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ABSTRACT
Pervasive indoor localization (PIL) aims to locate an indoor mobile-
phone user without any infrastructure assistance. Conventional
PIL approaches employ a single probe (i.e., target) measurement to
localize by identifying its best match out of a �ngerprint gallery.
However, a single measurement usually captures limited and in-
adequate location features. More importantly, the reliance on a
single measurement bears the inherent risk of being inaccurate and
unreliable, due to the fact that the measurement could be noisy and
even corrupted.

In this paper, we address the de�ciency of using a single mea-
surement by proposing the original idea of localization based on
multi-view and multi-modal measurements. Speci�cally, a location
is represented as a multi-view graph (MVG), which captures both
local features and global contexts. We then formulate the location
retrieval problem into an MVG matching problem. In MVG match-
ing, a collaborative-reconstruction based measure is proposed to
evaluate the node/edge similarity between two MVGs, which can
explicitly address noisy measurements or outliers. Extensive exper-
iments have been conducted on three di�erent types of buildings
with a total area of 18,719 m2. We show that even with 30% noisy
measurements or outliers, our method is able to achieve a promis-
ing accuracy of 1 meter. As another contribution, we construct a
benchmark dataset for the PIL task and make it publicly available,
which to our knowledge, is the �rst public dataset that is tailored
for multi-view multi-modal indoor localization and contains both
magnetic and visual signals.
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1 INTRODUCTION
Pervasive indoor localization (PIL) is a fundamental problem in
location-based services and applications. Accurate and reliable
indoor positioning could enable a wide range of applications [19,
23, 33] such as �nding a conference room in an unfamiliar building,
navigating an individual toward the nearest safety exit in case of
�re, guiding a customer in a shopping mall, and routing robots in a
fully automated factory [15, 27], etc. Meanwhile, despite the fact
that GPS signals have been widely used for navigation in outdoor
environments, robust and accurate indoor positioning remains an
unsolved challenge [23].

As GPS signals are usually blocked by concrete walls, researchers
have explored various possibilities for indoor localization, includ-
ing using WiFi, Bluetooth, ultrasound, or infrared, to name a few
[4, 8, 17, 33]. However, most of existing approaches rely on the de-
ployment of a great many beacons or access points (APs), which are
expensive to deploy and di�cult to maintain. Moreover, it might be
infeasible to deploy these devices in some buildings due to safety
or privacy concerns. Hence, there has been a remarkable shi�
in research e�orts towards infrastructure-free indoor localization,
which is more scalable and pervasively available. Among these
infrastructure-free methods, approaches using dead reckoning (e.g.,
[19, 23]), vision (e.g., [28, 31]), and magnetic �elds (e.g., [7, 22, 33])
have shown great promise. However, few of them can achieve the
needed meter-level accuracy. More importantly, their performances
are known to be very sensitive to noise, making them unreliable
and unsatisfactory for practical usage.

We believe that existing issues are mainly due to the following
two reasons: �rst, the presence of noise is almost inevitable in both
the probe and �ngerprint measurements collection, due to sensor
noise, image blur, and image out-of-focus, among others. Second,
conventional approaches rely on a single probe measurement to
localize by identifying its best match in the �ngerprint gallery.
However, a single measurement captures limited location features,
and bears the inherent risk of being noisy or even corrupted.

To overcome these challenges, we present an accurate and robust
indoor-localization system termed MviewGraph for mobile-phone
users without using any infrastructure assistance. �e only require-
ment on the user side is to shoot a few photos of the surrounding
scenes in di�erent directions. �e motivation stems from the fact
that a person also locate herself by looking around at scenes in
multiple directions. Without loss of generality, usually four sets
of measurements are collected, with each focusing on a distinct
view (i.e., front-view, right-view, behind-view and le�-view) of a
location. Each such measurement set is also referred to as a view



cluster, as it contains the cluster of measurements for a speci�c view.
A multiview graph (MVG) is then constructed from the four view
clusters of a location l , which characterizes l by utilizing compre-
hensive local features and global a�ributes. As such, each location
is represented as an MVG and the localization problem can then be
formulated as a graph matching problem of pairwise MVGs. For
MVG matching, we design a novel collaborative-reconstruction
scheme to explicitly deal with noisy measurements or outliers.

In our se�ings, each measurement has two modalities: an image
and the simultaneously collected magnetic signal. �e reasons for
utilizing these two modalities are two-fold. (1) Both, images and
geomagnetic signals, are omnipresent and can be easily collected
by a common mobile-phone (camera & magnetometer sensors). (2)
Images and the geomagnetic �eld are complementary in resolving
positions since images are usually distinguishable across distant
locations while magnetic signals are known to be more locally
distinctive [26, 33]. It is worth noting that �oor identi�cation is a
well studied research problem (e.g., [1, 2]), as such here we focus
on studying indoor localization on a single �oor.

To summarize, the key contributions of this work are:
• We are the �rst to leverage multimodal multiview mea-

surements for accurate and robust indoor localization. An
MVG structure is devised that is capable of capturing local
features and global contexts to characterize a location. A
collaborative-reconstruction based MVG matching scheme
is further developed to explicitly address the issue of noisy
measurements.

• Extensive experiments have been conducted on three large
and complex buildings with a total area of 18,719 m2. Em-
pirical evaluation shows promising results – MviewGraph
can achieve a relatively high accuracy of 1 meter, even
when 30% noisy measurements are presented.

• We construct and publish a benchmark dataset for the PIL
task, which to our knowledge is the �rst public dataset that
is tailored for multi-view multi-modal indoor localization
and contains both magnetic and visual signals.

In the rest of this paper, we �rst review related work in Section 2.
We then introduce the overall architecture of our system in Section 3
before presenting the location retrieval algorithms in Section 4.
A�erwards, we demonstrate continuous user tracking in Section 5
and evaluate the performance of each module and the overall system
in Section 6. Finally, we conclude the paper with discussions on
the system and future work in Sections 7 and 8.

2 RELATEDWORK
�e maturity of wireless and embedded technology and the ubiq-
uity of mobile-phone sensors have fostered the development of
indoor localization techniques [35, 36]. Most existing methods
however assume the existence of some form of infrastructure. For
example, WiFi-based techniques require pre-deployed WiFi APs
and infrared (IR) based methods need IR beacons. It is beyond the
scope of this paper to deliver an exhaustive report on the research
activities in this �eld. Instead, we provide a relatively succinct
account of the most related e�orts, which can be roughly classi�ed
into three categories, namely, infrastructure-based, pervasive, and
fusion approaches.

Infrastructure-based approaches localize by leveraging priv-
ileged information from a dedicated infrastructure. Among them,
WiFi-based approaches are the most well-studied (e.g., [4, 5, 8, 24]).
WiFi triangulation uses the received signal strengths (RSS) from
APs and a propagation model of WiFi radio signals to locate the
user, while WiFi �ngerprinting works by �nding the best match
among the RSS signature of the probe and those from the �nger-
print gallery. Prior knowledge of AP positions is usually required,
and the localization accuracy is o�en not high due to unstable
WiFi signals. IR, ultrasound, and Bluetooth based approaches have
also been proposed with meter-level localization accuracy being
reported. �ese techniques, however, heavily rely on the existence
of certain external infrastructures. For example, since an IR beacon
has a very limited coverage (within a room), usually hundreds to
thousands of IR beacons have to be installed to cover the entire
space of a building.

Pervasive approaches aim to locate a mobile-phone user with-
out any additional infrastructure. Among them, pedestrian dead
reckoning, magnetic-�eld-based and vision-based methods are most
related to our work. Pedestrian dead reckoning [6, 9, 19, 23] continu-
ously estimates a positional displacement based on the readings of
IMU sensors (gyroscope, accelerometer, compass), so as to track the
user. �e methods are well known to be simple and infrastructure-
free, but they su�er from an inherit error-accumulation problem.

Magnetic-�eld-based approaches (e.g. [13, 22, 33]) utilize the
locally anomalous but stable geomagnetic �eld for indoor local-
ization. In [7, 13, 22], the authors study the feasibility of lever-
aging magnetic �eld signals as location �ngerprints. Further, in
[26, 33, 40], researchers conduct in-depth empirical evaluations
and discover three favorable properties of geomagnetic �eld for
indoor localization task: locally distributed, stable over time, and
limitedly in�uenced by mobile objects. However, since the feature
dimensionality of the geomagnetic �eld is low, the uniqueness of a
magnetic �ngerprint can not be guaranteed.

Vision-based approaches (e.g., [16, 28, 36]) construct a gallery of
�ngerprint images and their associated locations o�ine. �en in
the online phase, a comparison is made between a newly captured
image and the �ngerprint images stored in the gallery to identify the
best match [16, 28]. Traditionally, only handcra�ed image features
such as histograms, SIFT and texture features are utilized in these
approaches. Although deep learning approaches have achieved
great success in image classi�cation due to the maturity of large
annotated datasets and innovative deep neural networks [3, 10, 20,
29, 32, 38, 41, 42], few systems have taken these advantages further
to address the problem of indoor localization. Meanwhile, several
vision methods (e.g., [18]) a�empt to reconstruct the 3D indoor
structure of buildings and then perform location retrieval in the
constructed 3D database with a newly captured image probe. �e
computational costs of this line of research e�orts are o�en too
high to be practically feasible.

Fusion approaches aim to improve performance by combining
multiple modalities. In [33], a fusion approach of magnetic �eld and
WiFi sensors is proposed to integrate the magnetic �eld and WiFi,
thus alleviating the low dimensional issue of using a magnetic �eld
alone, and �nally reporting a three-meter-accuracy. In [30], the
possibility of combining radio and camera sensors is studied. In [4],
a hybrid approach utilizing WiFi and Bluetooth is proposed, where



Bluetooth hotspots are used to divide the large space into small
partitions. �is step is followed by WiFi �ngerprinting to infer the
�ne-grained location of a user. Fusion approaches of [12, 14, 17,
30] re-con�rm that incorporating multiple raw signals can lead to
improved performance. Unfortunately, these fusion approaches
either require the installation of certain infrastructure facilities, or
encounter di�culties in achieving the desired meter-level accuracy.

3 OVERVIEW OF THE PROPOSED SYSTEM
Next, we provide an overview of our MviewGraph system, which
consists of two phases: o�ine preparation and online localization.
�e overall architecture of MviewGraph is depicted in Fig. 1.

In the o�line preparation phase, for each position-of-interest
(PoI), four measurement sets (empirically a set contains 2-6 mea-
surements) are collected, each for one of the four views, namely
front-view, right-view, behind-view, and le�-view, in a �xed (clock-
wise) order. �en, from the four measurement sets, MviewGraph
constructs the multiview graph (MVG) G for each PoI l to capture
the location features of l . Finally, the �ngerprint gallery is assem-
bled, where each �ngerprint is stored as a tuple 〈G, l〉. All these
operations are completed o�ine to be ready for online localization.

In the online localization phase, as a probe of the target lo-
cation, the user collects four measurement sets (empirically a set
here contains 2 measurements). Again each measurement set corre-
sponds to one distinct view. �ese measurements are then transmit-
ted to the cloud server for localization. On the server end, an MVG
G of this probe is constructed for querying. Subsequently, MVG
matching is performed to identify the best matched MVG G̃∗ of G
from the �ngerprint gallery. �e location label of G̃∗ is leveraged
as the user location estimation. As an extension, we also consider
the practical scenario where the user would like to continuously
localize by intermi�ently querying with the multiview multimodal
probes of the current new location. For this scenario, we augment
the classic particle �lter method to track the user.

Measurement collection details: Each time the user takes a photo,
the magnetometer will also be activated for collecting the associated
magnetic �eld signal. �is produces a multimodal measurement.
For front view, the mobile-phone is held towards the walking di-
rection (i.e., along the main direction of a path), and the collection
order of the four views is �xed to clockwise.

Next, the location retrieval module is detailed in Section 4, while
continuous tracking is introduced in Section 5.

4 LOCATION RETRIEVAL
Given the measurements collected over multiple views of a spe-
ci�c location, we propose a two-step pipeline: (1) constructing a
multiview graph (MVG) that represents the geographical features
of the location, then (2) employing graph matching for location
retrieval. �is method is illustrated in Fig. 2. It starts by collecting k
measurements for each of the four views from the current location.
�e next two consecutive steps are: (1) from the collected measure-
ments, an MVG G is constructed for the probe location, and (2) a
collaborative-reconstruction based MVG matching is executed to
identify the best match G̃∗ of graph G from the �ngerprint gallery.
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Figure 1: An overview of our system. ’Measure.’ is short for
’measurement’ and ’Constru.’ is short for ’construction’.

4.1 Multiview Graph (MVG) Construction
From the multiview measurements collected for a speci�c location,
we aim to construct an MVG capturing local features as well as
global a�ributes of the location. A classical graph Ĝ = {V̂ , Ê}
consists of a node set V̂ and an edge set Ê. Likewise, an MVG
G = {C,E} consists of a set C of view clusters and an edge set E.
Further, a node in the MVG is a view cluster, which is essentially
the measurement set of a distinct view. �e node set and edge set
of an MVG are constructed as below.

Node set construction. Each node is a view clusterCs , which refers
to the measurement setCs = {Yj }Kj=1 collected for a particular view.
Each measurementYj can be represented by the M-modality feature
set Yj = {Vjm }Mm=1, where Vjm denotes the feature representation
of Yj in themth modality. Likewise, a view cluster Cs can also be
represented by the M-modality feature set Cs = {Fsm }Mm=1, where
Fsm denotes the feature representation of all the measurements
in Cs in themth modality. A�er constructing the view cluster Cs
for each view, the node set can be simply built as C = {Cs }Ns=1. As
shown in Fig. 2, we set four views (N = 4) for each location.

Edge set construction. As the N view clusters capture multiview
and multi-modal local features, edges are further a�ached to pairs of
view clusters, with the following motivations. (1) To our knowledge
no one has studied the relationship between di�erent views for
the indoor localization task before, which we consider as both
interesting and potentially useful. (2) Some speci�c locations may
exhibit distinct edge structures, e.g., the four view clusters of a
crossing location may be similar to each other, while for a location of
a corridor, usually only the front and back view clusters are similar.
�erefore, edges are a�ached as follows: an edge is established
between two view clusters (i.e., two nodes) if their distance is no
larger than a threshold τ . Given two view clusters Cs & C̃s , we
utilize the average distance between the measurements ofCs and C̃s
to measure their distance. To avoid complex computations caused
by a dense graph, threshold τ is set as µ, which is the mean distance
between any two view clusters in the �ngerprint gallery.

4.2 Our MVG Matching Scheme
Given the MVG G constructed for an unknown location, our MVG
matching scheme is carried out for identifying the best match of
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Figure 2: An illustration of the location retrieval pipeline that contains two steps: (1)MVGconstruction, and (2)MVGmatching.

G in the �ngerprint gallery. We start by de�ning the similarity
measure between two MVGs.

Given the probe MVG G and a candidate MVG G̃, we de�ne the
similarity betweenG and G̃ as the optimal similarity Ω(G, G̃,Z) that
considers both node-to-node (i.e., view-to-view) correspondence
(Z) and their graph structures (G/G̃). To evaluate graph structure
similarity between G and G̃ , we consider both node-wise and edge-
wise similarities. Since the method to calculate node-wise and
edge-wise similarities will be introduced in Subsection 4.3, here we
assume they are already known. Let AC ∈ RN×N and AE ∈ RT1×T2

denote the node-wise similarity and edge-wise similarity matrices,
respectively. More speci�cally, in matrix AC , element aCc1c̃1

is the
node-wise similarity score between node c1 in G and node c̃1 in G̃.
In the same manner, let aEe1ẽ1

∈ AE be the edge-wise similarity score
between edge e1 in G and edge ẽ1 in G̃. Now the MVG matching
problem can be formulated as �nding the optimal correspondence
between G and G̃ such that their similarity is maximized, which
is the solution to the following constraint quadratic optimization
problem

max
Z

Ω(G, G̃,Z) =
∑
c1, c̃1

zc1c̃1 a
C
c1c̃1
+

∑
e, ẽ

e=s1s2
ẽ=s̃1s̃2

zs1s̃1 zs2s̃2 a
E
eẽ

s .t . Z · 1 = 1 and ZT · 1 = 1,

(1)

where matrix Z ∈ {0, 1}N×N denotes the node correspondence, i.e.,
zc1c̃1 = 1 if node (i.e., view cluster) c1 in G corresponds to node c̃1
in G̃ and zc1c̃1 = 0 otherwise. Edge e = s1s2 represents e which
connects nodes s1 and s2 in G. Likewise, ẽ = s̃1s̃2 represents ẽ that
links nodes s̃1 and s̃2 in G̃.

In Eq. (1), the �rst term of Ω(G, G̃,Z) measures the node simi-
larity between G and G̃, while the second term considers the edge
similarity. Since one node in G is to match with only one node in
G̃, Eq. (1) is constrained by one-to-one matching constraints, that
is, Z · 1 = 1 and ZT · 1 = 1, where 1 = 1N .

Without loss of generality, given similarity matrices AC and AE ,
the optimization problem of Eq. (1) is a quadratic programming
(QP) problem with equality constraints, which can be easily solved

by state-of-the-art QP methods such as [11, 21, 39]. �is turns out
to be a simpler problem in our se�ing: Since in our se�ings there
are only four nodes (N = 4) in an MVG and these four view clusters
are collected in a �xed (i.e., clockwise) order, there actually exist
only four node-to-node correspondence possibilities between G
and G̃ (once a view in G corresponds to one of the four views in G̃,
the correspondence is determined). �erefore, Eq. (1) can be solved
by straightforward enumeration over the N possibilities.

4.3 Node-wise and Edge-wise Similarities
Between Two MVGs

In Eq. (1) we assume the node-wise similarity and edge-wise simi-
larity matrices AC and AE are given. Here we formally de�ne the
node-wise and edge-wise similarities between two MVGs. Di�er-
ent from previous methods, a collaborative-reconstruction MVG
matching scheme is developed to explicitly deal with measurement
outliers.

Given are a node (i.e., a measurement set for a view) Cs with its
feature set Fs = {Fsm }Mm=1 from the probe MVG G, and the set of
nodes {C̃s̃ }Ns̃=1 with their feature sets F̃ = {F̃m }Mm=1 from a candidate
MVG G̃. We model Fs in the mth modality as a hull, i.e., Fsma,
where a is the coe�cient vector and ∑η

i=1 ai = 1, η is the number
of measurements in Cs . Inspired by collaborative representation
theory [37, 43], we reconstruct node Cs of G in themth modality
with these multiple nodes of G̃ in the mth modality. Formally,
we reconstruct Fsma with F̃m = {F̃s̃m }Ns̃=1 with the objective of
minimizing reconstruction residual R (Fsm , F̃m ,a,b), as follows

min
a,b

M∑
m=1

ϕm ‖Fsma − F̃mb‖22 + γ1‖a‖lp + γ2‖b‖lp

s .t .

η∑
i=1

ai = 1,

(2)

where b = [b1,b2, · · ·,bN ] is the coe�cient vector for reconstruc-
tion, and bs̃ is the sub-vector of coe�cients associated with the s̃th
node C̃s̃ in the candidate MVG G̃. ϕm denotes the weight of the
mth modality. γ1‖a‖lp and γ2‖b‖lp are the regularization terms.



Constraint ∑
ai = 1 is required by the hull de�nition [43] and can

eliminate the trivial solution a = b = 0 [25].
�e hull Fsma of the probe feature set Fs in themth modality is

collaboratively represented by the feature sets F̃ of the candidate
MVG in themth modality. Elements of a are the coe�cients, each
being associated with one of the samples (i.e., measurements) in
Fsm . As such, each of these samples makes its individual contribu-
tions in the �nal probe representation. By minimizing the distance
between Fsma and F̃mb, outliers in both Fsm and F̃m will be as-
signed with very small coe�cients [25]. �erefore, the in�uence of
measurement outliers (noisy measurements) could be substantially
reduced.

By minimizing Eq. (2), we can obtain the optimal coe�cient
vectors a∗ and b∗ = [b1, · · ·,bs̃ , · · ·,bN ], where bs̃ is the sub-
vector of coe�cients associated with the s̃th node C̃s̃ in G̃. �en
the residual of reconstructing node Cs with an individual node C̃s̃
can be leveraged to de�ne the node-to-node similarity [25]:

Sim(Cs , C̃s̃ ) = AC
Cs C̃s̃

= exp
(
−

M∑
m=1

ϕm ‖Fsma∗ − F̃s̃mb∗s̃ ‖
2
2
)

(3)

Since an edge can be considered as a pair of nodes, the edge-to-edge
similarity is de�ned according to node-to-node similarity. Namely,
for an edge e = Cs1Cs2 inG (e links nodesCs1 andCs2 ), and an edge
ẽ = C̃s̃1C̃s̃2 in G̃ , ifCs1 andCs2 in G correspond to C̃s̃1 and C̃s̃2 in G̃ ,
respectively, then the edge-to-edge similarity can be formulated as:

Sim(e, ẽ ) = AEe, ẽ =
1
2
(
Sim(Cs1 , C̃s̃1 ) + Sim(Cs2 , C̃s̃2 )

)
(4)

However, ifCs1 andCs2 do not correspond to C̃s̃1 and C̃s̃2 , respec-
tively, Sim(e, ẽ ) = 0. We now develop the solution of minimizing
Eq. (2) in the next subsection.

4.4 Optimization
From Eq. (2), we focus on the l2-norm se�ing (i.e., p = 2), and with
a sequence of derivations as shown below, arrive at a closed-form
solution. To achieve this, the convex optimization problem of Eq. (2)
is �rst transformed into the Lagrangian function:

L(a,b, λ) =
M∑

m=1
ϕm ‖Fsma − F̃mb‖22

+γ1‖a‖2 + γ2‖b‖2 + λ(ea − 1)

(5)

where e is a row vector whose elements are 1. Moreover, Eq. (5) is
equivalent to

L(a,b, λ) =
M∑

m=1
ϕm


[Fsm − F̃m]

[
a
b

]

2

2

+ [aT bT ]
[
γ1I 0
0 γ2I

] [
a
b

]
+ λ([e 0]

[
a
b

]
− 1)

(6)

Denote x =
[
a
b

]
, Dm = [Fsm − F̃m], B =

[
γ1I 0
0 γ2I

]
and u =

[e 0]T . Now the Lagrangian function of Eq. (6) becomes

L(x, λ) = xT (
M∑

m=1
ϕmDTmDm )x + xT Bx + λ(uT x − 1) (7)

Next we evaluate the gradients at its zero value:




∂L

∂x
= 2(

M∑
m=1

ϕmDTmDm )x + 2Bx + λu = 0

∂L

∂λ
= uT x − 1 = 0

(8)

By Eq. (8), the closed form solution to Eq. (5) is obtained:

x =
[
a
b

]
=

P−1u
uT P−1u

, λ = −
2

uT P−1u
(9)

with

P =
M∑

m=1
ϕmDTmDm + B (10)

In summary, we have obtained the closed-form solution of Eq. (9)
to the optimization problem of Eq. (2).

5 EXTENSION TO TRACKINGWITH
AUGMENTED PARTICLE FILTER

At this point we are able to locate the user via a one-time location
retrieval. Next, we introduce an extension of MviewGraph with
augmented particle �lter to track the user location continuously
over time. �e key idea is to represent the location probability
distribution with a set of particles, where each particle Oi = {p,w }
is endowed with a location estimation p as well as its weight w
indicating the estimation con�dence.

Particle Displacement. With the newly collected multiview mea-
surements by the user, the new location of each particle is predicted
as p′ = p + ∆p, where p is the last location estimation and ∆p
refers to the displacement computed from the IMU sensor readings.
Since IMU sensor based step estimation have been well studied
[6, 9, 19, 23, 34], we adopt the approach proposed in [6] to estimate
the number of steps, step length and step headings. Leveraging
this information and the �oor plan, ∆p can be e�ectively computed.
�e new location of a particle is then generated by sampling from
a 2D Gaussian distribution centered at its predicted location p′ to
deal with sensor errors (noise).

Particle Weight Update. At the user’s current location, considerG
as the MVG constructed from the current multiview measurements,
p as the location estimation in a particle Oi , and G̃ as the MVG of p
in the �ngerprints. �e weight of particle Oi is then set to be the
similarity between G & G̃, which is de�ned in Eq. (1). Particularly,
if a particle hits a wall, its weight is set to 0.

Particle Resampling. We perform weight-based resampling over
the entire set of particles. In brief, particles with higher weights
will be sampled more o�en than those of low weights. �is allows
the elimination of those particles that are associated with very low
weights, namely wrongly moved particles with very low con�dence.

Location Estimation. �e particle weights re�ect the likelihood of
the predicted location. �ere exist two common strategies to predict
a �nal location: one is to directly use the location of the highest
weighted particle, the other is to utilize the weighted average of
the top 40% highest weighted particles. Empirically we �nd that
the second method yields more stable and precise locations.
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Figure 3: Floor plans of three buildings with di�erent types.

6 EXPERIMENTS
6.1 Utilized Datasets
We carefully selected three complex and large indoor environments
to acquire three real-world data sets for evaluation. �ese envi-
ronments are of distinct types, which are a shopping mall (Mall), a
laboratory (Lab), and an o�ce building (O�ce). �e areas of the
environments are 10,731 m2, 2,480 m2, and 5,508 m2, respectively.

Fingerprint construction. Practically, a user is very likely to walk
along the main direction of a path rather than walking towards the
sides [26, 33], and thus we collect �ngerprints every 1 m along the
pathways inside each building. Note that there exist also pathways
within rooms. In total, 1,632 PoIs (position of interests) are cho-
sen as �ngerprints where, for each PoI, four-view measurements
are collected. For each view of a �ngerprint PoI, the number of
measurements range from 2 to 6. Overall 19, 217 multimodal mea-
surements are taken to form the �ngerprint gallery. We make one
of the datasets (Lab) publicly available for the community to bench-
mark across di�erent methods1. To our knowledge, this is the �rst
multiview multimodal real-world indoor dataset that contains both
magnetic and visual signals.

Feature extraction. Each measurement has two modalities: an
image and its associated magnetic signal. For the images, the convo-
lutional neural network (CNN) termed Places-CNN [42] is utilized
to extract deep features, which gives rise to a 4,096 dimensional
feature vector representing the image. �e Euclidean norm termed
magnitude is computed for each 3D magnetic signal, and then the
mean, mode and variance of all the magnitudes are employed as the
feature vector representing the magnetic signals.

Test data construction. In order to compare all the methods, 148,
120, and 272 test locations are randomly selected for Mall, Lab, and
O�ce, respectively. �ese test locations were sca�ered all over
the three buildings. Speci�cally, some of the comparison methods
(Magic, Pedes, and MviewPF) are tracking-based and to test them
we have walked many trajectories in the buildings, making random
turns. �e duration of the walks ranged from 6 seconds to 3 minutes,
while the starting points of the walks were randomly selected.

6.2 Experimental settings
Our MviewGraph prototype runs on an iPhone 6 platform, where
extensive experiments are conducted in the three aforementioned

1See the test set at h�ps://archive.org/details/multiviewindoorimage2,
and the training set at h�ps://archive.org/details/MilabTestSetAMulti-
viewIndoorImageSetForALaboratory.

(a) Examp. Loc A (b) Examp. Loc B (c) Examp. Loc C

Figure 4: �e pairwise MVG similarities between 3 test
points and �ngerprint locations at di�erent distances to
them.

Figure 5: Pairwise MVG similarity w.r.t. distance.

complex indoor environments. �e �oor maps of the environments
are illustrated in Fig. 3.

Work�ow from the user’s perspective. �e user takes two photos
for each of the four views, and then clicks ’locate me’ to perform
localization. �e eight photos and their associated magnetic signals
(i.e., eight measurements) are then sent to the MviewGraph server,
which subsequently returns a location tag to the user. If the user
selects continuous tracking, the IMU readings as well as recent
trajectory data will be submi�ed to the server in addition to the
above mentioned measurements.

�roughout our experiments, the sampling frequency is set to 30
Hz for the magnetometer, 30 Hz for the accelerometer, and 50 Hz
for the gyroscope. A MacBook Pro was used as the server, equipped
with an Intel Core i5 CPU at 2.6 GHz and 8GB of RAM.

6.3 Empirical Evaluation of MVG
In Section 4.1 we proposed a multiview graph (MVG) to repre-
sent a location, which is empirically evaluated in this section. �e
training set contains multi-view measurements collected over 1,632
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Figure 6: Performance comparison with representative ex-
isting methods in 3 di�erent environments.

�ngerprint locations. Our testset data is collected two weeks later,
where 216 test locations are randomly selected. Our MVG match-
ing scheme presented in Section 4.2 is used to compute similarity
scores between a test location and all �ngerprint locations. Empiri-
cally similar �ndings are observed over the 216 test locations. In
what follows we will present three of them as examples, as well as
describing the statistical analyses over all these 216 locations.

Fig. 4 shows the normalized MVG similarities between each of
the three example locations and the �ngerprint locations at di�er-
ent distances. Speci�cally, in Fig. 4(a), the �rst row plo�ed in red
represents similarities between target location A and possible �n-
gerprint locations with a range of 0-9m distance to A, with distance
increasing from le� to right in that row. �e second row plo�ed
in yellow demonstrates similarities between A and �ngerprints
with 10-19m distance to A, and so forth. �e three sub�gures of
Fig. 4 suggest that MVG similarity scores between two locations
drop dramatically with increasing distance, and the similarity score
between two locations within a distance of 2 m is signi�cantly
higher than those where the two locations are farther apart. �ese
two empirical properties demonstrate that the proposed MVG does
possess a promising location resolution capability.

We further statistically investigate the 216 test locations. As pre-
sented in Fig. 5, a box plot is engaged to display the normalized pair-
wise MVG similarity score w.r.t. distance. Speci�cally, the red line in-
side a box denotes the median similarity score of a speci�c distance,
while the bo�om and top of a box show the �rst and third quartiles.
Clearly the median normalized similarity at 0 m and 1 m distance
are 0.90 and 0.67, while it is 0.39, 0.23, 0.21, 0.16, 0.18, 0.15, 0.19 for
2 m, 3 m, 4 m, 5 m, 10 m, 20 m and 30 m, respectively. �is recon-
�rms the observation that the MVG similarity score between two
locations that are within a distance of 2 m is signi�cantly higher
than those where the two locations are farther apart.

6.4 Comparison with Existing Methods
A�er empirically analyzing the e�ectiveness of MVGs, we now
focus on performance comparison of our system w.r.t. existing
methods. Among the possible comparison methods, we consider
a pedestrian dead reckoning (Pedes) method [23], a handcra�ed-
vision-feature-based (Hvision) method [31], and a magnetic-�eld-
based method (Magic) [33]. �ese methods are selected because
they are of di�erent types and are closely related to our work. For a
fair comparison, in the Magic method [33] only the magnetic �eld is

utilized (namely without WiFi). �is is to ensure that all comparison
methods are without additional infrastructure assistance.

Fig. 6 demonstrates comparison results over three complex in-
door environments, where the x-axis depicts the localization error
in meters and the y-axis denotes the cumulative error distribution
function (CDF). Note that Mview is short for MviewGraph, and
the location error of 0 m means that the location is tagged with
the exact location label. Our �rst observation is that MviewGraph
signi�cantly and consistently outperforms the remaining methods
in all three environments. We also note that over 80-percentile of
errors occurs within 1 m for MviewGraph, which sheds light on the
resulting meter level indoor localization precision of our approach.

We de�ne precision localization as locations being positioned
within 1 m error, and de�ne localization failure as locations posi-
tioned with error over 8 m. �e precision localization ratio (PLR)
and localization failure ratio (LFR) for each comparison method are
elaborated in the second and ��h rows of Table I, where ‘w/’ is
shorthanded for ‘with’ and ‘w/o’ stands for ‘without’. As shown in
Table I, ViewGraph consistently outperforms the other methods in
terms of higher precision localization ratio and lower localization
failure ratio. For example, ViewGraph achieves an average ratio
of 82.3% of precision localization (1 m accuracy) and 2.1% localiza-
tion failure rate across all three environments of the dataset, while
Pedes achieves 54.9% and 11.1%, Hvision 73.9% and 3.8%, and Magic
72.5% and 4.0%. We a�ribute the good performance to the capability
of our MVG structure to capture more comprehensive multiview
location features, especially when compared with the remaining
methods.

6.5 Comparison in the Presence of Noise
Up to this point, the measurements in the test set were collected
with as li�le noise as possible. Here we conduct further experiments
to examine whether similar performance can be achieved in the
presence of measurements with large noise. �ere are a number
of ways to introduce noise: (1) capture blurred, unclear, or human
occluded photos; (2) take low resolution photos; (3) vibrate the
phone when collecting magnetic signals; and (4) sway or move
irregularly when engaging an IMU sensor. �is leads to three new
testsets, each for one of the three respective environments, where
30% of the measurements are collected with noise as mentioned
above.

We examine 148, 120, and 272 locations of the Mall, Lab, and Of-
�ce, respectively, with results summarized in Fig. 7. Again, Mview-
Graph clearly outperforms the remaining methods in the presence
of considerable noise. More importantly, when comparing Fig. 7
with Fig. 6, we observe a signi�cant deterioration of Magic, Hvision,
and Pedes in the presence of 30% noisy measurements, while there
is li�le in�uence for MviewGraph.

To quantify the performance deterioration rate, we also list in
Table I the PLR (ratio of error 6 1 m) and LFR (ratio of error >
8 m) in the presence and absence of large noise. Here the �rst
and fourth rows display the PLR and LFR of all tested methods
with (w/) the presence of 30% noisy measurements, respectively.
�e second and ��h rows demonstrate the PLR and LFR without
(w/o) the presence of noise. �e third row depicts the decline
of PLR when large noise is introduced, while the sixth row (last



Table 1: Performance comparison with representative existing methods in terms of precision localization ratio (PLR) and
localization failure ratio (LFR).

Mall Lab O�ce
Mview Magic Hvision Pedes Mview Magic Hvision Pedes Mview Magic Hvision Pedes

1 PLR w/ noise 73.6% 57.2% 48.1% 38.7% 75.8% 57.5% 50.0% 42.5% 78.6% 61.8% 46.7% 34.9%
2 PLR w/o noise 81.4% 73.7% 77.6% 58.2% 82.5% 69.2% 75.0% 58.3% 83.1% 74.6% 69.1% 48.2%
3 PLR Fallo� 7.8% 16.5% 29.5% 19.5% 6.7% 11.7% 25.0% 15.8% 4.5% 12.8% 22.4% 13.3%
4 LFR w/ noise 5.4% 14.9% 23.4% 29.5% 6.7% 11.7% 20.8% 21.7% 3.3% 13.6% 35.3% 37.9%
5 LFR w/o noise 2.7% 5.9% 4.5% 12.0% 1.7% 4.2% 3.3% 9.2% 1.5% 1.8% 3.7% 12.1%
6 LFR Increase 2.7% 9.0% 18.9% 17.5% 5.0% 7.5% 17.5% 12.5% 1.8% 11.8% 31.6% 25.8%
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(c) O�ce

Figure 7: Performance comparisonwith existingmethods in
the case of 30% noisy measurements.
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Figure 8: Performance comparison with extension and re-
duction of MviewGraph.

row) lists the increase of LFR caused by the noise. As a result, the
percentile of precision localization for MviewGraph reduces by 6.3%
on average, with 25.6%, 13.7%, and 16.2% for Hvision, Magic, and
Pedes, respectively. Likewise, the percentile of localization failure
for MviewGraph increases by 3.2% on average, with 22.7%, 9.4%,
and 18.6% for Hvision, Magic, and Pedes, respectively. �ese results
reveal that MviewGraph is signi�cantly more robust to noise than
other methods, and also that large noise does have a signi�cant
negative impact on localization accuracy.

6.6 Comparison with Extension and Reduction
of MviewGraph

We also compare MviewGraph with its extension and reduction. On
the extension side, we add the augmented particle �lter (introduced
in Section 5) into MviewGraph, which is denoted as MviewPF. For
reduction, the multiview se�ings in MviewGraph are removed, and
only the single front-view measurements are used, which is denoted
as Sview. Comparison results are illustrated in Fig. 8. �e CDF

curve of Hvision is also reported as a baseline. We observe that (1)
MviewPF and MviewGraph perform signi�cantly be�er than Sview
and Hvision, and (2) MviewPF is slightly be�er than MviewGraph.
Extending MviewGraph with a particle �lter indeed improves the
performance, since it incorporates trajectory contexts. It is worth
noting that MviewPF is sensitive to noise since the particle �lter
requires leveraging the readings of IMU sensors.

7 DISCUSSION
• In empirical evaluation, we found that some locations exhibit
unique signatures on one or more phone sensors. For example, a
location may experience unusual geomagnetic signal readings, and
an elevator may have a distinct pa�ern of in�uencing the phone’s
accelerometer. �ese semantic landmarks can be used to reset the
error during user tracking.
• Studying the in�uence of each speci�c noise type will be of
interest and may lead to novel understandings of the proposed and
the existing methods.
• Although our current system does not rely on infrastructure,
the system may bene�t from spatial constraints or lightweight
infrastructure assistance [23] where it is feasible. We will further
explore these possibilities.

8 CONCLUSIONS
We have developed MviewGraph, an easy-to-use, accurate and ro-
bust indoor localization system for multiview and multimodal sce-
narios. MviewGraph enables a mobile-phone user to localize within
one-meter accuracy without any infrastructure assistance, and even
in the presence of large noise. �e only requirement is to capture a
few photos (e.g., 2 photos per view). We have designed a dedicated
MVG structure to capture local features and global contexts of a
location. We have also formulated the location retrieval problem
as an MVG matching problem and derived a closed-form solution.
For future work, we will investigate the incorporation of semantic
landmarks and spatial constraints in localization and study the
in�uence of each particular noise type.
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