pair of continuous
locations in C is defined as the estimation of step length �.

C. Measurement Model

The measurement model transforms a measurement into a
deep feature vector and defines the similarity between measure-
ments. Both the deep feature vector extraction for a measure-
ment and the measurement similarity calculation will be invoked
by CPF during user tracking.

For the measurement feature extraction, we adopt a neural
network to extract deep features. Given a measurement Z, the
extraction process contains two steps. Step 1 transforms the
image of Z into deep image features. Step 2 leverages a fully
connected neural network, which fuses the obtained deep image
features with the magnetic field signal of Z to extract the final
deep feature vector.

Step 1: Deep image features extraction: We employ the
convolutional neural network (CNN) termed Places-CNN to
extract deep image features from the images. In order to make
Places-CNN more suitable for our settings, we re-trained the
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Fig. 8. Architecture of deep image features extraction. “FC” is short for “fully
connected layer.”

Fig. 9. Architecture of deep feature extraction. “FC” is short for “fully con-
nected layer.”

Places-CNN network on a new dataset that combines both the
original Places dataset [13] and the images of our four collected
indoor environments. The neural network architecture and train-
ing method are the same as those proposed in [13]. The reasons
of employing the Places-CNN network in [13] are that Places-
CNN is specially designed for scene recognition and achieves
an astonishing performance on place classification tasks. The
network architecture of Places-CNN is illustrated in Fig. 8 [13],
[16]. In the Places-CNN model, the convolution and pooling
layers capture image local connectivity. After the convolution
and pooling layers, the output is then passed to three fully con-
nected layers. We take the outputs of FC7 (fully connected layer
7) as the 4096-dimensional descriptor of the image. The 4096-
dimensional descriptor is termed the deep image features and
denoted as vector Vg .

Step 2: Fusing image and magnetic signals to extract deep
features for the measurement: After extracting deep image fea-
tures Vg , VMag further combines Vg with the magnetic field
signal to obtain the final deep feature vector for the measure-
ment. As illustrated in Fig. 9, VMag uses a neural network with
five fully connected layers to extract the deep feature vector.
The inputs are Vg and Vm , which are the deep image features
and the magnetic vector of a measurement, respectively. The
magnetic vector Vm is defined as 〈mx,my ,mz , ||m||〉, where
||m|| is the Euclidean norm of 〈mx,my ,mz 〉. The outputs are
the 4,196-dimensional descriptor, which is the outputs of FC5
and termed the deep feature vector of the measurement.

The reasons that we use the outputs of FC5 rather than the
outputs of the network (i.e., the outputs of the SoftMax layer)
are as follows. As mentioned earlier, VMag divides all paths
of a building into grid cells. Each grid cell is regarded as a
unique location and assigned a location label. The outputs of
the network are just the probabilities of all the locations where
the input features may come from. In contrast, the outputs of
the FC5 layer are the combined image and magnetic signals.

The details of training the neural network in Fig. 9 are as
follows. We utilize all the fingerprints (i.e., pairs of a measure-

ment and its corresponding location) to train the neural network.
The sizes of the five layers of the network, from FC1 to FC5,
are 8192, 7168, 6144, 5120, and 4196, respectively. The size
of FC5 is set to 4,196 because this selection does not com-
press input features while capturing location information after
the non-linear transformations of the hidden layers. At the same
time, the experimental results further verify the effectiveness of
this selection. Since the output layer emits the probability distri-
bution of location labels, the size of the output layer equals the
number of the location labels. We utilize standard cross entropy
as the loss function. For parameter initialization, we adopt the
Glorot-normal initialization in [17]. In the training, we adopt
a standard back-propagation algorithm with stochastic gradient
descent. The starting learning rate α is set to 0.1, and when no
significant accuracy increase is observed after several epochs of
training, we stop the training process.

After introducing the deep feature vector extraction for a
measurement, we formally define the measurement similarity
below.

Definition 1: measurement similarity: Let v1 and v2 be the
deep feature vectors of measurements A and B, respectively.
The measurement similarity between A and B is

s(A,B) = exp
(
− ||v1 − v2 ||

2σ2

)
(2)

where σ is a parameter to adjust the impact of the distance.

IV. TRACKING WITH CONTEXT-AWARE PARTICLE FILTER

Our proposed CPF (context-aware particle filter) tracks the
user on a per-step basis. After each user step, CPF updates the
location estimation. Instead of using only one certain position
to estimate the true location, CPF utilizes a probabilistic distri-
bution to depict the potential locations of the user.

The objective of CPF is to estimate the posterior probability
distribution of the user location given all the measurements up
to the current time. Towards this, CPF implements a recursive
Bayesian filter using Monte Carlo simulations. The core idea
is to represent the posterior probability distribution with a set
of particles and their associated weights [18]. The term recur-
sive stems from the fact that the filter recursively estimates the
posterior probability distribution at time t from the one at time
t − 1 [19].

Formally, let time t be the time right after the user’s tth step,
and Xt be the user location at time t, namely the user location
after the tth step. Let Xt1 :t2 be the sequential user locations from
time t1 to t2 , i.e., Xt1 :t2 = 〈Xt1 ,Xt1 +1 , · · · ,Xt2 〉. Let Zt be
the measurement at time t, and Zt1 :t2 denote the sequential
measurements from time t1 to t2 . Let wi

t be the weight of the
ith particle at time t.

A particle in CPF is defined as Xi
(t−k+1):t = 〈Xi

t−k+1 ,

Xi
t−k+2 , · · · ,Xi

t 〉, which corresponds to a potential trajectory
of the user. t is the current time, k is the sliding window width
of the trajectory, and superscript i denotes that the particle is the
ith potential trajectory. CPF maintains many particles and each
particle has an associated weight signaling the probability of
this trajectory. Different from traditional particle filtering where
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Algorithm 1: Tracking with Context-aware Particle
Filtering

1: Particle initialization: Sample Xi
0 according to Z0 .

2: for t = 1 : tnow do
3: Sampling: Sample Xi

t ∼ q(Xi
t |Xi

(t−k):(t−1) , Zt).
4: Weight updating:

wi
t ∝ wi

t−1
p(X i

t |X i
( t−k ) : ( t−1 ) ,Zt−1 )p(Zt |X i

t )

q(X i
t |X i

( t−k ) : ( t−1 ) ,Zt )

5: Normalization: Normalize wi
t such that

∑n
i=1 wi

t = 1
6: Location estimation: X̂t is defined as weighted

average of Xi
t from the top 40% highest weighted

particles.
7: Resampling: Resample particles according to wi

t ,
then set each weight wi

t = 1/n after resampling.
8: end for

only a single location Xi
t is selected as a particle, our setting

preserves trajectory contexts.
Now we are ready to present the skeleton for user tracking

using CPF in Algorithm 1. Line 1 of Algorithm 1 is the par-
ticle initialization step. Then after each user step (line 1), the
new potential user locations and their associated probabilities
are updated (lines 1–1). In the update, the new potential user
locations are predicted by leveraging the current locations and
the step length and heading estimated by the step model (line 3).
Afterwards, the measurement obtained at the new location is uti-
lized to revise the probability of each predicted location (line 1).
Lines 1 and 1 provide a user location estimation by integrating
all the particles and their weights. Line 7 is the resampling step
to eliminate the wrongly moved particles. The details of the
algorithm are described next.

A. Particle Initialization (Line 1 in Algorithm 1)

Sampling from measurement probability: Given the measure-
ment Z0 at time 0, initial particles should be sampled according
to p(Xi

0 |Z0), which is the probability distribution of all possi-
ble locations Xi

0 given measurement Z0 . However, p(Xi
0 |Z0) is

unknown and thus can not be sampled. Instead, CPF performs
sampling according to the measurement probability p(Z0 |Xi

0),
which is the probability of obtaining measurement Z0 at location
Xi

0 . This is because p(Xi
0 |Z0) ∝ p(Z0 |Xi

0), which is proved in
the following theorem.

Theorem 1: At time 0, probability p(Xi
0 |Z0) ∝ p(Z0 |Xi

0).
Proof: Since at time 0, probability p(Xi

0) can be regarded as
having the same value for all locations, we have

p(Xi
0 |Z0) =

p(Z0 |Xi
0)p(Xi

0)
p(Z0)

∝ p(Z0 |Xi
0). (3)

�
Calculation of p(Z0 |Xi

0): CPF performs sampling according
to the measurement probability p(Z0 |Xi

0), and a location Xi
0

with higher measurement probability has a higher probability to
be sampled. Recall that in the offline phase, we have divided the
user interested areas of a building into grid cells and each cell
is regarded as a unique location. The measurements of each cell

are also collected. To calculate the measurement probability
p(Z0 |Xi

0), CPF first finds the grid cell β to which location
Xi

0 belongs, and then calculates the measurement similarities
between Z0 and each of the measurements of β. The average
measurement similarity is utilized as p(Z0 |Xi

0).

B. Particle Propagation (Line 3 in Algorithm 1)

After each user step, CPF updates the particles and their
associated weights to depict the probability distribution of the
new potential locations of the user. The update of particles is
termed particle propagation.

Particle propagation is performed by displacing each old
particle Xi

(t−k):(t−1) = 〈Xi
t−k ,Xi

t−k+1 , · · · ,Xi
t−1〉 with a new

particle Xi
(t−k+1):t = 〈Xi

t−k+1 ,X
i
t−k+2 , · · · ,Xi

t 〉. This moves
the sliding window of each potential trajectory (i.e., each parti-
cle) forward from time t − 1 to t. Towards this, for each particle,
its current location Xi

t needs to be predicted. CPF performs Xi
t

prediction as follows.
1) If the trajectory Xi

(t−k):(t−1) is continuous, then the new

location Xi
t can be directly predicted as X̂i

t = Xi
t−1 + u. Here

u is the location displacement vector where �u is the step heading
and ||u|| is the step length. Note that the step heading and length
can be obtained by simply invoking the step model introduced
in Section III-B.

2) If the trajectory is not continuous, we can not use Xi
t−1 + u

to directly predict X̂i
t because Xi

t−1 may be a wrong prediction.

Instead, Xi
t is predicted as X̂i

t = μ + u, where μ is the refer-
ence location of the trajectory Xi

(t−k):(t−1) given the current
measurement Zt . The concept of reference location is defined
as follows.

Definition 2: reference location: Given a measurement Z,
the reference location of a trajectory Xt1 :t2 is defined as the
location which is part of trajectory Xt1 :t2 and has measurements
with the highest average measurement similarity to Z.

After predicting the new user location X̂i
t for a particle, the

new user location Xi
t of this particle is actually generated by

sampling from a 2D Gaussian distribution centered at the pre-
dicted location X̂i

t , i.e., Xi
t ∼ N(X̂i

t , V ). Sampling is used to
deal with sensor errors. The Gaussian distribution is centered
at the predicted location X̂i

t , and the covariance matrix V is
defined as a diagonal matrix diag(σ2

1 , σ2
2 ), where σ1 controls

the variance of locations along the main direction of the path
and σ2 controls the variance of locations along the direction
perpendicular to the main direction. In our settings, σ1 is set
to 60 cm, which is approximately one-user-step length. σ2 is
set to 30 cm since a user is very likely to walk along the main
direction of a path rather than walking towards the sides [1].

If the new sampled location Xi
t is invalid in the floor plan,

e.g., Xi
t hits a wall, its corresponding new particle Xi

(t−k+1):t
is abandoned.

C. Particle Weight Update (Line 4 in Algorithm 1)

After particle propagation, the weight wi
t of each new parti-

cle should be updated. The weight updating works recursively
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where wi
t is updated by using wi

t−1 . Formally

wi
t ∝ wi

t−1

p(Xi
t |Xi

(t−k):(t−1) , Zt−1)p(Zt |Xi
t )

q(Xi
t |Xi

(t−k):(t−1) , Zt)
. (4)

The derivation of (4) is proven below.
Proof: Let p(X0:t |Z0:t) denote the true posterior, and let

q(X0:t |Z0:t) be the proposal distribution from which particles
Xi

0:t are sampled, i.e., Xi
0:t ∼ q(X0:t |Z0:t). To compensate for

the discrepancy between the true posterior and the proposal
distribution [20], the weight wi

t of particle Xi
0:t is set to [18]

wi
t ∝

p(Xi
0:t |Z0:t)

q(Xi
0:t |Z0:t)

. (5)

1) For the numerator of (5), p(Xi
0:t |Z0:t) can be calculated as

follows:

p(Xi
0:t |Z0:t)

=
p(Xi

0:t |Z0:t−1)p(Zt |Xi
0:t , Z0:t−1)

p(Zt |Z0:t−1)

=
p(Xi

0:t−1 |Z0:t−1)p(Xi
t |Xi

0:t−1 , Z0:t−1)p(Zt |Xi
0:t , Z0:t−1)

p(Zt |Z0:t−1)
.

2) For the denominator of (5), q(Xi
0:t |Z0:t) can be chosen to

be factorized as follows [18]:

q(Xi
0:t |Z0:t) = q(Xi

0:t−1 |Z0:t−1)q(Xi
t |Xi

0:t−1 , Z0:t).

Therefore, we have the following weight updating equation:

wi
t ∝ wi

t−1
p(Xi

t |Xi
0:t−1 , Z0:t−1)p(Zt |Xi

0:t , Z0:t−1)
p(Zt |Z0:t−1)q(Xi

t |Xi
0:t−1 , Z0:t)

(6)

where

wi
t−1 ∝ p(Xi

0:t−1 |Z0:t−1)
q(Xi

0:t−1 |Z0:t−1)
.

All the weights will be normalized in each round of weight
updating. Thus, (6) can be simplified to

wi
t ∝ wi

t−1
p(Xi

t |Xi
0:t−1 , Z0:t−1)p(Zt |Xi

0:t , Z0:t−1)
q(Xi

t |Xi
0:t−1 , Z0:t)

. (7)

In our settings, only the most recent trajectory and the most
recent measurement are taken into consideration rather than all
the contexts from the very beginning. Let k be the sliding win-
dow width of the trajectory, then (7) can be further simplified as

wi
t ∝ wi

t−1

p(Xi
t |Xi

(t−k):(t−1) , Zt−1)p(Zt |Xi
(t−k+1):t , Zt−1)

q(Xi
t |Xi

(t−k):(t−1) , Zt)
.

(8)
For computational simplicity, measurement Zt can be regarded
as depending on the current location only, so (8) can be finally
simplified to

wi
t ∝ wi

t−1

p(Xi
t |Xi

(t−k):(t−1) , Zt−1)p(Zt |Xi
t )

q(Xi
t |Xi

(t−k):(t−1) , Zt)

which is the same as (4). �

Next, we introduce how to calculate the three probabilities
in (4). First, the proposal distribution q(Xi

t |Xi
(t−k):(t−1) , Zt)

calculation. According to the particle propagation process in-
troduced in the particle propagation step (step 2), the proposal
distribution q(Xi

t |Xi
(t−k):(t−1) , Zt) in (4) is

1
2π|V |1/2 exp

(

−1
2
(Xi

t − X̂i
t )

T V −1(Xi
t − X̂i

t )
)

(9)

where X̂i
t is the predicted current user location (the location

prediction is introduced in the particle propagation step), and
the covariance matrix V = diag(σ2

1 , σ2
2 ), where σ1 controls the

variance of locations along the main direction of the path and
σ2 controls the variance of locations along the direction perpen-
dicular to the main direction.

Second, the transition probability p(Xi
t |Xi

(t−k):(t−1) , Zt−1)
calculation. Since the real transition probability is unknown,
we can estimate it with a 2D Gaussian distribution around the
reference location in the past trajectory Xi

(t−k):(t−1) . Formally,

the transition probability p(Xi
t |Xi

(t−k):(t−1) , Zt−1) in (4) can be
estimated as

1
2π|Q|1/2 exp

(

−1
2
(Xi

t − μ)T Q−1(Xi
t − μ)

)

(10)

where μ is the reference location of trajectory Xi
(t−k):(t−1) given

measurement Zt−1 , and Q = diag(σ2
3 , σ2

4 ), where σ3 controls
the variance of locations along the main direction of the path
and σ4 controls the variance of locations along the direction
perpendicular to the main direction. In our settings, σ3 is set to
60 cm, which is around the length of one user step, and σ4 is set
to 30 cm.

Third, the measurement probability p(Zt |Xi
t ) calculation:

In (4), p(Zt |Xi
t ) is estimated as follows. CPF first finds the

grid cell β to which location Xi
t belongs (recall that we have

already divided the whole indoor space into grid cells and col-
lected measurements for each cell in the offline phase), and
then it calculates the measurement similarities between Zt and
the measurements of β. The average similarity is utilized as
p(Zt |Xi

t ).

D. Location Estimation (Lines 5 and 6 in Algorithm 1)

After particle weights have been updated, the weights of all
particles are normalized such that

∑n
i=1 wi

t = 1. There are two
alternative methods to estimate the real location [1]. The first is
to use the location Xi

t in the highest weighted particle Xi
(t−k):t ,

and the second is to use the weighted average of Xi
t from the

top 40% highest weighted particles. Through experiments, we
found that the second method yields more steady and accurate
locations.

E. Particle Resampling (Line 7 in Algorithm 1)

After the four aforementioned steps, resampling is performed.
In resampling, the weight of a particle is regarded as the prob-
ability that it will be sampled. Particles with higher weight will
be sampled more often than others [19]. In this way, resampling
is able to eliminate the wrongly moved particles, which have
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weights approximately equal to zero [19]. The weight of each
resampled particle is set to 1/n.

F. Discussion

1) Computational Complexity Analysis: The most time con-
suming steps of the VMag system are the fingerprint collection
and the neural network training. However, both of these two
steps can be finished in the offline phase, which means they
do not consume any time during the online positioning phase.
More importantly, we would like to point out that the time-
consuming fingerprint collection and model building processes
are inevitable in most existing infrastructure-free indoor local-
ization approaches.

For the online tracking phase, the overall computational com-
plexity is linear in n, where n is the number of particles. The
detailed computational complexity analysis is as follows. Algo-
rithm 1 illustrates the steps in online positioning. The sampling
(line 3 of Algorithm 1) can be done in a few operations using the
Box-Muller method. The weight updating (line 4) is the most
time consuming step due to the deep features extraction and
the three probabilities calculation. However, since the feature
extraction network is already trained in the offline phase, this
step exhibits constant-time complexity for each particle. The
steps of normalization (line 5), location estimation (6) and re-
sampling (line 7) can also be done in O(n) operations. As such,
the overall computational complexity is O(n).

2) Self-Adaptive Indoor Localization System: The proposed
VMag system is an infrastructure-free and fingerprint based
approach. Analogous to existing infrastructure-free indoor lo-
calization approaches, when the whole indoor environment is
drastically reshaped, it becomes necessary to recollect all the
measurement fingerprints and retrain the model in a new offline
phase. We believe it will be very interesting and challenging to
design a self-adaptive retraining neural network [21]–[23] for
indoor localization, which could automatically retain the net-
work when its performance is not satisfactory. To the best of our
knowledge, such a design would be the first to formulate and
address this problem for infrastructure-free indoor localization.
Two of the key challenges would be to automatically collect the
images and magnetic field signals and to automatically detect
drastic environment changes without any infrastructure assis-
tance. Thus, we believe that this task is very novel and requires
further in-depth exploration. Hence, we leave it as future work.

V. EXPERIMENTS

In this section, we evaluate the VMag system with a variety
of representative indoor environments to understand its effec-
tiveness and limitations.

A. Experimental Setup

The experiments are conducted in four different indoor envi-
ronments, i.e., a laboratory, a garage, a canteen and an office.
The testing areas of the four indoor environments are 4094 m2,
732 m2, 1148 m2, and 2193 m2, respectively. The floor plans
are illustrated in Fig. 10.

Fig. 10. Floor plans of four different types of indoor environments: (a) labo-
ratory, (b) garage, (c) canteen, and (d) office.

1) Hardware: We installed our VMag client software on sev-
eral iPhone 6 smartphones, so that they were able to collect
magnetic field signals and images for localization purposes.
The collected data is then sent to the server over a network to
obtain the localization results. We utilized a MacBook Pro as
the server, with an Intel Core i5 CPU at 2.6 GHz and 8 GB of
RAM. The number of particles in the particle filtering was set
to 2000 in all the experiments.

2) Fingerprint Data Collection: As mentioned before, we
divided the path areas of a building into 60 cm × 60 cm grid
cells. Each cell was regarded as a unique location and assigned a
location label. For each location, we randomly collected 10 mea-
surements inside its corresponding grid cell. Each measurement
consists of an image and a magnetic field signal. The survey
paths, along which the fingerprints for different locations were
collected, are demonstrated using dashed lines in Fig. 10.

B. Comparison With Representative Existing Methods

We first compare VMag with the representative existing meth-
ods in the four different indoor environments. We selected a
Dead Reckoning (DR) method [6], a visual image based (VIB)
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Fig. 11. Performance comparison with representative existing methods on the four different indoor environments: (a) laboratory, (b) garage, (c) canteen, and
(d) office.

method [24] and a geomagnetic field based method (Magicol)
[1] as comparison approaches. These methods were chosen be-
cause they represent different types and are closely related to
our work. The DR and VIB methods are two infrastructure-free
approaches, while the Magicol method is a hybrid approach that
can work with or without infrastructure. The DR method [6] uti-
lizes inertial sensors to estimate the position displacement and
thus track users. VIB [24] is a representative method for most
existing visual-based indoor localization methods that utilize
traditional handcrafted image features for indoor localization.
The Magicol method [1] utilizes the magnetic field for indoor
localization, and it fuses WiFi and the magnetic field to obtain
better performance.

Test data collection: In order to test all the methods, we
walked many trajectories in the whole area of each building
and made random turns. The duration of the walks ranged from
6 seconds to 3 minutes and the starting points of the walks
were randomly selected. The number of tested locations for the
environments are 540 for the laboratory, 121 for the garage, 197
for the canteen, and 215 for the office, respectively.

Fig. 11 illustrates the comparison results of the four indoor
environments, where the x-axis represents the localization error
and the y-axis is the cumulative distribution function (CDF).
The cumulative distribution function (CDF) of the localization
errors is reported starting from 0.85 m. This is because we
divided the whole space of each environment into 60 cm × 60
cm grid cells and regarded each cell as a location. Thus the
upper bound distance between two points inside the same cell
is 0.6 ×√

2 ≈ 0.85 m. In the garage environment, WiFi is not
available, so we only utilized the magnetic field for the Magicol
method.

From Fig. 11, we can see that VMag significantly and con-
sistently outperforms the other tested methods in all the four
environments. From Fig. 11 we can also observe that VMag can
achieve a 91% probability of 1.34 m accuracy for all the four
indoor environments. In contrast, Magicol can achieve a 91%
probability of 2.47 m for all the four indoor environments, VIB
of 2.16 m and DR of 3.06 m.

If we regard that a location is precisely determined when the
localization error is within 1 m, then the probability of precise
determination (i.e., probability of a localization error within
1 m) for each tested method is listed in Table I. We can see that
VMag consistently outperforms the other tested methods in all

TABLE I
PROBABILITY OF A LOCALIZATION ERROR �1 M.

COMPARISON WITH EXISTING METHODS

VMag Magicol VIB DR

Laboratory 87% 73% 79% 69%
Garage 78% 62% 75% 68%
Canteen 88% 74% 75% 71%
Office 89% 76% 78% 69%

the four environments with respect to the precise determination
probability.

In summary, experimental results demonstrate that VMag sig-
nificantly and consistently outperforms the other tested methods
in all the four indoor environments, and can achieve a meter-
level accuracy with a 91% probability.

C. Comparison With Localization Using Traditional Features
and Using Neural Networks With Different Layers

In Fig. 9, we have designed a 5-layer neural network to ex-
tract deep features for each measurement. In this subsection,
we conducted experiments to compare our deep features with
traditional features, and then compare the 5-layer network with
1-layer and 3-layer networks. For traditional magnetic features,
we utilize the three dimensional 〈mx,my ,mz 〉 magnetic signal.
For handcrafted image features in indoor localization, we refer
to the work of [24] and [25], and select color histogram and
texture features for the images. For the 1-layer network, the size
of the hidden layer is 4196. For the 3-layer network, the sizes
of the hidden layers are 6144, 5120, and 4196, respectively. All
other settings (such as the utilized loss function and parameter
initialization) of the 1-layer and 3-layer networks are the same
as those of the 5-layer network for fairness.

We demonstrate the results in Fig. 12. The experimental re-
sults show that our extracted deep features lead to a significant
improvements in performance over traditional features for all
the four indoor environments. This reconfirms the effectiveness
of our deep feature extraction process. The results also show
that the 5-layer network of deep feature extraction is slightly
better than those of the 1-layer and 3-layer networks.
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Fig. 12. Performance comparison with traditional features, 1-layer, and 3-layer neural networks. “Magnetic” denotes localization using only the magnetic field
feature, “Image” denotes localization using handcrafted image features, and “L1” and “L3” denote localization using a 1-layer or 3-layer deep feature extraction
network, respectively. (a) Laboratory. (b) Garage. (c) Canteen. (d) Office.

Fig. 13. Performance comparison with localization using a geomagnetic field or our extracted deep image features alone: (a) laboratory, (b) garage, (c) canteen,
and (d) office.

TABLE II
PROBABILITY OF A LOCALIZATION ERROR �1 M. COMPARISON

WITH USING MAGNETIC OR DEEP IMAGE FEATURES ALONE

VMag Magnetic alone Image alone

Laboratory 87% 75% 82%
Garage 78% 73% 76%
Canteen 88% 73% 79%
Office 89% 77% 79%

D. Comparison With Localization Using a Geomagnetic Field
or Deep Image Features Alone

Subsequently, we also studied the performance of localization
using magnetic features or our extracted deep image features
(for the deep image features extraction details see Step 1 in
Section III-C) alone. To this aim, we implemented two other
versions of the VMag system: one using only the magnetic field
and the other using the extracted deep image features.

Fig. 13 illustrates the comparison results. We can see that
combining the magnetic field and deep image features indeed
leads to an improvement in performance compared to using
either one of them alone.

We also list the probability of precise determination (i.e., the
probability of a localization error within 1 m) for each tested
method in Table II. We can see that VMag consistently outper-
forms the other tested methods in terms of the precise determi-
nation probability.

In summary, experimental results demonstrate that fusing
magnetic and deep image features can achieve higher local-
ization performance than using either one of them alone. This
further verifies that the magnetic field and visual images have
complementary location resolution capabilities.

E. Comparison With Localization Using Traditional Particle
Filter

After comparing VMag with other approaches and evaluating
the features, we compared our method with localization using a
traditional particle filter (TPF). The result of localization without
any particle filter is also reported to serve as a baseline. VMag
with a traditional particle filter is implemented by replacing the
context-aware particle filter in VMag with a traditional one.
VMag without particle filter is implemented by removing the
particle filter altogether.

Fig. 14 illustrates the comparison results and we can ob-
serve the following. 1) Both, localizations using the traditional
and the context-aware particle filters, outperform localization
without particle filter. 2) The localization using the context-
aware particle filter consistently outperforms the one using the
traditional particle filter for all the four environments. The de-
tailed probability of a localization error � 1 m is illustrated
in Table III.

Moreover, we also studied the convergence process of the two
approaches along long trajectories. We selected the trajectories
with a duration of around 1.5 minutes from all the traces col-
lected and calculated their localization errors over time. Fig. 15
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Fig. 14. Performance comparison with localization without particle filter (PF) and localization using traditional particle filter (TPF): (a) laboratory, (b) garage,
(c) canteen, and (d) office.

TABLE III
PROBABILITY OF A LOCALIZATION ERROR � 1 M. COMPARISON

WITH LOCALIZATION USING TRADITIONAL PARTICLE FILTER

VMag VMag with traditional particle filter

Laboratory 87% 85%
Garage 78% 75%
Canteen 88% 85%
Office 89% 83%

Fig. 15. Comparison with traditional particle filter on long traces. (a) shows
the ratio of a localization error within 1.34 m, while (b) shows the ratio of a
localization error within 0.85 m.

shows the comparison results, with the x-axis indicating time
in seconds, and the y-axis representing the ratio of correctly
localized locations within a certain localization error threshold.
Fig. 15(a) shows the ratio of correctly localized locations within
0.85 m, and Fig. 15(b) shows the ratio of correctly localized
locations within 1.34 m. Note that 0.85 m =

√
2 × 0.6 m is

the upper bound distance between two locations in the same
grid cell, and 1.34 m =

√
5 × 0.6 m is the upper bound dis-

tance between two locations that are in two adjacent grid cells.
From Fig. 15, we can see that the context-aware particle filter
converges more quickly than the traditional particle filter and
yields a higher accuracy after convergence. We can also see that
without particle filter, the localization accuracy will not increase
over time due to the ignorance of the available contexts.

In summary, the experimental results show that our proposed
CPF outperforms a traditional particle filter in terms of accuracy
and convergence speed. Note that all the other settings of the

Fig. 16. Robustness of VMag with different users.

two compared approaches were the same except for the particle
filters utilized.

F. Robustness With Different Users

To evaluate the robustness of VMag with respect to different
users we asked five students to walk around in the four indoor
environments. The five students were of different heights in the
range from 1.56 m to 1.85 m. Two students were female and
the others male. Naturally their gait patterns are different. We
recorded their localization errors, which are presented in Fig. 16.
We can see that it is difficult to distinguish the localization
accuracy curves of different users, which verifies the robustness
of VMag. The CDF curves of the five users are also consistent
with those of the earlier experiments, which were conducted by
three of the authors.

G. Discussion of Grid Cell Size

In the fingerprint data collection we divided the user inter-
esting areas into 60 cm × 60 cm grid cells. We also conducted
experiments to evaluate the effect of the grid cell size on the lo-
calization accuracy of VMag. Through experiments, we found
that 1) a smaller grid cell size usually yields a higher localiza-
tion accuracy, and 2) VMag with relatively big grid cell sizes is
still competitive in localization accuracy, i.e., it achieves a more
than 85% localization accuracy of 1.70 m in all the four indoor
environments for a relatively big grid cell size of 1.20 m. Due
to space limitations, we omit the details of the experiments. The
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main reasons that a smaller grid cell size yields a better accu-
racy may be twofold. (a) Let � be the grid cell width. Though
many measurements are located at the correct grid cell, since the
upper bound distance between two locations inside the same cell
is
√

2�, the localization error can only be reported as no larger
than

√
2�. (b) The smaller the grid cell size, the more similar

the measurements, and thus the better the localization accuracy.

VI. RELATED WORK

Over the years, an increasing number of approaches have
been developed to address the critical problem of indoor lo-
calization. Most existing methods however assume the exis-
tence of certain types of infrastructures, such as Infrared (IR)
beacons (for IR based methods), Bluetooth beacons (for Blue-
tooth based methods), ultrasound transmitters/receivers (for ul-
trasound based methods), and wireless access points (for WiFi
based methods). It is beyond the scope of this paper to com-
prehensively report on all existing research efforts in this field.
Instead, we focus on a relative succinct account of the most re-
lated work, which can be roughly grouped into three categories,
namely infrastructure-based, infrastructure-free, and hybrid ap-
proaches, as follows.

1) Infrastructure-based approaches assume the presence of
certain infrastructure. Among them, WiFi based approaches
(e.g., [11], [26]) have been the most well-studied, and they often
consist of two phases, the offline preparation and online posi-
tioning phases. In the offline phase, the WiFi signal strength
of each location is measured to build a WiFi fingerprint map
for all the users’ locations of interest. Then during the online
phase, a newly measured WiFi signal is incorporated to search
for the best matching location in the map. The localization error
is typically around three meters due to unstable WiFi signals.
IR and Bluetooth based approaches have also been proposed
with meter-level accuracy reported, which however heavily rely
on the existence of certain external infrastructure. For example,
since IR signals only travel within line of sight (i.e., within a
room), usually hundreds to thousands of IR beacons have to be
deployed to cover the whole space of a single building.

2) Infrastructure-free approaches can work without addi-
tional infrastructure, thus allowing for pervasive indoor local-
ization. The most closely related work includes magnetic field
based, visual image based and dead reckoning based approaches.

Magnetic field based approaches utilize the locally anoma-
lous but stable geomagnetic field for indoor localization. In
[3], [27], the authors studied the feasibility of using the mag-
netic field alone for indoor localization. In [4] and [10], the
magnetic anomalies serve as unique magnetic fingerprints for
locations. Magnetic field based approaches can significantly en-
hance infrastructure-free approaches as geomagnetism is natural
and ubiquitous. Meanwhile the localization accuracy is usually
on the order of 3.5 meters, since the feature dimensionality of
the magnetic field is low, and thus the uniqueness of a fingerprint
can not be guaranteed.

In visual image based approaches, a database of fingerprint
images and their associated locations is constructed in advance.
At runtime, a comparison is made between a newly captured im-
age and the fingerprint images to identify the best match [28],

[29]. These approaches usually only utilize traditional hand-
crafted image features (e.g., [25], [30], [31]) such as SIFT, color
histograms, and texture related features, and the localization
error is generally around two meters. Due to the availability of
large datasets like ImageNet and the rise of neural networks,
deep learning approaches have achieved great success for im-
age classification tasks. [13] proposed a convolutional neural
network to learn deep features from images for scene recog-
nition tasks. Doulamis et al. proposed online retrainable neural
networks to automatically test the performance of a network and
then automatically retrain it [21], [22], [31], [33]. However, very
few indoor localization systems have leveraged the advantages
of deep learning methods.

Dead reckoning approaches estimate the position displace-
ment based on readings of the inertial sensors, which is subse-
quently used to track the user. The dead reckoning approaches
[6] are simple, but they suffer from an inherit error-accumulation
problem.

3) Hybrid approaches refer to those combining different
methods for improved performance. In [1], a fusion approach of
magnetic field and WiFi sensors has been proposed, which inte-
grates magnetic field and WiFi to deal with the low discernibility
of the magnetic field and achieves an accuracy of around three
meters. In [34], a hybrid approach based on WiFi and Bluetooth
is proposed. It utilizes Bluetooth hotspots to divide the large
space into small partitions, and then engages WiFi fingerprints
to infer the location of the user. The hybrid approaches of [19],
[35]–[38] further confirm that fusion of multiple raw signals can
lead to improved performance, including for example the fusion
of motion and WiFi sensors in [19] (with meter-level accuracy
reported), and the combination of radio and camera sensors in
[35] (meter-level accuracy reported). However, these hybrid ap-
proaches still require the deployment of certain infrastructure to
achieve the reported accuracies.

VII. CONCLUSION

In this paper we have proposed a novel indoor localization
and tracking approach termed VMag for smartphone users with-
out any infrastructure assistance. VMag fuses both magnetic
and visual sensing for indoor localization and achieves a more
than 91 percent localization accuracy of 1.34 m. We have con-
ducted an in-depth experimental study of the properties of the
geomagnetic field and visual images for the purpose of indoor
localization. After that, the complementary location recognition
capabilities of the magnetic field and visual images have been
studied. Based on the results, we designed a context-aware par-
ticle filtering framework to track users. Extensive experiments
were conducted in four different indoor environments including
a laboratory, a garage, a canteen and an office. The experimen-
tal results show that VMag achieves a 91 percent localization
accuracy of 0.85 m, 1.34 m, 1.34 m and 0.85 m, respectively, in
the four different indoor environments.
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