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Abstract— The aim of this study is about tracing filamentary
structures in both neuronal and retinal images. It is often crucial
to identify single neurons in neuronal networks, or separate vessel
tree structures in retinal blood vessel networks, in applications
such as drug screening for neurological disorders or computer-
aided diagnosis of diabetic retinopathy. Both tasks are challenging
as the same bottleneck issue of filament crossovers is commonly
encountered, which essentially hinders the ability of existing
systems to conduct large-scale drug screening or practical clinical
usage. To address the filament crossovers’ problem, a two-
step graph-theoretical approach is proposed in this paper. The
first step focuses on segmenting filamentary pixels out of the
background. This produces a filament segmentation map used as
input for the second step, where they are further separated into
disjointed filaments. Key to our approach is the idea that the
problem can be reformulated as label propagation over directed
graphs, such that the graph is to be partitioned into disjoint
sub-graphs, or equivalently, each of the neurons (vessel trees)
is separated from the rest of the neuronal (vessel) network.
This enables us to make the interesting connection between
the tracing problem and the digraph matrix-forest theorem in
algebraic graph theory for the first time. Empirical experiments
on neuronal and retinal image datasets demonstrate the superior
performance of our approach over existing methods.

Index Terms— Directed graph theory, tracing filamentary
structures, neuronal tracing, retinal blood vessel tracing

I. INTRODUCTION

Diseases of the central nervous system (CNS) such as
Parkinson’s and Alzheimer’s are caused by loss of neurons
and their connections. To identify drugs to treat CNS diseases,
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it is important to conduct high throughput screens (HTS) of
microscopic neuronal images, which naturally requests for au-
tomated neuronal tracers. However, most existing systems are
semi-automatic, where human guidance is frequently required
during the tracing process. The widely used ImageJ plugins
such as NeuriteTracer [1], Simple Neurite Tracer [2], as well
as the Vaa3D neuron module [3] all fall under this category.
Meanwhile, there are a few state-of-the-art systems that are
able to trace neuronal structures automatically, including both
academic efforts such as NeuroCyto [4] and the commercial
product — the neurite tracing module of Metamorph NX [5].
Nevertheless, they often fail to reliably trace neurons in
the presence of neurite crossovers, i.e. overlaps or touching
neurites.

A very similar situation has also been observed in tracing
retinal blood vessel trees from fundus images. There, topolog-
ical and geometrical properties of retinal vessel trees provide
valuable clinical information in diagnosing diseases such as
proliferative diabetic retinopathy, glaucoma, and hypertensive
retinopathy. Take as an example the disease of proliferative
diabetic retinopathy, a leading cause of blindness in the
working-age population of most developed countries. It is the
result of progressive damage to the network of tiny blood
vessels that supply blood to the retina, and is specifically
characterized by the formation of newly formed vessels in
the retina [6]. This thus depends on the description of blood
vessel tree structure in clinical diagnosis, and as a result, calls
for proper tracing of the vessel trees from fundus images.
Similar to what has happened to neuronal tracing, existing
methods often fail to trace properly with the occurrence of
crossover [7] at the junctions, as it is challenging to predict
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whether the filaments contacting a junction belong to the same
tree or different trees, and for the latter case, to which tree each
filament belongs.

This work aims at automated tracing of filamentary struc-
tures in neuronal as well as fundus images. In particular,
we focus on addressing the bottleneck crossover issue. One
important observation is that local and global contextual
information is crucial to resolve the crossover issue. For
example, at a junction, it is very helpful to go beyond the
current filament and examine the angular, morphological,
and textural properties of all filaments of the junction. This
information is unfortunately largely ignored by current tracers.
Here we consider a two-step tracing approach that takes into
account both local and global contextual information of the
neuronal and the vessel network: The first step takes the
raw image as input and produces a pixel-based segmentation
map. After skeleton extraction, a novel graph representation
is formed in the second step, where each filament in the
skeleton map becomes a node, and a contact between two
adjacent filaments could be translated to directed edges of
these two nodes. Furthermore, the root nodes are naturally
identified as either the DAPI tagged soma (aka cell body) in
neuronal images, or the filaments touching the optic disk area
in fundus images, and are further labeled with their unique
IDs. The number of subgraphs to-be-found in the filamentary
network thus equals the number of root nodes. This naturally
gives rise to a directed graph (or interchangeably, digraph)
representation. The tracing problem is now formulated as
label propagation [8] on digraphs: The goal becomes that of
propagating the subgraph labels from known root nodes to
the rest of the digraph, such that the digraph is partitioned
into disjoint sub-graphs, which in turn delivers tracing result
of the filamentary network. This allows us to consider and
make novel usage of the established matrix-forest theorem [9]
studied in algebraic digraph theory [10].

The main contributions of this paper are as follows. First,
our approach, and in particular the second step, offers a
principled way of addressing the tracing with crossover prob-
lem. By connecting to the well-established algebraic digraph
theory [9], as well as the transductive inference in machine
learning [11], local and global contextual information can
be considered explicitly. We expect the graph representation,
and the algebraic graph theory connection can open doors
to more insightful understanding of the tracing problem at
hand. Complexity analysis and generalization error analysis
also provide useful characterization of the proposed approach.
Second, our segmentation step is carried out with graph
Laplacian based regularization, which facilitates the overall
graph-theoretical framework considered in our tracing system.
Third, we provide an in-house neuronal microscopic image
dataset dedicated to the task of neuronal tracing. The dataset
together with the gold-standard manual annotations have been
made publicly available 1. We wish it can provide an option
for researchers in the field to compare performance on the
same ground.

1Downloadable at http://web.bii.a-star.edu.sg/˜chengli/
tracing/.

Before proceeding into the detailed account of our approach,
it is useful to briefly review the related research efforts.

II. RELATED WORK

In what follows we will provide a concise report of the
related efforts in neuronal and retinal tracing. As our approach
relies on label propagation on (di-)graphs, it is also of interest
to discuss the related main efforts along this direction in
section II-B.

A. Neuronal and Retinal Tracing

The problems of neuronal and retinal blood vessel tracing
are usually studied separately. So we will begin our discussions
on retinal tracing, which is followed by neuronal tracing.

Existing efforts in retinal vessel analysis can be roughly
categorized into two groups, segmentation-based and tracking-
based. The segmentation-based methods often use pixel clas-
sification [12]–[15] to produce a binary segmentation, where
a pixel is classified into either filament or non-filament. For
instance, the work of [14] utilizes a neural network learn-
ing scheme for pixel classification by combining gray-scale
and moment invariants-based features, meanwhile [15] is an
unsuerpervised method based on wavelet thresholding. The
tracking-based methods [7], [16]–[21], on the other hand,
usually start with a seed and track the intended filaments
based on local intensity or texture information. The method
of [20], for example, is based on ridge analysis and affinity
measure based method to form spanning trees from obtained
ridge points. Inspired biologically by the cortical orientation
columns in primary visual cortex, [21] advocates a special
Euclidean group SE(2) based retinal vessel tracking system.
For a more comprehensive and dedicated survey of retinal
vessel analysis, interested readers might refer to the work of
Fraz et al. [22].

There have also been similar developments in tracing
neurons especially from 2D neuronal images, such as [1]–
[5], [23], [24]. Well-known ImageJ plugins include the Neu-
ronJ [23] and the Simple Neurite Tracer [2], which are
primarily manual tracing tools, hence are rather limited when
working with neuronal images containing complex structures.
The NeuriteTracer [1] is also an ImageJ plugin, which is
instead an automated neuronal segmentation method but unfor-
tunately still fails to separate each neuron from the rest when
they are overlapped. Therefore it is primarily for population
average information instead of achieving cell level resolution.
NeuroCyto [4] and Metamorph NX [5], nonetheless, are able
to automatically quantify cell level information. In Neuro-
Cyto [4] this is achieved based on topological image analysis
and filamentary foreground segmentation. Meanwhile, as a
commercial product, the inner working of Metamorph NX
remains unknown. Besides, a probabilistic approach is adopted
in [24], which connects the set of sampled points with an
optimal tree which best preserves the filamentary structure. For
a comprehensive survey on the topic of neuronal tracing, we
suggest the paper of Meijering [25] as well as [26]. It is worth
noting that in recent years, a number of dedicated methods
have been devoted to 3D neuronal tracing, including [3],

http://web.bii.a-star.edu.sg/~chengli/tracing/
http://web.bii.a-star.edu.sg/~chengli/tracing/
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Fig. 1: Exemplar images for neuronal and retinal vessel tracing, as well as comparisons of our system vs. the state-of-the-arts.
Selected correctly and incorrectly traced filaments are highlighted at junctions with grey and pink colored disks, respectively.
Here gold standards are the manual annotations (i.e. reference results) that ideally should be equivalent to the ground-truths
which are unfortunately impossible to obtain in practice. Best viewing in color.

Fig. 2: Overview of our two-step tracing method.

[26]–[29], to name a few. The DIADEM challenge [30] has
also been organized with dedicated datasets that focus on 3D
neuronal tracing. However, since we focus on 2D images, they
are beyond the scope of this paper.

There have also been efforts in considering both tracing
problems under more general viewpoints. For example, a
well-known local Hessian based method is developed by
Frangi et al. [31] that is applicable to both situations. An
interactive method is also presented in [32] using minimal
math and anisotropic enhancement. Furthermore, [33] shows
instead a discriminative method to learn convolutional features
using gradient boosting regression technology. A review of
existing developments are attempted in [34] from the general

perspective of tracing vessels.

The crossover issue has been widely observed, and are
discussed by existing research efforts including [20], [21],
[24], [29]. Closely related work includes [35] where graph-
ical models are considered rather than the digraph-theoretical
approach proposed here. An early version of this work also
appears in [36], which differs from this work in a number of
aspects including the segmentation step, digraph construction
protocol, generalization error analysis, as well as empirical
evaluations. Moreover, both [35] and [36] only focus on the
problem of retinal vessel tracing, instead of the broader view
as we have considered in this paper.
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B. Label Propagation on Graphs

Very few label propagation methods are specifically ded-
icated to digraphs, including notably [37], [38]. The most
related work is that of [37], which generalizes their earlier
framework of regularized risk minimization on undirected
graphs [39] to digraphs by discriminatively normalizing in-
links and out-links, as well as adopting the symmetrized
graph Laplacian of [40]. One major difficulty in learning
with digraphs lies in the asymmetric nature of the weight
matrix introduced by these directed edges or links. This is
often regarded as cumbersome when aligning with the key
concepts developed for undirected graphs that are symmetric
by nature, such as graph Laplacians. It thus leads to the widely
adopted symmetrization trick in e.g. the construction of graph
Laplacians [40], or co-link similarity matrices [41]. Unfortu-
nately important information conveyed by edge directions are
lost. In contrast, our approach directly works with asymmetric
matrices, which is the key in preserving edge directions. In
addition, the construction in both methods [37], [38] rely on
strongly connected digraphs, that is, there always exists a
directed path from any node to any other node of the graph.
Since in practice the digraphs are usually not necessarily
strongly connected, a teleporting random walk trick (e.g [42])
is adopted by inserting bi-directional edges between all node
pairs with a tiny weight. The resulting method thus works with
non-sparse matrices, instead our algorithm works with a much
broader set of digraphs called weakly connected digraphs, i.e.
for an arbitrary partitioning of the digraph node set into two
subsets, there is at least an edge connecting them regardless of
the edge direction. This enable our algorithm to well-preserve
the sparse graph structures and edge directional information
of the input, which we believe is an important advantage over
existing label propagation methods on graphs (being either
digraphs or undirected graphs). This hypothesis has indeed
been empirically validated throughout extensive experiments
where our label propagation method consistently outperforms
existing label propagation methods when operating on the
same ground.

III. OUR APPROACH

The main problem involves tracing and separating filamen-
tary structures into disjoint set of filaments, each starting
from a labeled filament and forming on its own an individual
object (neuron or retinal vessel tree). As illustrated in Fig. 1
as well as mentioned previously, the primary difficulty is to
resolve the challenging crossover issue. Fig. 2 describes the
pipeline of our tracing system consisting of two main steps: the
segmentation step for segmentation and skeleton extraction, as
well as the tracing step where the digraph is constructed from
the previous step and the tracing task is cast as digraph-based
label propagation using Matrix-forest theorem. In what follows
we will elaborate on these two steps.

A. Segmentation Step: Penalized Likelihood Estimate with
Graph Laplacian

Denote {1, 2, . . .Ks} a set of class labels, and x =
{x1, x2, . . . xns} a set of ns data points. Further, consider a set

of Ks class-priors
{
p(k)

}Ks
k=1

, and a set of class-conditional
density functions

{
p(xi|k)

}Ks
k=1

. It is standard to formulate
the Gaussian mixture model (GMM) as the following form of
likelihood functions (e.g. [13])

p(k|xi) =
p(xi|k) p(k)∑Ks
k=1 p(xi|k) p(k)

.

An interesting observation is that the above equation can be
re-cast as an equivalent matrix representation

T =M−1Q,

where T = [tik] and Q = [qik] are ns × Ks matrices,
with tik = p(k|xi) and qik = p(xi|k) p(k), and M =
diag

(∑
k p(xi|k) p(k)

)
a ns × ns diagonal matrix.

Consider now a graph representation of the set of ns data
points x, with ns vertices and a ns × ns symmetric weight
matrix Ws = [ws,ij ] to characterize the set of edges. Let
Ds = diag(

∑
j ws,ij) be the diagonal degree matrix. The

graph Laplacian Ls = Ds −Ws acts as a smoothing operator
on the function space on this graph. This inspires us to propose
a graph Laplacian regularized GMM by solving the following
augmented objective function:

T ∗ = argmin
T̂

(
‖T̂ −M−1Q‖2M + γ tr

(
T̂TLsT̂

))
,

where γ > 0 is a tuning parameter, tr(·) is the matrix trace
operator, and ‖T̂ −M−1Q‖2M := tr((T̂ −M−1Q)TM(T̂ −
M−1Q)).

Since the above objective function is a quadratic function
of T̂ , there exists a unique matrix-valued solution, T ∗ =
[t∗ik], which can be obtained by solving the system of linear
equations

(M + γLs)T
∗ = Q,

where (M+γLs) is a positive definite matrix. It is interesting
to note that the solution to this penalized form remains a valid
probability function, which can be verified straightforwardly
by observing

T ∗eKs = (I + γM−1Ls)
−1M−1QeKs

= (I + γM−1Ls)
−1ens = ens ,

where eKs and ens are column vectors of Ks and ns elements
with all elements being 1, respectively, and the last equality
holds since (I + γM−1Ls)ens = ens .

Finally, the class labels are obtained by row-wisely identi-
fying the element with the maximum probability value,

yi = argmax
k

t∗ik.

To illustrate the effect of the proposed penalized segmenter,
Fig. 3 presents an exemplar neuronal image: Comparing to
the existing GMM likelihood based segmenter as shown in
the top row, it is clear that our segmenter delivers a much
smoother and less noisy segmentation result, as displayed
in the bottom row. Note similar results are also obtained
for retinal images. Implementation detail and quantitative
evaluation of the segmentation step are put off to the later
section on empirical evaluations.
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(c)

(e)

(b)

(d)

(a)

Fig. 3: Comparing segmentation results of GMM likeli-
hood estimate vs. our penalized likelihood estimate. Given
a cropped input neuronal image in (a), there are noticeable
over-smoothing effects in the heatmaps of filament probability
images of the GMM likelihood estimate (b) when comparing
to those of the proposed penalized likelihood estimate (d).
The segmentation results of the GMM likelihood estimate (c)
thus contain excessive false positives when comparing to the
proposed penalized likelihood estimate (e).

B. Tracing Step: Label Propagation on Digraphs by the
Matrix-forest Theorem

Our tracing step starts by converting the segmentation
result to its digraph representation. The tracing problem can
therefore be formulated as label propagation on digraphs,
which is subsequently addressed by our matrix-forest theorem
algorithm.

1) Preparation: Segmentation → Digraph Representation:
The segmentation result is converted to its digraph representa-
tion by two intermediate stages: First, the segmented image
undergoes a thinning stage to a skeleton map; Second, a
digraph is constructed using the skeleton map. Details are as
follows:

Segmentation result → Skeleton map: Applying the seg-
mentation step on an input image provides us the filamentary
foreground segmentation. This is then followed by medial axis
transform and postprocessing to produce a skeleton map of 1-
pixel thickness. The obtained skeleton pixels can be divided
into the following categories:

• Root pixels – For neuronal tracing, the root pixels are the
DAPI-tagged nuclei pixels; For retinal vessel tracing, the
root pixels are the pixels touching the boundary of the
optical disk.

• Body pixels – Pixels with two neighbours.
• Junction pixels – Pixels with three or more neighbours.
• Terminal pixels – Pixels with only one neighbour and are

not the root pixels.

Furthermore, a filament in our context refers to a set of
connected body/root/terminal pixels, and a junction is the
set of connected junction pixels, as illustrated in Fig. 4 in
red and green, respectively. In this paper, a filament is also
interchangeably referred to as a filamentary segment or simply
a segment.

Fig. 4: Example of filament (in red) and junction (in green).

i
j k

i
j k

Fig. 5: Synthetic example of rule 3.

Constructing the digraph: Now we start to construct the
digraph G = (V,E,W ), with V , E, W being the node set,
edge set, and weight matrix, respectively. Each node in the
graph corresponds to a filament; There is an edge between
two nodes if these two filaments are directly connected in
the skeleton map via a junction; A root node is a filament
containing root pixels, while a terminal node is a filament
containing terminal pixels. This gives rise to essentially an
undirect graph GU = (VU , EU ), from which our digraph
representation G can be obtained by the following intuitive
rules:

1. A root node possesses only outgoing edges, while a
terminal node contains only incoming edges.

2. If a k-clique (k ≥ 3) of GU has more than k−2 terminal
nodes, then the edge among these terminal nodes will be
removed. For example, if a 4-clique has three terminal
nodes, then the edge between those three nodes will be
removed.

3. In a 3-clique of nodes i, j and k, if the nodes j and k
has outgoing connections to rest of the graph other than
i, then (i, j) and (i, k) edge will be i → j and i → k
respectively. The edge (j, k) will be removed.

4. All remaining undirected edges are converted to a pair of
directed edges with opposite directions.

Fig. 6 illustrates an example of executing this digraph con-
struction stage. After filamentary foregrounds (b) are obtained
from input image (a), its skeleton map is obtained (c), and
for a zoomed-in crop of the filamentary foregrounds, its
undirected graph GU and finally the digraph representation
G is constructed, where the root nodes are denoted as R1 and
R2, respectively. The clique of nodes {1, 2, 3, 4} in GU of
(e) is converted to its corresponding directed subgraph in (f)
marked within a dotted boundary, obtained by applying rule
2. A synthetic example of rule 3 is shown in Fig. 5. Note
the introduction of the intermediate undirected graph GU here
is to make the process intuitive and easy to understand. In
practice, the digraph representation G as in Fig. 6(f) can be
directly obtained using the skeleton map as in Fig. 6(d).
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Fig. 6: Running example of digraph preparation process in the tracing step. (a) Original image. (b) Segmentation result. (c)
Skeleton map, with (d) being a fragment inside the green box. (e) Undirected graph GU . (f) Digraph G.

The weight matrix W = [wij ] is computed as follows:
wij is set to 0 if the i-th and j-th filaments involved are
not contacting (i.e. immediately connected via a junction).
Due to the edge sparsity nature of our digraph representation,
majority of the matrix elements are therefore 0. A weight
matrix element may attain a positive values only if the two
filaments are contacting, which can be obtained based on the
angle θij between these two filaments as

wij = exp
(
− f

(
θij
))
.

Note θij is in the range of [0, π], and the induced energy
function takes the form

f(θij) =


− sin(θij)

k if θij ∈ [0, θc)

− sin(θc)
k if θij ∈ [θc, arccos(

− sin θc
k2 ))

k cos(θij) if θij ∈ [arccos(− sin θc
k2 ), π].

It is worth noting that each element in the weight matrix
is designed to capture the following intuition: For two con-
secutive filaments i and j belonging to the same vessel tree
or neuron, they should not bend too much. In other words,
the angle between these two filaments, θij , tends to be close
to π. In our context it amounts to endow its corresponding
wij a higher weight value, and the other way around if there
is an abrupt bend (i.e. a tiny weight value if θij is an acute
angle). The meaning of the two tuning constants, θc and k,
are illustrated in Fig. 7 for both the energy function f and
the weight wij : θc marks the turning point in the function f ,
while k brings in the weight difference between highest and
the lowest values. Throughout empirical experiments, θc and
k are fixed to π/7 and 5, respectively.

0 0.5 1 1.5 2 2.5 3 3.5
−5

−4

−3

−2

−1

0

0 0.5 1 1.5 2 2.5 3 3.5
0

50

100

150

Fig. 7: Plot for the energy function f(θij) and the correspond-
ing weight wij , both as functions of θij , the angle between
the i-th and j-th filaments.

2) Label Propagation by the Matrix-forest Theorem on
digraphs: Given this digraph G, denote the out-degree of
each node vi as d+i =

∑n
j=1 wij . Further, define the out-

degree matrix as D = diag(d+1 , · · · , d+n ), or in matrix forms,
D = diag(Wen). Denote the digraph Laplacian L = D−W .
A row-stochastic transition probability matrix P = [pij ] can
be constructed as pij = wij/d

+
i , or equivalently as P =

D−1W . Note that undirected graphs can be regarded as special
digraphs characterized algebraically by their symmetric weight
matrix W , i.e. the symmetric pair wij & wji correspond to
bi-directional edges with equal weights. We focus here on a
transductive inference scenario where labels from the set of
few labeled nodes Vl are to be propagated to the rest unlabeled
nodes Vu, with V = Vl ∪ Vu. These labels are of multiclass
nature, where each class corresponds to an individual neuron
or vessel tree. To simplify the notations we assume Vl contains
the first l nodes, Vl = {v1, . . . , vl}. To accommodate label
information, define a label matrix Y = [yik] of size n × K
(assuming there are K class labels available), with each entry
yik containing 1 if node i belongs to Vl and is labeled with
class k, and 0 otherwise. Also define the length n ground-truth
(i.e. gold-standard) label vector y that contains two disjoint
parts yl and yu: yl is the input label vector of length l over
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Algorithm 1 Label Propagation by Matrix-Forest Theorem of
Digraphs (MFTD)

Input: A digraph G = (V,E,W ), label information Y , yl,
and α ∈ (0, 1).
Output: y∗u
1. Compute the out-degree matrix D.
2. Compute the affinity matrix by A = SY and (1) (or (2)).

3. Predict y∗u: Compute the i-th entry by (4), for any
unlabeled node vi ∈ Vu.

the set of labeled nodes, with each entry yi for the input class
assignment of node vi ∈ Vl; yu is the hold-out ground-truth
label for the unlabeled nodes, i.e. a vector of length n − l.
Similarly, define the initial label vector ŷ containing also two
parts, ŷl := yl and ŷu = 0, where 0 is an all-zero vector of
length n − l. Define the prediction vector y∗ with also two
parts y∗l := yl, as well as y∗u of length n− l, containing the
prediction results, where each y∗i denotes the predicted class
assignment for a node vi ∈ Vu.

The proposed label propagation algorithm (shown in Algo-
rithm 1 and referred to as MFTD) is derived based on matrix-
forest theorem [9] of algebraic digraph theory [10] as follows.
The forest matrix is defined as

S1 = (I + αL)−1, (1)

a normalized forest matrix where each (i, j)-th entry denotes
the number of spanning trees rooted at node i that also include
the j-th node, as in Theorem 4 of [9]. In a way it can be viewed
as a generalization of the celebrated matrix-tree theorem
(e.g. [43]) from undirected graphs to digraphs. Let wmax
denote the entry in W containing the strongest signal, i.e.
wmax = maxi,j

∣∣wij∣∣. By varying the preprocessing schemes
of normalizing W , we have two variants: MFTDa starts with
a preprocessing effort to normalize W , W ← W

Wmax
; MFTDb

considers a different normalization of W as W ← D−1W
instead.

It can be shown that under normalization scheme of W ←
D−1W , the forest matrix becomes S1 = (1− τ)(I − τP )−1,
with τ = α

1+α . Further, let L̃ := limα→∞(I + αL)−1, which
is a matrix of normalized rooted spanning forests. Both S1

and L̃ has a number of interesting properties [44]: Each entry
of both matrices is non-negative, and both matrices are row-
stochastic; L̃ resides in the null space of digraph Laplacian
L, as LL̃ = L̃L = 0; rank(L) = n − rank(L̃); L + βL̃
is non-singular for any β > 0, and is the “complementary
perturbation of L” [45]. Indeed, this brings forward the second
forest matrix,

S2 = (L+ βL̃)−1, (2)

which is also termed the matrix of dense forest in [9].
When the same preprocessing schemes of normalizing W are
applied to the forest matrix S2, two additional variants are
similarly obtained, and are denoted as MFTDc & MFTDd,
respectively.

One can interpret the (i, j)-th entry sij of the forest matrix
S (being either S := S1 or S := S2) as quantifying the

accessibility of a particle from a node vi to visit node vj
along the digraph structure. This provides a notion of affinity
from state i to j. The intuition is, if a state j is close to the
initial state i in terms of digraph structure, it will be visited
by the particle more often than if it is far away from i, i.e.,
we visit our close relatives more often than our distant ones.
Now define the affinity matrix as

A = SY, (3)

a matrix of size n×K, with each entry aik being associated
with an affinity score of state i belonging to class k. To infer
y∗u of the unlabeled states Vu, our algorithm predicts each
entry’s class assignment by identifying a label with the largest
affinity score,

y∗i = argmax
k

aik, ∀vi ∈ Vu. (4)

Now we have all the ingredients ready to present our digraph-
theoretical label propagation algorithm, MFTD, as described
in Algorithm 1. With a slight abuse of notation, MFTD is also
used to refer to our entire tracing system.

Computational complexity As the forest matrix S (being
either S := S1 or S := S2) is invertible, denote its inverse
as E := S−1. Usually it is computationally more efficient to
evaluate E than S, since E = I + αL or E = L + βL̃. Let
us investigate the complexity of Algorithm 1, which is clearly
dominated by the cost of computing the affinity matrix A in
(3). In fact, it can be accomplished by instead solving the
linear system of

EA = Y,

thus eliminating the need to explicitly compute any matrix
inverse. For a general dense matrix E, the computational time
is O(n3 + n2K). This is about the same complexity of [37],
one of our main competing methods. Fortunately, E (as well
as S) is usually a sparse matrix in our context, which can be
exploited to reduce the computational time. There are many
efficient solvers for large sparse linear systems, including
both direct [46], [47] and iterative methods [48], [49]. In
our implementation, we adopt the direct solver UMFPACK
[46] which exists as a built-in routine (for LU, backslash, and
forward slash functions) in MATLAB. The specific complexity
depends on the size (n), the number of non-zero entries and
the sparsity pattern of E, which remains a challenging task
to provide an explicit complexity measure dedicated to our
context.

PAC-Bayesian label propagation bound A PAC-Bayesian
error bound is provided here for our MFTD algorithm (both
(1) and (2)). This bound is an adaptation of the PAC-Bayesian
bound for general transductive learning developed in [50],
which improves the PAC-Bayesian bound of [51].

In the transductive setting, a learning method is given the
full sample V = Vl ∪ Vu and labels of the labelled data
(i.e., yi for vi ∈ Vl), and learns a classifier h : V → Y :=
{1, 2, · · · ,K} that correctly classifies the unlabelled data in
Vu. The hypothesis space of classifiers determined by the
learning method is denoted as H. For any classifier h ∈ H,
we define the test error as Ll,n(h) := 1

n−l
∑n
i=l+1 `(h(vi), yi)
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with respect to the 0/1 loss function ` satisfying `(h(vi), yi) =
1 if h(vi) 6= yi and `(h(vi), yi) = 0 otherwise. Similarly, we
define the empirical error of h as L̂l,n(h) := 1

l

∑l
i=1 `(hi, yi),

the full sample error of h as Ln(h) := 1
n

∑n
i=1 `(hi, yi).

Therefore, we have

Ln(h) =
1

n

(
lL̂l,n(h) + (n− l)Ll,n(h)

)
. (5)

In the error bound presented in the next theorem, we show
that the test error can be upper bounded by the empirical error
plus some complexity term.

Theorem 1: For any deterministic classifier h determined
by our Algorithm 1 and any δ ∈ (0, 1), with probability at
lest 1 − δ over random draws of Vl from V , the following
bound holds

Ll,n(h) ≤L̂l,n(h)

+

√
1

2(1− l
n )

(
ln
n

l
+

1

l
ln
C(l, n)

δ
+ ln(Ke)

)
,

(6)

where C(l, n) = (
√
2 ln l + 8)

√
l(1− l

n ).
Proof: Our proof is based on the PAC-Bayesian bound

for Gibbs classifier hq presented in Corollary 7 of [50]. For
a given distribution q on H and a sample v, hq randomly
draws a classifier h according distribution q and classifies
v as h(v). The test error of hq is defined as Ll,n(hq) :=
1
n−l

∑n
i=l+1 Eh∼q`(h(vi), yi). The empirical error L̂l,n(hq)

and full sample error Ln(hq) are similarly defined. An adap-
tation of Corollary 7 of [50] leads to the following result:
For any prior distribution p on H and any δ ∈ (0, 1), with
probability at lest 1− δ over random draws of Vl from V , we
have

Ln(hq) ≤ L̂l,n(hq) +

√
1− l

n

2l

(
KL(q||p) + ln

C(l, n)

δ

)
,

(7)
where KL(q||p) is the Kullback-Leibler divergence between
two distributions and C(l, n) is defined as in (6).

For any deterministic classifier h ∈ H, we can derive an
error bound for h by choosing the posterior distribution q
as the one which assigns probability 1 to h. In this way, all
errors of hq reduce to the corresponding errors of h and the
KL-divergence term KL(q||p) reduces to ln(1/p(h)), which
implies that

Ln(h) ≤ L̂l,n(h) +

√
1− l

n

2l

(
ln

1

p(h)
+ ln

C(l, n)

δ

)
. (8)

Now, we propose a technique for selecting a prior distri-
bution p over H based on the full sample V . It is noted
that Algorithm 1 is deterministic and generates only one
classifier h once Vl and the corresponding labels are given.
Since there are

(
n
l

)
ways to draw Vl from V and there are K

possible labels for each sample in Vl, it implies that H has(
n
l

)
Kl hypotheses. That is, |H| =

(
n
l

)
Kl. We then define the

prior distribution p to be an uniform distribution over H, or

equivalently, p(h) = 1

(nl)Kl
for any h ∈ H. Substituting p(h)

into (8) and using inequality
(
n
l

)
≤ (en/l)l leads to

Ln(h) ≤ L̂l,n(h)+

√
1− l

n

2

(
ln
n

l
+

1

l
ln
C(l, n)

δ
+ ln(Ke)

)
.

(9)
In addition, we have for any constant c that Ln(h) ≤ L̂l,n(h)+
c is equivalent to Ll,n(h) ≤ L̂l,n(h) + 1

1− l
n

c, which together
with inequality (9) leads to the desired result.

Notice that when βl ≤ l/n ≤ βu for any constant βl, βu
satisfying 0 < βl ≤ βu < 1 (e.g., l/n = β0 the number
of labelled sample is a constant proportion of the number of
full sample), the complexity term (i.e., the second term on the

right-hand side of (6)) converges to

√
ln(Keβl

)

2(1−βu) as n → ∞,
which means that in such a case the test error Ll,n(h) will
not excess the empirical error L̂l,n(h) by a constant value.

IV. EMPIRICAL EXPERIMENTS

In this section, two types of datasets are used for empir-
ical evaluations, which includes in particular our in-house
dataset of neuronal images. We further carry out a series of
experiments to evaluate and analyze the performance of the
competing methods.

A. The Datasets

The following two sets of datasets are employed throughout
our experiments on tracing with neuronal and retinal images.

Our In-house Dataset of Microscopic Neuronal Images
To facilitate the analysis of neuronal tracing systems, we make
available our annotated neuronal dataset2, wishing this can
provide an option for researchers in the field to compare
performance on the same ground. While our dataset focuses
on mouse embryonic neural stem cells, we would like to
point out that we intentionally retain a variety of cellular
morphologies, such that the images in our dataset could
be sufficiently representative, and the tracing performance is
expected to be similar when carried out on other neuronal
datasets. Our data acquisition follows the following protocol:
First the cells are grown in-vitro into neurospheres. Single cells
are then collected from these neurospheres and seeded onto
PLL/laminin (with 10µg/ml concentration, from Invitrogen
Inc. [52]) coated 13 mm coverslips at 1× 104 cells/coverslip,
and cultured in differentiation medium for 7 days. Then
the cells are stained with anti-βIII tubulin (with 1:200
concentration, from Sigma-Aldrich Inc. [53]) with secondary
antibodies Alexa Fluor (AF)-488 goat anti-mouse, while the
cell nuclei are counter-stained with DAPI. Furthermore, two
microscopic imaging systems are used: The first is an Olympus
Fluoview FV1000 laser scanning confocal microscope with
photomultiplier tube detector (PMT), while the second is an
Olympus lx-83 live-cell inverted with Coolsnap HQ2 camera.
Both are with a 12-bit A/D converter, and with a magnification

2Our annotated neuronal dataset as well as performance evaluation code are
publicly available at http://web.bii.a-star.edu.sg/˜chengli/
tracing/.

http://web.bii.a-star.edu.sg/~chengli/tracing/
http://web.bii.a-star.edu.sg/~chengli/tracing/
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of 20x. Note to evaluate the robustness of the tracers, two
image resolutions are used in NeuB2: For a subset of 30 image,
the resolution is set to 0.333 micrometer per pixel, while for
the rest 68 images, it is set to 0.994 micrometer per pixel. In
practice, two batches of neurons are cultured, with batch 1
of 112 images acquired with the first microscope, and batch
2 of 98 images obtained using the second microscope. We
subsequently refer to these two batches as NeuB1 and NeuB2,
respectively. It is worth noting that images of the second batch
are more challenging, with more noticeable background noises
and more blurred foregrounds. It nevertheless contributes to
our dataset with added variability, which we feel could be very
helpful to examine the reliability of the tracing systems. These
images are further annotated manually with an annotation tool,
Neuromantic [54], to produce the final manual annotations as
gold standard. For both batches, one third of the images are
reserved for training, while the annotations of the rest two
third images are retained for performance evaluation purpose.
This amounts to 675 and 543 neurons for NeuB1 and NeuB2,
respectively. In addition, as displayed in the top-left panel of
Fig. 1, the numerous blue-colored DAPI stained cell bodies
outnumber the neurons presented in the image. This is due to
the existence of non-neuronal supporting cells (i.e. glial cells)
such as astrocyte and oligodendrocyte cells, whose cell bodies
are also DAPI stained but containing no neurites (which are
green-colored). To address this issue, a simple yet effective
image processing strategy is adopted in our tracing system
to obtain the neuronal cell bodies: The potential cell bodies
from DAPI channel (i.e. blue channel) are obtained via fixed
thresholding, while the counterparts in the tubulin stained
green channel are retrieved by performing morphological oper-
ations with structured element on the segmented foregrounds.
The final neuronal cell bodies are then detected by taking
logical and operation on two separate resultant images, and
by morphological postprocessing operation for possible hole-
fillings.

Two Fundus Image Datasets: DRIVE and STARE For
retinal blood vessel tracing, the publicly available testbeds
of DRIVE [55] and STARE [56] datasets are used. The
DRIVE and STARE datasets contain 40 and 20 color retinal
fundus images, respectively. Both datasets have their own fixed
partitions of train and testing subsets, each contains 20 and 10
images, respectively.

B. the Segmentation Step: Implementation Details and Eval-
uations

During segmentation step, the set of data points, x =
{x1, x2, . . . xn}, contains features of all the pixels in training
images. The number of class categories is naturally set to
Ks = 2, as the focus here is to segment out the fila-
mentary structures as foreground, with the rest pixels being
background. More specifically, each data point xi ∈ R5

containing five features: The first feature is the normalized
image intensity, and the next four are normalized maximum
Gabor filter responses among 18 directions in [0, π] for 4
different scales. Our GMM likelihood model follows that
of [13]. Throughout our experiments, a mixture of 15 Gaussian

components is employed which is empirically to lead to
good performance. The set of points (i.e. pixels) ns is set
to 106, obtained by randomly selecting pixels from training
images. The Laplacian is obtained from an 8-neighbor grid
graph following the image structure, where each image pixel
corresponds to a node, and the weight matrix is constructed
by ws,ij = ws,ji = exp(−βs ‖xi − xj‖2) for each (i, j)−th
element with β = 5000. Furthermore, the segmentation related
parameter is set as γ = 1. Performance evaluation is reported
using the average F-1 score over the test images. Table I
provides an comparison of our segmentation results to the
GMM-based method (referred to as Soares) [13] as well
as FRVD [15], OOF [57], Frangi [31], four state-of-the-art
methods for retinal blood vessel segmentation. The method
of Soares [13] is based on Gabor wavelet and GMM models,
and is the closest to our segmentation module. FRVD [15]
utilizes a wavelet-based thresholding and edge refinement
scheme, meanwhile, OOF or optimally oriented flux method
is widely known for its ability to enhance and detect irregular
filamentary structures and usually outperforms the traditional
Hessian based methods. Frangi [31] is a local Hessian based
method. The results of these comparison methods are reported
by running their original source codes with parameters tuned
for best performance. Empirically our segmentation module
outperforms the comparison methods on both datasets of
neurons and retinal vessels. This we believe could be due
to the introduction of graph Laplacian based regularization
which helps noticeably in providing smoother and cleaner
segmentation results, as is visually illustrated in Fig. 3.

Ours Soares [13] FRVD [15] OOF [57] Frangi [31]
NeuB1 0.76 0.74 0.69 0.51 0.59
NeuB2 0.83 0.79 0.66 0.61 0.76
DRIVE 0.78 0.77 0.71 0.73 0.56
STARE 0.77 0.76 0.64 0.69 0.57

TABLE I: Comparison of segmentation performance w.r.t. F1
score. See text for details.

C. the Overall Tracing System: Evaluation Details and Anal-
ysis

Parameters & Performance Evaluation Criteria The
tracing-related internal parameters in our system are set to
α = 10 for MFTDa and MFTDb, β = 10−4 for MFTDc
and β = 1 for MFTDd. Performance evaluation is carried
out using both the widely-used DIADEM score [30] and the
relatively recent Netmets score [58]. DIADEM score compares
the similarity between a ground truth filamentary object and
the corresponding tracing result, and returns a score within
[0, 1], where 0 indicates a completely mismatch and 1 means
a perfect match. Note the x-y threshold of the DIADEM score
is fixed to 30 pixels throughout our experiments. The Netmets
score, on the other hand, provides matching score based
on geometric and connectivity related information, which is
represented as both false positive and false negative rates.
Unlike in DIADEM score, in Netmets lower value is better.
In particular, in terms of connectivity false positive and false
negative rates, Netmets score penalizes the extra or missing
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junctions twice by considering extra or missing junctions and
related filaments separately, which suggests the error rates
would often be much higher than that of e.g. the DIADEM
score where only one round of extra or missing junctions are
considered. The DIADEM score has been the primary choice
for performance evaluation of the tracing systems during
empirical evaluations, while the Netmets score is also used
in most of the occasions to provide a complementary source
of information.

Four variants of the proposed system are considered in
experiments, which are
(1) MFTDa : S := S1 from (1) with W ← W

Wmax
.

(2) MFTDb : S := S1 from (1) with W ← D−1W .
(3) MFTDc : S := S2 from (2) with W ← W

Wmax
.

(4) MFTDd : S := S2 from (2) with W ← D−1W .
As to be shown later, throughout empirical evaluations MFTDa
is observed to consistently deliver the best results among the
four, so by default we would also refer to our tracing system as
MFTDa, when the context is clear. The superior performance
of MFTDa may contribute to its relative insensitive to local
variations by dividing by the largest element of the row;
In comparison, the denominator of each row in MFTDb is
the row sum, which is more susceptible to local variations
in each row as being e.g. either evenly distributed or few
dominating signals mingled with many weak signals. In term
of comparison methods, a suite of state-of-the-art commercial
as well as related academic tracers are considered, including
(1) Label propagation method based on digraphs, including
the Symmetrized Graph Laplacian (SGL) [37], and the Zero-
mode Free Laplacian (ZFL) [38].
(2) Label propagation method based on undirected graphs:
the Learning with local and global consistency method
(LLGC) [39].
(3) Label propagation by inference on graphical Mod-
els [59] including Mean Field (MF), Loopy Belief Propa-
gation (LBP) [35], and Tree Re-Weighted belief propagation
(TRW) [59].
(4) State-of-the-art tracing systems including the commer-
cially available neurite tracer module of Metamorph NX
(MMNX) [5], as well as the academic tracing system Neu-
roCyto [4].
Note that SGL, ZFL, LLGC, LBP, MF, and TRW tracers are
essentially label propagation methods already developed from
machine learning community. They are implemented in a plug-
in manner to replace the digraph algorithm in our tracing
system, while the rest components of our system remain the
same as those in our MFTD tracer. For methods operate
only on undirected graphs (LLGC, LBP, MF, and TRW), the
undirected graph Gu are obtained as discussed in Fig.6(e),
and similarly, the rest of our system is still used as is. On
the other hand, MMNX and NeuroCyto are self-contained
neuronal tracing systems, so they are operated completely on
their own. During the experiments, the proposed four variants
and the comparing methods are all carried out in automated
manner.

Effect of Varying α or β We first study the influence of the
internal parameter (α or β) to our four MFTD tracing variants.

As presented in Fig. 8, our tracing system MFTDa performs
relatively robust when the internal parameter is varied within
a rather broad range between 1 to 104. At the same time,
the other MFTD tracing variants are relatively sensitive to the
changes of internal parameters.

Effect of Training and Testing on Same or Different
Batches From system robustness viewpoint, one might be
curious about the impact of performing training and testing
on slightly different sets of examples. Table II presents three
such scenarios, namely NeuTr1Te1, NeuTr1Te2, NeuTr2Te2.
Take NeuTr1Te2 for example, it refers to the scenario of
performing training on the training neuronal images from
batch 1 (i.e. NeuB1), while evaluation is carried out on the
testing images from batch 2 (i.e. NeuB2). Not surprisingly,
for all four variants of our tracing systems, the best re-
sults are always obtained from NeuTr1Te1, since images in
NeuB1 are with less background noises and the foreground
filamentary structures are less blurring. On the other hand,
NeuTr2Te2 seems to be the most challenging scenario for all
four competing methods. It is interesting to observe that the
results on NeuTr2Te1 is quite good, almost on par with those
on NeuTr1Te1. This we believe should be attributed to the
relatively clean contents which make this batch much easier
to be dealt with. For example, the Penalized likelihood model
learned from the noisier NeuB2 images can still perform well
on these less noisy NeuB1 images, although both batches are
obtained from different microscopy systems. Unfortunately, it
does not produce much meaningful results at all when training
on NeuB1 and testing on NeuB2. This is not surprising, since
it is widely known that a statistical model learned on a clean
(thus easy) dataset usually performs poorly on unseen data
that are with noticeably more noises (thus more difficult).

MFTDa MFTDb MFTDc MFTDd

NeuTr1Te1 0.52 0.51 0.51 0.41
NeuTr2Te1 0.51 0.49 0.50 0.38
NeuTr2Te2 0.26 0.24 0.25 0.19

TABLE II: DIADEM scores on the effect of training and
testing on same or different batches.

Evaluations on Neuronal and Retinal Datasets
We further evaluate the performance of the proposed MFTD

tracing variants as well as those competing systems on the
four datasets mentioned above. As these datasets cover a range
of filamentary structures with diverse morphologies, textures,
and network complexities, collectively they form a reasonable
testbed to evaluate performance of tracing systems on these
representative scenarios.

Table III presents the DIADEM scores of the competing
systems on both neuronal and retinal datasets. Overall graph-
theoretical methods (including the three variants of our tracing
systems except for MFTDd, as well as SGL, ZFL, and LLGC)
delivers the best results, followed by the graphical model
methods (MF, LBP, and TRW). Note these methods all share
the same segmentation step as well as the preparation process
of converting the skeleton maps to undirected graphs or
digraphs. On neuronal datasets, MMNX performs relatively
on par with the graphical model methods, while NeuroCyto
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Fig. 8: Effect of varying the internal parameters α or β of our four MFTD tracing variants. From top to bottom, each row
presents one of the four datasets, namely NeuB1, NeuB2, DRIVE, and STARE; From left to right, each column is for one
of the four MFTD tracing variants. In each panel, α or β are presented in x-axis, while y-axis shows the DIADEM score
performance.

MFTDa MFTDb MFTDc MFTDd SGL ZFL LLGC MF TRW LBP MMNX NeuroCyto
NeuB1 0.52 0.51 0.51 0.41 0.45 0.47 0.50 0.38 0.46 0.42 0.43 0.36
NeuB2 0.26 0.24 0.25 0.19 0.21 0.22 0.21 0.15 0.23 0.19 0.22 0.14
DRIVE 0.79 0.76 0.75 0.63 0.68 0.73 0.71 0.58 0.68 0.63 - -
STARE 0.42 0.41 0.42 0.26 0.35 0.39 0.38 0.29 0.35 0.32 - -

TABLE III: DIADEM scores of comparison methods on the neuronal and the retinal datasets. The first four columns are
variants of our tracing system, while the next six columns are reported by replacing the tracing component of our system with
different methods. The last two columns are results of two existing neuronal tracing systems.

Ours Soares [13] FRVD [15] OOF [57] Frangi [31]
NeuB1 0.52 0.47 0.43 0.38 0.34
NeuB2 0.26 0.23 0.21 0.17 0.12
DRIVE 0.79 0.71 0.69 0.66 0.51
STARE 0.42 0.36 0.33 0.30 0.26

TABLE IV: Tracing performance of our system (MFTDa) by replacing the segmentation component with different methods,
evaluated in term of DIADEM scores. See text for details.

on the other hand delivers the worst DIADAM scores. Both
methods however can not work with the retinal datsets. Overall
our tracing system MFTDa consistently outperforms the other
methods and especially existing tracing systems [4], [5], [35]
by a rather large margin, which suggests the advantage of our

digraph-theoretical approach for tracing filamentary structures.
The statistical significance of the performance gain of MFTDa
w.r.t. each of the comparison methods has been evaluated using
the Wilcoxon signed rank test. It is found that at p = 0.05
significance level that in all cases, the performance gains are
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statistically significant. Moreover, the better performance of
MFTDa over MFTDb might due to that row-wise normaliza-
tion tends to bias the solution toward local minimums. One
main difference of our system MFTDa versus the graphical
model methods (MF, TRW, and LBP) and LLGC are that
the latter ones are all based on undirected graphs. Instead,
the adoption of digraph representation in our system retains
directional information related to the root and terminal nodes,
which explicitly rules out those improper propagation paths
in graphs and by doing so, helps to resolve confusions of
contacting filaments alongside the junctions. Meanwhile, it is
not surprising that existing digraph-based methods SGL and
ZFL only delivers modest results, which we mainly attribute
to the adoption of teleporting as well as symmetrization tricks
that unfortunately damage useful information contained in
the input raw signals. Table IV reports the final DIADEM
score performance of our segmentation method vs. competing
segmentation methods reported previously in the segmentation
step. Here only the segmentation module of our system is
replaced by the corresponding segmentation method, while the
rest of the system remain unchanged. Empirically the final
tracing result of the proposed segmentation algorithm clearly
outperforms the others, which again suggests the applicability
of our new segmentation module. Tables V, VI, VII and VIII
also provide the results evaluated by Netmets, which provide
more finely categorized evaluation details. Overall the perfor-
mance of the comparison methods is similar w.r.t. DIADEM.

Figs. 9 and 10 present the visual tracing results of several
images on neuronal datasets. It is not known how MMNX
is operated internally for these tracing tasks as being a
commercial software. Nonetheless, empirically we observe as
in Fig. 9 that MMNX tends to separate the filamentary network
by forming spatial clusters of subgraphs on clean and well-
focused images, and as in Figs. 10 MMNX tends to misplace
the neuronal labels of the filaments. These unfortunately will
not necessarily render good results, as indicated by the amount
of mistakes made in Figs. 9 and 10 marked out with the pink-
colored disks. In contrast, the results of our tracing system
MFTDa have consistently far less mistakes. As MMNX can
not deal with retinal images, we instead compare with the LBP
tracing system as shown in Fig.11, which can be regarded as
an improved version of [35] since a number of components in
our system (for example the segmentation step) are different
from that of [35]. To facilitate better interpretation of the
visual comparisons, neurons in Figs. 9, and 10 are tagged
with their own DIADEM scores, with the corresponding IDs of
these neurons marked in their original images displayed on the
topmost row. Moreover, grey and pink colored disks are used
to represent the correct and the wrong predictions on various
crossover scenarios, respectively. For example, as shown in
image (1) of Fig. 9 for NeuB1, there exists a crossover in
the junction between neurons 2 and 3, which are successfully
picked up by our system MFTDa and SGL, but is missed out
by MMNX. Another example is in image (3) of Fig. 10 for
NeuB2, where there exists a crossover in the junction between
neurons 1 and 2. It is successfully picked up by MFTDa, but is
missed out by both SGL and MMNX. Many similar situations
can be observed from the exemplar images in Figs. 9 and 10. It

is also visually observed that over these neurons in both NeuB1
and NeuB2, consistently higher DIADEM scores are obtained
by MFTDa, which is followed by SGL, while MMNX often
produces worst DIADEM scores. Again, this suggests that
overall graph-theoretical approaches tends to deliver better
results than MMNX, and our approach performs notably well
when comparing to other methods. Visual inspections into
retinal datasets are also presented in Fig. 11. Similar to the
neuronal datasets, our system clearly produces better tracing
results when comparing to the SGL and the LBP tracing
systems. On the other hand, there are still mistakes made by
our system: Among them, one major error source stems from
the segmentation step where topological connections might
sometimes be altered; Another error source is related to the
construction of our current weight matrix where just angular
property of neighbouring filaments in a junction is considered.
These are the limitations of our current tracing system.

We also directly evaluate the crossovers where two or more
filamentary objects (e.g. retinal blood vessels or neurons)
touch or crossover each other. In Table IX, a crossover
refers to a junction point, whereas a pair refers to a unique
pair of filaments (as in Fig. 4) connected at a junction
point that belongs to the same object (e.g. neuron). Note
there will be only true positives and false negatives in this
context. The accuracy in the table is thus calculated as:
Accuracy = #of true positives

#of (true positives + false negatives) . Overall our approach
(i.e. MFTDa) clearly outperforms MMNX in term of address-
ing the crossover issues.

V. CONCLUSION AND OUTLOOK

A graph-theoretical approach is proposed to trace filamen-
tary structures of both neuronal and retinal blood vessel im-
ages. Key to our approach is the newly discovered connection
between the tracing problem and the established algebraic
digraph theory, which we hope may open doors for new
insights into the tracing problem. The competitiveness of our
approach is verified in various empirical experiments, with
justification being provided. For future work, we would like to
consider the inclusion of complementary information such as
transition of thickness or image texture along a filament around
a junction when constructing the digraph weight matrix. The
performance of our tracing system could also be further
improved by incorporating a more advanced segmentation
module.
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Fig. 9: Exemplar tracing results on the neuronal dataset NeuB1. Correct and incorrect tracing are highlighted by grey and pink
colored disks, respectively. Numbers in the images denote DIADEM scores for each of the particular neurons. Best viewing
in color.
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Fig. 10: Examples of tracing results on the neuronal dataset NeuB2. Correct and incorrect tracing are highlighted by grey
and pink colored disks, respectively. Numbers in the images denote DIADEM scores for each of the particular neurons. Best
viewing in color.
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Fig. 11: Examples of tracing results on the retinal datasets DRIVE and STARE. Correct and incorrect tracing are highlighted
by grey and pink colored disks, respectively. Best viewing in color.

MFTDa MFTDb MFTDc MFTDd SGL ZFL LLGC MF TRW LBP MMNX NeuroCyto
NeuB1 0.21 0.22 0.21 0.25 0.24 0.23 0.22 0.30 0.23 0.26 0.25 0.33
NeuB2 0.38 0.41 0.39 0.45 0.49 0.43 0.46 0.51 0.47 0.48 0.43 0.52
DRIVE 0.09 0.11 0.12 0.15 0.14 0.13 0.12 0.20 0.13 0.18 - -
STARE 0.26 0.28 0.28 0.31 0.31 0.29 0.27 0.37 0.31 0.34 - -

TABLE V: One of the four Netmets scores, geometric false positive rate, on the neuronal and the retinal datasets.
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MFTDa MFTDb MFTDc MFTDd SGL ZFL LLGC MF TRW LBP MMNX NeuroCyto
NeuB1 0.20 0.22 0.21 0.26 0.25 0.23 0.23 0.29 0.25 0.27 0.26 0.32
NeuB2 0.36 0.38 0.37 0.43 0.42 0.40 0.43 0.47 0.43 0.45 0.42 0.51
DRIVE 0.08 0.10 0.10 0.13 0.13 0.12 0.12 0.18 0.15 0.16 - -
STARE 0.25 0.27 0.26 0.30 0.29 0.28 0.35 0.31 0.33 0.31 - -

TABLE VI: One of the four Netmets scores, geometric false negative rate, on the neuronal and retinal datasets.

MFTDa MFTDb MFTDc MFTDd SGL ZFL LLGC MF TRW LBP MMNX NeuroCyto
NeuB1 0.77 0.78 0.78 0.81 0.81 0.79 0.80 0.85 0.81 0.82 0.82 0.89
NeuB2 0.81 0.85 0.83 0.91 0.89 0.87 0.88 0.91 0.88 0.90 0.86 0.93
DRIVE 0.62 0.64 0.63 0.69 0.68 0.67 0.76 0.71 0.75 0.73 - -
STARE 0.79 0.80 0.80 0.83 0.83 0.82 0.81 0.88 0.83 0.81 - -

TABLE VII: One of the four Netmets scores, connectivity false positive rate, on the neuronal and the retinal datasets.

MFTDa MFTDb MFTDc MFTDd SGL ZFL LLGC MF TRW LBP MMNX NeuroCyto
NeuB1 0.79 0.80 0.80 0.85 0.84 0.83 0.81 0.88 0.83 0.86 0.85 0.88
NeuB2 0.83 0.85 0.86 0.91 0.93 0.91 0.89 0.94 0.92 0.93 0.91 0.96
DRIVE 0.65 0.67 0.66 0.69 0.69 0.68 0.67 0.71 0.69 0.68 - -
STARE 0.79 0.80 0.81 0.88 0.86 0.83 0.81 0.89 0.85 0.86 - -

TABLE VIII: One of the four Netmets scores, connectivity false negativity rate, on the neuronal and the retinal datasets.

Datasets #of crossovers #of pairs #of true positives #of false negatives Accuracy
Ours MMNX Ours MMNX Ours MMNX

NeuB1 557 865 472 389 393 476 0.546 0.449
NeuB2 254 371 199 67 172 304 0.536 0.180
DRIVE 405 849 429 - 420 - 0.505 -
STARE 121 263 112 - 151 - 0.426 -

TABLE IX: A direct comparison of our approach (i.e. MFTDa) and MMNX on crossover accuracy. See text for details.
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