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Abstract—In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the
directed graph scenario which is a natural form for many real world applications. Different from existing research efforts that either only
deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on
directed graphs using absorbing Markov chains, which can be regarded as maximizing the accumulated expected number of visits from
the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs on binary, multiclass, and
multi-label prediction problems. Moreover, it is capable of preserving the graph structure even when the input graph is sparse and
changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number
of existing methods, including graph kernels, graph Laplacian based methods, and spanning forest of graphs. Its computational
complexity and the generalization error are also studied. Empirically, our algorithm is evaluated on a wide range of applications, where
it has shown to perform competitively comparing to a suite of state-of-the-art methods. In particular, our algorithm is shown to work
exceptionally well with large sparse directed graphs with e.g. millions of nodes and tens of millions of edges, where it significantly
outperforms other state-of-the-art methods. In the dynamic graph setting involving insertion or deletion of nodes and edge-weight
changes over time, it also allows efficient online updates that produce the same results as of the batch update counterparts.

Index Terms—Random Walks on Directed Graphs, Transductive Learning, Absorbing Markov Chain, Transduction Generalization
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1 INTRODUCTION

W E focus on the following graph transduction problem:
Given a directed graph with certain nodes labeled, make

predictions on the unlabeled nodes by propagating the class
labels following the underlining directed graph structure. Different
from undirected graphs that delineate symmetric weight between
adjacent nodes, in directed graphs, edge or link directions are well
preserved in its weight matrix. This information is particularly
useful in many real life applications that can be naturally char-
acterized using directed graphs, including automated delineation
of filamentary structures in images and videos [1], [2], [3], [4],
[5], image classification [6] and clustering [7], network and
link analysis in hyperlinks of webpages as well as citations of
papers [8], [9], [10], [11], among others. Moreover, the fast pace
of big data production and storage, together with the scarcity of
annotated labels, also create the need for algorithms capable of
scaling up to make predictions on large-scale directed graphs with
few known labels.

Since being introduced by Vapnik in the nineties, many re-
search efforts have already been devoted to graph-based transduc-
tion or transductive learning, as can be found in the comprehen-
sive reviews in [12], [13]. Most of the existing literature work
with undirected graphs. For example, the harmonic functions on
Gaussian fields [14], the local and global consistency of [15],
the quadratic criterion [16], the commute time kernel [11], the
partially absorbing random walks [17], and the greedy max-
cut [18]. Besides, there are a few methods specifically dedicated to
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directed graphs, including in particular [19], [20], [6]. One major
difficulty in learning with directed graphs lies in the asymmetric
nature of the weight matrix introduced by these directed edges
or links. This is often regarded as cumbersome when aligning
with the key concepts developed for undirected graphs that are
symmetric by nature, such as graph Laplacians. It thus leads to
the widely adopted symmetrization trick in e.g. the construction
of graph Laplacians [19], or co-link similarity matrices [10],
or covariance kernel [20]. Unfortunately, important information
conveyed by edge directions is still lost. There have been a few
methods for large-scale transduction such as [21], [22], which are
however not ready to be used for directed graphs.

We propose a random walk on absorbing Markov chains ap-
proach to the problem of transductive learning on directed graphs,
where the edge directions – the key aspect of directed graphs, are
well preserved. Our algorithm is intuitive to understand, easy to
implement, and by working with absorbing Markov chains [23],
the sparse nature of the graph structure is also retained, which
is important in the context of predictions on large-scale directed
graphs.

The most related work is that of [19], which generalizes their
earlier framework of regularized risk minimization on undirected
graphs [15] to directed graphs by discriminatively normalizing
in-links and out-links, as well as adopting the directed graph
Laplacian of [24]. The method of [19] involves utilizing a sym-
metrization trick to construct symmetric Laplacian matrix for
digraphs [24]. In contrast, we directly work with asymmetric ma-
trices, which is the key in preserving edge directions. In addition,
the construction in [19] relies on an irreducible Markov chain,



2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

which however only apply to strongly connected directed graphs,
that is, there is a directed path from any node to any other node
of the graph. Since in practice the directed graphs are usually not
necessarily strongly connected, a teleporting random walk trick
(e.g [25]) is adopted by inserting bi-directional edges between all
node pairs with an equal weight. The resulting method thus works
only with non-sparse matrices, instead our algorithm is able to
preserve sparse graph structures and edge directional information
of the input. Besides, our algorithm is able to efficiently work
with large-scale graphs that might be too big to be considered
by [19]. More recently, the family of partially absorbing random
walks (PARWs) is proposed in [17], which can be formulated
as a special case of the absorbing Markov chains considered in
our approach. Notice that absorbing random walks have also been
considered by [26], which recursively constructs absorbing nodes.
However, [26] focuses on ranking with diversity, which is an
entirely different problem in natural language processing.

The main contributions of this work are four folds. (1) A novel
random walk on absorbing Markov chain approach is proposed to
the problem of transductive classification on directed graphs. (2)
An efficient algorithm is provided that exploits the inherent sparse
graph structure, while it also maintains and directly utilizes edge
directional information. In addition, an optimal one-step incre-
ment/decrement update (aka online update) is introduced, which
is handy in scenarios where local changes are made to graphs
over time, or prediction are made on out-of-sample instances. The
proposed algorithm also bears interesting connections to existing
works including undirected graph Laplacian, diffusion graph ker-
nels, spanning forest of graphs, graph-based proximity measure,
among others. (3) We present several interesting properties of
the fundamental matrix of absorbing Markov chain, a central
element in our approach. (4) We conduct theoretical analysis on its
generalization error, as well as extensive and systematic empirical
simulations on various applications to examine the characteristics
of the proposed algorithm and its performance with respect to
existing state-of-the-art methods. 1

2 OUR APPROACH: RANDOM WALKS ON DI-
RECTED GRAPHS

Let G = (V, E ,W ) denote a directed graph or digraph, where
V = {v1, v2, . . . vn} is the set of nodes, E is the set of directed
edges each connecting two adjacent nodes, and W = [wij ] ∈
Rn×n is the asymmetric non-negative matrix with wij ≥ 0 de-
noting the weight associated with the directed edge from vi to vj .
The in-degree of each node vj is computed as d−j =

∑n
i=1 wij ,

and define in-degree matrix D = diag(d−1 , · · · , d−n ). A column
stochastic transition probability matrix, P = [pij ], can be con-
structed as pij =

wij
d−j

, or equivalently as P = WD−1. An
important remark is that random walks on an undirected graph
can be regarded as a special case in our context, since in its
weight matrix W , the symmetric pair wij and wji correspond
to bi-directional edges with the same weights – which can be
characterized by a reversible Markov chain. In fact, as illustrated in
Fig. 1(a), loops, self-loops, and bi-directional edges (i.e. two edges
between adjacent nodes), as well as mixed graphs (of directed and
undirected edges) are all within the scope of our digraph definition.

1. Implementations of our approach and related comparison methods can be
obtained from https://web.bii.a-star.edu.sg/archive/machine learning/Projects/
filaStructObjs/Tracing/transDigraph/index.htm.

In this paper, we focus on a transductive inference scenario where
labels from the set of few labeled nodes Vl are to be propagated
to the rest of nodes, namely the set of unlabeled nodes Vu, with
V = Vl ∪ Vu. The labels here could be binary or multiclass. To
simplify the notation, we assume Vl contains the first l nodes,
Vl = {v1, . . . , vl}. To accommodate label information, we define
a label matrix Y of size n × K (assuming there are K class
labels available), with each entry Yik containing 1 provided the
node i belongs to Vl and is labeled with class k, and 0 otherwise.
Besides, we define the ground-truth label vector y, a vector of
length n including two disjoint parts yl and yu: yl is the input
label vector of length l over the set of labeled nodes, with each
entry yi for the input class assignment of node vi ∈ Vl; yu is the
hold-out ground-truth label for the unlabeled nodes, i.e. a vector of
length n− l. Similarly, define the initial label vector ŷ containing
also two parts, ŷl := yl and ŷu = 0, where 0 is an all zero vector
of length n−l. Define the prediction vector y∗ with also two parts
y∗l := yl, as well as y∗u of length n− l, containing the prediction
results, where each y∗i denotes the predicted class assignment for
a node vi ∈ Vu.

2.1 Our Absorbing Markov Chain and its Fundamental
Matrix

There however exists an issue: the graph often contains source
nodes (i.e. nodes with d−j = 0) 2, for which the corresponding
columns in P are zero vectors – then P is not stochastic any-
more. Inspired by the PageRank method used in Google search
engine [25], we consider an augmented graph to ameliorate this
situation: One extra node vn+1 is introduced that is further
connected to each of the source nodes Vl with a equal weight of 1
and connected to the rest of nodes with a equal weight of (1−α)
where α ∈ (0, 1). A self-connecting edge e = (vn+1, vn+1)
with a transition probability 1 is further imposed on this new node
vn+1, to save itself from being another source node. This leads to
a digraph as displayed in Fig. 1(b), which also corresponds to an
augmented column-stochastic transition probability matrix

P̃ =

(
αP 0
c 1

)
∈ R(n+1)×(n+1),

where c ∈ R1×n is a vector with the elements corresponding to
source nodes being 1 and the remaining elements being 1−α. The
reason of introducing α is as follows: Each transient node has to
secure a positive value in c to ensure the final absorption into vn+1

for a valid absorbing Markov chain. This naturally introduces α
to down-weight P to αP .

Let us pause for a moment and recall that in our context, labels
of the source nodes (if there are any) are usually known and are
to be propagated to the remaining nodes including the leaf nodes.
Edges of the input graph however flows from source to leaf nodes,
as exemplified in Fig. 1(b) for P̃ . It is more informative to reverse
all the edge directions, to compute instead the affinity of each
unlabeled node toward the labeled nodes (where many are source
nodes). As presented in Fig. 1(c), algebraically this corresponds
to the matrix transpose, Q̃ := P̃T . Surprisingly, now this row-
stochastic transition probability matrix

Q̃ =

(
αPT cT

0 1

)
= [q̃ij ] (1)

2. Usually source nodes are within Vl, i.e. they are labeled nodes.
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Fig. 1: (a) An illustrative example of a weighted digraph-based transduction setting: Two different class labels are to be propagated from the labeled nodes
(the green and the red nodes, each for one class) to other nodes following the graph structure. Here only a subset of the graph nodes and edges are displayed.
Quantities such as W and P can be computed accordingly. (b) As some nodes might have zero in-degree (i.e. source nodes), a new node is further added with
directed edges to every nodes including itself, which gives P̃ . According to the c vector, the edges toward those previous source nodes are weighted by 1, and
other edges are weighted by 1−α. (c) Its transpose, Q̃, corresponds to the same graph but with edge directions being reversed. This facilitates the evaluation of
affinity scores flowing from unlabeled nodes (e.g. leaf nodes) to the labeled nodes (e.g. source nodes).

defines an absorbing Markov chain on the augmented digraph, G̃.
Considering random walks in the Markov chain theory [23], each
node vi of the digraph is equivalent to a Markov chain state si, and
collectively, the set of nodes naturally identifies a set of states S =
{s1, s2, . . . , sn+1} in the Markov chain induced by the graph G̃
of n+ 1 nodes. In what follows node v and state s are sometimes
used interchangeably. In addition, sn+1 is the only absorbing state,
while St = {s1, s2, . . . , sn} denotes the set of transient or non-
absorbing states connecting to sn+1 by at least one path. Here
each entry q̃ij denotes the transition probability from state si to
state sj with si, sj ∈ St. It is also known that within a finite
number of steps, a particle in state si moving randomly by Q̃ will
be absorbed into sn+1 with probability 1.

Let us inspect further the upper left block of the matrix Q̃ in
(1), denote Q = αPT = [qij ], and I an identity matrix, both of
size n×n. From Markov chain theory [23] we know every element
ofQt = Q . . .Q︸ ︷︷ ︸

t

denotes the probability of a particle starting from

si to visit sj in t steps. The expected number of visits from si to
sj (si → sj) in t steps is et(si → sj) =

∑t
k=0 q

(k)
ij , or in its

matrix form

Et = I +Q+Q2 + . . .+Qt. (2)

Proposition 1. The fundamental matrix of the absorbing Markov
chain Q̃ is

E = (I − αPT )−1 = [eij ]. (3)

The detailed proof is described in Appendix A. In what follows,
we present a transductive learning algorithm based on the funda-
mental matrix of the above absorbing Markov chain Q̃.

2.1.1 Our Algorithm Maximizes the Accumulated Expected
Number of Visits
An important fact [23] about the fundamental matrix E of our
Markov chain Q̃ is that its (i, j)-th entry eij provides the expected
number of times a particle from a transient state si visits the
transient state sj . This provides a notion of affinity from state
i to j. The intuition is, if a state j is close to the initial state i

in terms of graph structure, it will be visited by the particle more
often than if it is far away from initial state (We visit our close
relatives more often than our distant ones). Now define the affinity
matrix as

A = EY = (I − αPT )−1Y. (4)

It is a matrix of size n×K , with each entry aik being associated
with an affinity score of state i belonging to class k. In other
words, it is the accumulated expected number of visits from state
vi to those states in Vl that are labeled with class k. Here α ∈
(0, 1) acts as a parameter which controls how long the random
walker stays among the transient states before it gets absorbed. If
α is closer to 1 then the random walker stays for a longer period
of time before getting absorbed, and vice versa. Empirically, it is
observed that our approach is insensitive to varying α values to
anything between .01 and .99. We set α = 0.1 throughout the
experiments. To infer y∗u of the unlabeled states Vu, our algorithm
predicts each entry’s class assignment by identifying a label with
the largest affinity score, namely

y∗i = arg max
k

aik, ∀vi ∈ Vu. (5)

2.1.2 Multi-label Classification

With slight modification our approach is also able to work with
multi-label classification. That is, starting with a few nodes of the
input graph being labeled, to predict multiple target labels for each
of the remaining nodes. Instead of Y , we consider a matrix Ỹ of
size n× K̃ for the input label matrix. Here, each column of Ỹ is
for one of the K̃ labels, and each entry contains Ỹik = 1 if the i-th
instance is positive for label k, −1 if it is a negative instance, or
0 if it is unlabeled. Instead of y∗, define Ỹ ∗ the prediction matrix
of size n× K̃ . To infer the row vectors Ỹ ∗u: of the unlabeled states
Vu from the incurred affinity matrix A = [aik], we replace (5)
with the following one: ∀vi ∈ Vu, k ∈ {1, · · · ,K}, ỹ∗ik = 1 if
aik > 0, and ỹ∗ik = −1 otherwise. In other words, a particular
entry is assigned positive, if its accumulative expected number of
visits to positively labeled instances is more than that to those
negative ones, and vice versa. The same procedure can be carried
on over all labels.
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Algorithm 1 Transduction by Random Walks on Directed Graphs

Input: A digraph G = (V, E ,W ), label information Y , yl, and
α ∈ (0, 1).
Output: y∗u
Compute the in-degree matrix D.
Compute the transition probability matrix P = WD−1.
Compute the affinity matrix A by (4).
Produce prediction y∗u. The i-th entry is computed by (5), for
an unlabeled node vi ∈ Vu.

2.1.3 One-step Increment/Decrement Update (aka Online
Update)
In a dynamic graph setting, over the time its graph weights or
even structure might subject to changes, being either inserting or
deleting edges or nodes of the graph, or merely adjustments of
the edge weights. Note the node insertion case corresponds to
the out-of-sample instance scenario. These operations can all be
accomplished by one-step increment/decrement edge update. In
what follow we present a simple O(n) procedure to perform such
update in our context. Consider G (or G′) being a digraph (its
updated digraph) with transient submatrix Q = αPT (Q′), and
fundamental matrix E (E′), respectively. Our aim is to efficiently
update E in the following three cases: (1) Delete an edge or
decrease an edge weight, ∆qij < 0; (2) Add an edge or increase
an edge weight, ∆qij > 0, and ∆qijeji 6= 1; (3) Add a new node
with its edges. Furthermore, the matrix Q has the property that
the summation of each row equals either α or 0. In this case, a
change of weight entry qij will lead to changes in the entire i-th
row of Q. Fortunately, as described in Proposition 2 below, the
cases described above can all be addressed, once we establish a
mean to update E′ by Proposition 2(i) focusing on the change of
only a single entry qij between Q and Q′:

Proposition 2. (i) Suppose for an arbitrary entry qij , the amount
of change, ∆qij , satisfies

∣∣∆qij∣∣ ≤ qij if ∆qij < 0, and
∆qijeji 6= 1 otherwise. The incurred amount of change in E
is

∆E := E′ − E =
∆qij

1−∆qij eji
E:iEj: (6)

where E:i and Ej: denote the i-th column and j-th row of E,
respectively.
(ii) Consider the changes in the entire i-th row of Q, and
assume the amount of change in each entry satisfies the
condition described above. To update matrix E, we can either
apply (6) n times with each time dealing with one entry
change, or equivalently apply the following result:

E′ = E +
E:i(∆Qi:E)

1−∆Qi: E:i
, (7)

where ∆Qi: denotes the amount of change in the i-th row of
Q.
(iii) Suppose a new node is added to the graph such that the

matrix Q becomes Q′ =

[
Q u
vT q

]
, then the new fundamental

matrix E′ is given by

E′ =

[
E + γ(Eu)(vTE) γ(Eu)

γ(vTE) γ

]
, (8)

where γ = 1
(1−q)−vTEu .

The proof is detailed in Appendix A. Notice the imposed
condition of ∆qijeji 6= 1 in (i) for adding an edge is to guarantee
that E is well-defined. Empirically online updates are shown to
produce the same results as the batch update counterpart (i.e. our
normal algorithm), with negligible entry-wise difference (on the
order of 10−10) but with an order of magnitude speedup.

2.1.4 Properties of E

We present here several interesting properties regarding the fun-
damental matrix E, a central element in our approach.

• Nonnegativity. For a digraph, elements of its fundamental
matrix satisfies eij ≥ 0, 1 ≤ i, j ≤ n.

• Edge reversal property. By simply reversing all the edge
directions of a digraph with a fundamental matrix E, the
corresponding new fundamental matrix is equal to ET .

• Connectivity and Transitivity. (i) For any edge (i, j) ∈
{1, · · · , n} in a digraph, eij > 0 iff there is at least one
path form vi to vj ; (ii) For any i, j, k ∈ {1, · · · , n},
if eij > 0 and ejk > 0, then eik > 0. As boundary
condition we assume there is one path of length 0 from
any node to itself.

Moreover, if max
i,j

qij <
1
n , the following properties are also true:

• Diagonal dominance. For i, j ∈ {1, · · · , n} of a digraph
with i 6= j, eii > max{eij , eji}.

• Triangular inequality. For i, j, k ∈ {1, · · · , n} of a
digraph with j 6= i and k 6= i, eii ≥ max{eij + eik −
ejk, eji + eki − ekj}.

• Transit inequality. For distinct indices i, j, k ∈
{1, · · · , n} of a digraph, if there exists a path from vi to
vk and each path from vi to vt includes vk, then eik > eit.

• Monotonicity. Suppose the entry qkt concerning the edge
from vk to vt is increased by ∆qkt > 0. Then

(i) ∆ekt > 0, and for any i, j ∈ {1, · · · , n} such that
i 6= k or j 6= t we have ∆ekt > ∆eij ;

(ii) for any i ∈ {1, · · · , n}, if there is a path from vi
to vk, then ∆eit > ∆eik.

Detailed proofs are presented in the supplementary file due to
space limit, which are adapted from the proofs in [27] tackling
proximity measures in a more general setting. Although the above
properties are well-established as proximity measures between
vertices of graphs, to our best knowledge, many of them are not
shown before for the fundamental matrix of a absorbing Markov
chain.

2.2 Connections to Existing Methods

Graph Kernels: Algebraically our algorithm is similar
to several graph kernels, including the Von Neumann Kernel
KV ND =

∑∞
k=0 α

kW k = (I − αW )−1 [28], and the regu-
larized commute time kernel KRCT = (D − αW )−1 [15], [11],
[29]. These kernel functions are however constructed specifically
from undirected graphs (i.e. within the cone of symmetric positive
definite matrices) and based on considerably different motivations
and derivations.
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PageRank and Digraph Laplacian: Our approach is also
related to PageRank [25], which resolves the issue of source nodes
by teleporting random walks that introduce bi-directional edges to
all node pairs with equal weights, i.e. P̄ = (1 − η)P + η

nee
T

with e a n × 1 vector of all ones, and η a tiny positive real. A
very similar idea is also used by the closely related work [19]
based on digraph Laplacian [24]. They are very different from our
approach. First, both operate on graphs with irreducible Markov
chains rather than the absorbing Markov chains considered in our
context. By definition irreducibility requires each node can be
reached from any other node, i.e. a strongly connected graph –
algebraically this often gives rise to a dense matrix, as shown in
the teleporting operation. Second, as side-effects of introducing
the teleporting operation, the input graph structure is not well
preserved, and weak edge signals also tend to be washed away. In
contrast our approach is able to retain the input graph structure as
well as weak signals.

Graph Laplacian in Undirected Graphs: Our algorithm also
works with undirected graphs as a special case (i.e. equivalent to
bi-directional edges with equal weights). An interesting observa-
tion is that here our algorithm can be shown as a scaled variant
of the graph Laplacian based method in [15], which has been
specifically developed for undirected graphs. This is discussed in
details in Appendix A.

Partially Absorbing Random Walks (PARW) [17]: It can
be shown that the absorbing Markov chains considered in our
context is quite general: The random walks of [17] correspond to
a very special kind of such absorbing Markov chains where the
submatrix of W concerning transient nodes forms a symmetric
non-negative matrix. In other words, the transient nodes are inter-
connected with undirected edges, while the edges from transient
to absorbing nodes are still directed. Details are relegated to
Appendix A.

Spanning Forest of Digraphs [30]: The celebrated Matrix-
Tree theorem has been extended to general digraphs [31], where
the quantity Q :=

(
I + τL

)−1
with L := D−W is shown to be

the normalized counts of spanning out-forests. It turns out Q is a
scaled version of (I−αPT )−1, the central piece of our approach.
Details are relegated to the supplementary file due to space limit.

2.3 Analysis of Algorithm 1

Computational complexity: The complexity of Algorithm
1 is dominated by the cost of computing the affinity matrix A in
(4), which can be accomplished by solving the following linear
system

(I − αPT )A = Y.

For a general dense matrix P , the computational time is O(n3 +
n2K). This is e.g. about the same complexity of [19], one of
our main competing methods. Fortunately, P is usually a sparse
matrix in our context, which can be exploited to reduce the
computational time. There are many efficient solvers for large
sparse linear systems, including both direct [32], [33] and iterative
methods [34], [35]. In our implementation, we adopt the direct
solver UMFPACK [32] which exists as a built-in routine (for LU,
backslash, and forward slash functions) in MATLAB. The specific
complexity depends on the size (n), the number of non-zero
entries and the sparsity pattern of P , which remains a challenging
task to provide a tighter complexity measure dedicated to our
context. Nevertheless, our approach is practically much more

efficient comparing to state-of-the-art methods including [19], as
is empirically verified in experiments.

Error Bound Based on Transductive Rademacher Com-
plexity: A data-dependent generalization error bound is provided
for the proposed algorithm, where we focus on the binary-class
case for the sake of simplicity. The bound provided by our analysis
is built on top of the work of [36] on transductive Rademacher
complexity.

We start by reformulating our algorithm (4) as an equivalent
representation

h = Eŷ = (I − αPT )−1ŷ, (9)

where ŷ is the initial label vector with partial labels ŷi ∈ {±1}
for vi ∈ Vl, and ŷi = 0 otherwise. The obtained h is the “soft”
label vector with hi being the ”soft” label for node vi, which will
be assigned with class label sign(hi) when making predictions 3.
We denote byHout the set of feasible soft label vectors generated
by our algorithm (9). Since there are l labeled nodes, it follows
that

Hout ⊆ H :=
{
h
∣∣∣ h = (I − αPT )−1ŷ, ‖ŷ‖2 ≤

√
l
}
, (10)

which naturally admits a vanilla unlabeled-labelled representation
proposed in [36]. We proceed with the definition of transductive
Rademacher complexity.
Definition 3. [36] Let F ⊆ Rn and p ∈ [0, 1/2]. The transductive

Rademacher complexity of F with parameter p is defined as

Rl,n(F , p) :=

(
1

l
+

1

n− l

)
Eσ

[
sup
f∈F

σT f

]
, (11)

where σ = (σ1, · · · , σn)T is a vector of i.i.d. random
variables such that

σi :=


1, with probability p,
−1, with probability p,
0, with probability 1− 2p.

(12)

Different from inductive Rademacher complexity [37], the
transductive complexity does not depend on any underlying
distribution. Besides, for any label vector h, define the test
error as Ll,n(h) := 1

n−l
∑n
i=l+1 `(hi, yi) with respect to its

0/1 loss function ` satisfying `(hi, yi) = 1 if hi 6= yi and
`(hi, yi) = 0 otherwise, and define the empirical error of h
as L̂l,n(h) := 1

l

∑l
i=1 `(hi, yi). Based on the aforementioned

transductive Rademacher complexity, in what follows we present
our risk bound and relegate the proof to the supplementary file due
to space limit.
Theorem 4. Let Hout be the set of feasible soft label vectors gen-

erated by applying (9) to all possible sample set {(vi, yi)}ni=1.

3. We should remark that predictions made in this way are exactly the same
as the predictions made by Algorithm 1 in the binary case. Let I1 and I2
denote the index sets of labeled data from classes 1 and 2, respectively, it
follows that Yi1 = 1 if i ∈ I1, Yi2 = 1 if i ∈ I2 and Yij = 0 otherwise;
ŷi = 1 if i ∈ I1, ŷi = −1 if i ∈ I2 and ŷi = 0 otherwise. Then, from
equations (4) and (9) we have

A =

∑
i∈I1

E:i

∑
i∈I2

E:i

 and h =
∑
i∈I1

E:i −
∑
i∈I2

E:i,

which implies that for 1 ≤ i ≤ n

sign(hi) = arg max
k∈{1,2}

aik.
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Let c0 :=
√

32 ln(4e)/3, q := 1/l + 1/(n − l) and
s := n

(n−1/2)(1−1/(2 max(l,n−l))) . For any δ ∈ (0, 1), with
probability 1− δ over random draws of sample {(vi, yi)}ni=1,
for all h ∈ Hout,

Ll,n(h) ≤L̂l,n(h) +

√
2l

n(n− l)
‖(I − αPT )−1‖2F

+ c0q
√

min(l, n− l) +

√
sq

2
ln

1

δ
, (13)

It is easy to see that when l → ∞ and (n − l) → ∞,
s → 1. Then the convergence rate is determined by the slack
terms c0q

√
min(l, n− l) +

√
sq
2 ln 1

δ , which is in the order of

O
(

1√
min (l,n−l)

)
. So far we provide an transductive Rademacher

bound for the binary scenario. In addition, a transductive bound
based on PAC-Bayes is also provided in what follows for general
multiclass setting where binary classification can be regarded as a
special case. It is known that the first bound is tighter but more
focused on binary classification, while the PAC-Bayes bound is
more general.

PAC-Bayesian Transduction Bound: In this part we present
a PAC-Bayesian bound for Algorithm 1. The error bound pre-
sented in the next theorem is an adaptation of the PAC-Bayesian
bound for general transductive learning developed in [38]. It
mainly shows that the test error can be upper bounded by the em-
pirical error plus some complexity term. Due to space constraint,
the proof is in the supplementary file.

Theorem 5. Let L̂l,n(h) and Ll,n(h) be the empirical error and
test error, respectively, defined the same as in the previous
section with respect to the 0/1 loss function `. Then, for any
deterministic classifier h determined by our Algorithm 1 and
any δ ∈ (0, 1), with probability at lest 1 − δ over random
draws of Vl from V , the following bound holds

Ll,n(h) ≤L̂l,n(h)

+

√
1

2(1− l
n )

(
ln
n

l
+

1

l
ln
C(l, n)

δ
+ ln(Ke)

)
,

(14)

where C(l, n) = (
√

2 ln l + 8)
√
l(1− l

n ) and e is the base
of the natural logarithm.

Notice that when βl ≤ l/n ≤ βu for any constant βl, βu
satisfying 0 < βl ≤ βu < 1 (e.g., l/n = β0 the number of
labelled sample is a constant proportion of the number of full
sample), the complexity term (i.e., the second term on the right-

hand side of (14)) converges to

√
ln(Keβl

)

2(1−βu) as n → ∞, which

means that in such a case the test error Ll,n(h) will not excess
the empirical error L̂l,n(h) by a constant value.

3 EXPERIMENTS

Our approach is empirically evaluated in various applications,
including citation problems, UCI datasets, social network prob-
lems [39], as well as a relatively unconventional problem: the
retinal blood vessel tracing problem. For the citation problem
three datasets are employed: CoRA [9], CiteseerX [9], and US
Patent [40]. We also conduct experiments on three UCI datasets:

COIL20 [41], TDT2 4, and 20Newsgroups [42]. For social net-
work we consider the Google+ and the Twitter datasets of [39],
where the goal is to identify the social circles of individual users.
Finally, the tracing problem involves three datasets: a synthetic
dataset, as well as DRIVE [3] and STARE [1]. Our approach is
also compared with 12 state-of-the-art methods that directly work
with directed graphs:

• Network-only Bayes Classifier (NBC) [43].
• Network-only Link Based classifier (NLB) [44].
• Class Distribution Relational Neighbor classifier

(CDRN) [9].
• Weighted Vote Relational Neighbor classifier

(WVRN) [9].
• Digraph variant of the Commute Time Kernel classifier

(CTKd) [11].
• Regularized Commute Time Kernel classifier (RCTKd)

[11].
• Symmetrized Graph Laplacian (SGL) [19].
• Zero-mode Free Laplacian (ZFL) [10].
• Sum Over Path covariance kernel (SOP) [20].
• Biased Discriminative random Walks (bDWalk) [45], [46].
• Bounded normalized random walk with restart (bN-

RWR) [45].
• Approximate normalized, regularized, Laplacian

(aNRL) [45].

Out of these methods, four (NBC, NLB, CDRN, and WVRN)
are implemented by NetKit [9] in Java, SOP [20] is obtained
from the authors, while other methods (CTKd, RCTKd, SGL,
ZFL, bDWALK, bNRWR, aNRL, and Ours) are implemented by
ourselves in MATLAB. Note that the original Commute Time
Kernel classifier (or CTKu) only works with undirected graphs.
To work with digraphs, we instead replace its original undirected
graph Laplacian with the symmetrized digraph Laplacian of [24].
As a result, this variant is referred to as CTKd in this paper. To
ensure fair evaluations, the internal parameters of the comparison
methods are either set to as is from the authors’ original source
code, or as suggested by their respective authors: For example,
according to [19], the regularization parameter is set to 0.1 and the
jumping factor used in teleporting random walk is set to 0.01 for
SGL. In particular, for the four methods implemented by NetKit,
the uniform local-classifier is used as the “local” model, and for
collective inference relaxation labeling has been used for NBC,
CDRN, and WVRN, while iterative classification is used for NLB.
This setting is reported to deliver the best performance in [9].
For each of bNRWR and aNRL, there are two tuning parameters
α ∈ (0, 1) denoting the probability that the random walker contin-
ues the walk and τ ∈ N denoting the maximum walk length. Fol-
lowing [45], we use 5-fold cross-validation to search the optimal
parameters on the grid {0.1, 0.2, · · · , 0.9}×{21, 22, · · · , 25} on
all datasets except US patent, where we set α = 0.1 and τ = 4. 5

In term of evaluation metric, the micro-averaged accuracy
(AC) [47] is adopted in most of the experiments as the accuracy

4. NIST Topic Detection and Tracking corpus at http://www.nist.gov/speech/
tests/tdt/tdt98/index.html.

5. In [45], the authors only mentioned that they used cross-validation
to select optimal parameters without providing candidate values for each
parameters. The candidate sets used in our experiments are based on the fact
that α ∈ (0, 1) and observation that both bNRWR and aNRL converges within
10 iterations. On US patent dataset, since it takes prohibitively long time for
bNRWR and aNRL to conduct cross-validation, we use the parameters where
both methods perform well on other datasets.
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TABLE 1. Averaged CPU time (seconds) for all competing methods. “–” denotes the cases where the method either fails to compute a solution due to out of
memory or takes too long time to compute.

NBC NLB CDRN WVRN CTKd RCTKd SGL ZFL SOP bDWALK bNRWR aNRL Ours
CoRA 1.01 1.25 2.90 0.91 2.81 1.31 2.84 1.98 2.84e+4 2.84e+4 2.48 2.30 1.11e-2

CiteseerX 1.04 1.25 3.41 0.96 4.07 1.73 4.13 2.81 6.93e+4 6.93e+4 2.61 2.48 9.79e-3
US Patent 1.14e+3 – 1.10e+3 2.65e+2 – – – – – – 3.57e+4 3.22e+4 40.53
COIL20 3.48 1.95 6.65 1.13 0.36 0.15 0.35 0.30 1.76e+3 1.76e+3 3.28 2.61 1.52e-2
TDT2 1.60e+2 – 2.85e+2 3.95 50.71 12.99 52.10 42.44 – – 87.40 64.01 0.35

20Newsgroups 15.72 79.95 10.65 2.96 1.99e+2 42.07 2.08e+2 1.92e+2 – – 1.05e+2 92.13 2.38

measure, which is the sum of all true positive counts divided by
the total number of instances. For the social network applications
where there is a need to evaluate the partial correctness of
predicted labels in the multi-label setting, a modified version of
F1 score [48] is used:

F1 =
1

nk

∑
i,k

2|ỹ∗ik
⋂
zik|

|ỹ∗ik|+ |zik|
(15)

where ỹ∗ik and zik are predicted and true labels for the k-th label
of the i-th instance. For the vessel tracing problem, we employ the
DIADEM score (DS) [49] instead, which is a dedicated measure
widely used by the biological tracing community. An example is
provided in the supplementary file to illustrate how the DIADEM
score is computed.

3.1 Citation Problem

Paper citations naturally form a digraph and the aim here is
to predict a prescribed topic for each of the unlabeled papers
at hand, provided a few are labeled a priori. We first conduct
evaluations on CoRA [9] and CiteseerX [50]. The CoRA dataset
contains a citation digraph of 2,708 nodes and 5,429 directed links
(edges) on computer science research papers spanning 7 topics.
CiteseerX is another citation dataset of 3,312 papers and 4,732
citations (directed edges) from 6 categories. We also examine our
approach on a large-scale dataset, US Patent [40], which consists
of 13 million directed edges connecting 2.7 million nodes that
can be categorized into 418 distinct topics. For all three datasets,
the adjacency matrices are adopted as their corresponding weight
matrices.

To evaluate the system performance against varying size of
labeled nodes in digraphs, the following strategy is adopted: For
each of the K classes, certain percentage (i.e. label ratio, also
denoted as r) of instances (i.e. nodes) in this class is uniformly
selected as labeled nodes – this gives one empirical data sample.
This procedure is repeated 50 times to produce an averaged
performance estimate. We then vary the label ratio r from 10% to
90% with 10% increment, and compare the averaged performance
(AC) of competing methods as presented in the left column of
Fig. 2. Note that during these experiments, when the labeled nodes
are selected, the nodes with “zero-knowledge” components [9]
will be temporarily removed from consideration, as these nodes
that have no directed path connecting to any node in Vl. Moreover,
in TABLE 1 we present the averaged CPU time for each of the
competing methods: For US Patent dataset, the timing is averaged
over single runs of different label ratios, while for CoRA and
CiteseerX, the timing is instead averaged over all runs and all
label ratios, where there are 50 runs for each specific label ratio.

From the left column of Fig. 2, we observe that for CoRA and
CiteseerX datasets, our approach and bNRWR consistently outper-
forms the rest of competitors, and both approaches achieve quite

close accuracy. To clearly see the difference between bNRWR
and our approach, we included a zoom-in figure of Fig. 2 in the
supplementary file, where we see that bNRWR has slightly higher
accuracy than our approach. One reason is that bNRWR employs
cross-validation to select the optimal tuning parameter while our
approach does not. However, cross-validation makes bNRWR
much slower than our approach, as can be seen in TABLE 1. For
the remaining methods, WVRN becomes the third best method,
which is followed by CDRN and others, while CTKd, ZFL and
SOP often produce the least favorable results. For US patent
dataset our approach performs consistently the best and with a
very significant advantage comparing to the others across different
labeling ratios. Note the performance of SGL, a closely related
method of ours, is almost at the lower end of the middle regime
of performers. We attribute this to the fact that both CoRA and
CitesserX are not very dense digraphs and their edge weights are
quite asymmetric, which seems to be difficult for SGL, as source
information is not well kept after utilizing teleporting Markov
chain as well as the symmetrized graph Laplacian [24]. Our results
are also aligned with existing evaluations 6, although the results
are not directly comparable due to the randomized nature when
sampling instances for each of the label ratios. In term of CPU
time as in TABLE 1, our approach consumes significantly less
time comparing to other methods, and is with a significant gap
from the second best, WVRN. On the flip side, bDWALK and
SOP are the most computational intensive of all, which is closely
followed by SGL. In particular, our approach is shown to be very
efficient when working with the large-scale US patent dataset,
where it takes merely around 40 seconds for our approach to make
predictions on this million-node dataset using a standard desktop.

3.2 kNN Graphs on UCI Datasets
The kNN graphs are often used in practical semi-supervised
learning tasks. As they are asymmetric by nature, they can be
regarded as digraphs. Therefore, we also evaluate our approach
on kNN graphs constructed from the well-known UCI datasets.
Directed edges of the kNN graphs are obtained as follows: There
is an edge from node xi to node xj if and only if xj are among the
k = 5 nearest neighbors of xi. The weight of the assigned edge is
given byWij = exp

(
−‖xi−xj‖2

2

)
. Three directed graphs are thus

obtained from three UCI datasets as follows: The kNN graph of
COIL20 consists of 1,440 nodes from 20 classes and 7,200 edges.
The kNN graph of TDT2 contains 10,212 nodes from 96 classes
and 49,495 edges. The kNN graph of 20Newsgroups includes
18,846 nodes from 20 classes and 91,690 edges. Similar to the
previous subsection, we evaluate all methods on the above kNN
graphs with label ratio r varying from 10% to 90%. Experimental
results are presented in TABLE 1 and the second column of Fig. 2.

6. E.g. Fig. 6 of [9] on CoRA where the best performer delivers around
0.8–0.9 by varying the label ratios.
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Fig. 2: Accuracy comparisons on three UCI datasets as well as the citation benchmarks including CoRA, CiteseerX, and US Patent. Here the micro-averaged
accuracy (AC) is adopted as the evaluation metric. The first column presents results on CoRA, CiteseerX, and US Patent, while the second column shows results
on UCI datasets COIL20, TDT2, and 20Newsgroups. In all plots, the horizontal axis denotes the label ratio (percentage of labeled nodes) varying from 10% to
90% with 10% increment. See text for details.

Our approach again achieves the best accuracy and outperforms
the competitors by a large margin in terms of computational time,
which is consistent with what we have already observed for the
citation problem.

3.3 Social Network Application
It is a non-trivial task to identify social circles in social networks.
Usually such a problem involves many different labels (circles)
and is of large size. In particular, we consider the problem of
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Fig. 3: Comparisons of F1-Score on the multi-label problem of Google+ and Twitter datasets. In both plots, the horizontal axis denotes the label ratio (percentage
of labeled nodes) varying from 10% to 90% with 10% increment. See text for details.
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Fig. 4: Empirical time-complexity of batch update (3) vs. online updates (7) and (8) of the fundamental matrix E. (A) and (B) show the CPU-time (log-seconds)
of batch update vs. online update for changing one row using (7), and for inserting / deleting a new node with (8), respectively. See text for details.

identifying 327 social circles in the Google+ dataset, and 3,127
social circles in the Twitter dataset. Both datasets are from [39].
The Google+ dataset consists of a graph with 1.4 million nodes
and 30 million directed edges belonging to 133 users. As only
part of the nodes have ground-truth labels, those nodes with
no label information are trimmed away – we are thus left with
19,327 nodes and 3,294,465 directed edges. Similarly, the Twitter
dataset has 81,306 nodes and 2.4 million directed edges from
1,000 users. After removing nodes with no label information,
we obtain a digraph with 19,270 nodes and 490,667 directed
edges. For experimental evaluation, the label ratio r is varied
from 10% to 90% with 10% increment, and the F1 score in (15)
is computed. NBC, NLB, CDRN and WVRN are only able to
work with single-label classification problem. In the meantime,
the teleporting random walks introduced in SGL tends to wash
away weak signals, which seems to significantly deteriorate the
performance over all label ratios. As a result, our approach are
compared with three methods: CTKd, ZFL and SOP, as presented
in Fig. 3. Our approach clearly outperforms other three state-of-
the-arts by a very large margin in both datasets. For the Google+
dataset, ours produces a series of increasing F1-scores of 0.7–
0.95 with the increment of label ratio r, where ZFL and SOP are
the best runner-ups with combined best performance of merely
0.25–0.65 during the same range of r. CTKd seems to perform
least well. These phenomena are similarly observed for the Twitter
dataset. The gap of performance in the comparison methods seems
to be attributed to the combined influences of large label size and
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Fig. 5: Averaged absolute difference between online and batch updates. The
red and the blue curves show the average difference for changing one row
using (7), and for inserting/deleting a new node with (8), respectively.

large data size (In US patent dataset we also observe a rather
significant margin between our approach and the best runner-up).
The superior performance of our approach, on the other hand,
suggests that our approach is particularly reliable when dealing
with large-scale graphs with many labels.

3.4 Empirical Time-complexity of Batch vs. Online Up-
dates

Here we focus on the dynamic graph scenario where a small
fraction of the digraph structure might change over time, being
either changing a single edge weight, or inserting/deleting a single
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(a) CoRA (b) CiteseerX

Fig. 6: Comparison with state-of-the-art methods based on undirected graphs.

node. In our context, this boils down to efficient computation of
the fundamental matrix E. Our approach is capable of addressing
these changes in E, as presented in (7) and (8) for online
updates, as well as in (3) for batch update. Ideally, the online
updates are expected to be carried out more efficiently and the
results should be the same as of batch update. To show this, we
design the following synthetic experiments: The weight matrix
of a sparse digraph of size n is randomly generated with its E
matrix computed. This is followed by either changing a single
edge weight, or inserting/deleting a single node from the digraph,
which subsequently gives E′. Its online update is then computed
by (7) or (8), and the batch update is computed by (3). The
above process is repeated 20 times, for each of the following four
different digraph sizes, namely n ∈ {10, 100, 1000, 10, 000}, and
the median running time is displayed in Fig. 4(A) and (B). Note
that this comparison is not entirely fair as the implementation set-
up is less favorable for the online update: To compute (3) for
batch update, the MATLAB implementation of UMFPACK direct
solver is highly optimized and runs on multiple cores, while our
implementation of the online updates, namely (7) and (8) are in
MATLAB script as is (without any optimization). Nevertheless,
as presented in Fig. 4 the online update runs always an order of
magnitude faster. Besides, the numerical difference between batch
and online updates is negligible in practice. As displayed in Fig. 5,
on average the absolute difference value is always below 10−5 in
the above mentioned experiments. In addition, this numerical error
decreases dramatically with the increase of digraph sizes.

3.5 Comparison with Undirected Graph Based Meth-
ods
So far we have compared our approach to a number of methods
that can directly work with digraphs. One may still wonder how
conventional undirected graph based methods would perform in
our context. For this purpose, we compare our approach with two
state-of-the-art such methods, namely the Learning with Local
and Global Consistency (LLGC) method in [15] and the original
Commute Time Kernel classifier (CTKu) [11], both operate on
undirected graphs. We also compare with UG, introduced in
Section 2.2 and Appendix A, which has been shown to be a special
case of our approach when graphs are undirected. The comparison
is conducted on CoRA and CiteseerX, where we construct undi-
rected graphs via assigning an edge if there is at least one link
between two nodes, regardless of the linking direction. Results are
presented in Fig. 6 when the label ratio varies from 0.1 to 0.9. In
the figure, ‘Ours’ denotes results of our approach on the original
directed graphs. From Fig. 6, we observe that our approach has
the best overall performance, followed by UG and LLGC. In
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Fig. 7: Robustness of our system vs. changing α values between .01 and
.99. (A) For CoRA and CiteseerX, the performance or our system is rather
stable (with around .001 variation) when α is within .01 and 0.9, and start to
decrease slightly (around .01 variation) when α value goes beyond .9. (B) The
performance remains stable in vessel tracing problems.
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Fig. 8: Robustness of our system with respect to varying label ratio. The error
bar of each labeling ratio (r) displays 5 – 95 percentile of accuracy when α
values are systematically sampled between .01 and .99 with an .01 increment.
The narrow deviations from median as shown in the error bar (usually less
than 2%) clearly suggest that our system is rather stable against changes of α
values.

addition, our approach performs better than UG which only work
on undirected graphs, especially when r is large. This implies that
incorporating directionality of graph into our approach improves
the performance. Moreover, our approach outperforms CTKu by a
large margin on both datasets, and maintains a clear performance
advantage of about 10% over LLGC on CoRA dataset.

3.6 The Effect of α

We also provide empirical analysis to study the effect of varying
α value to the performance of the proposed system: As presented
in Fig. 7, the empirical performance across a wide range of
applications is relatively stable against changing α values, espe-
cially during the range of .09 to .25. This observation is further
confirmed in Fig. 8 with varying label ratios, where different α
values usually result in less than 2% variations in its performance.
The insensitive pattern of α is experienced throughout empirical
experiments. This motivate us to simply fix α to certain value
(0.1) during the rest of experiments. We note in the passing that
performance degradation is to be expected when α taking extreme
values being too close to either 0 or 1, since which renders E to be
too close to either the identity matrix or an ill-conditioned matrix,
respectively.

3.7 Retinal Blood-vessel Tracing

In vessel tracing, our approach is evaluated in synthetic
datasets [51], as well as two standard testbeds, DRIVE [3] and
STARE [1]. The synthetic dataset is constructed in house that con-
tains 17, 000 synthesized retinal images with varying densities of
retinal blood vessels (which strongly correlate with the frequency
of cross-over occurrences among vessel branches). Meanwhile,
DRIVE dataset contains 40 retinal fundus images, and STARE
has 20 fundus images. Exemplar images of the three datasets are
plotted in the first column of Fig. 11. Detailed protocol for creating
the synthetic retinal images can be found in [51].
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(A) (B) (C)

Fig. 9: Preprocessing of retinal blood vessel tracing. (A) An input image
from DRIVE. (B) Binary image after segmentation. (C) Image after skeleton
extraction and optical disk removal. The red elliptical area in (A) and (B) is
the optical disk. The red dots in (C) are tips of the root segments identified as
those directly contacting the optical disk. Note that each root segment induces
a distinct vessel tree from the graph with itself being the tree root, due to the
nature of blood flow in vessels.
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Fig. 10: From skeleton to digraph. (A) A exemplar skeleton map. (B) Its
digraph G. The highlighted zone of nodes are shown as an example where the
corresponding directed subgraph is formed. The segments marked with red and
blue dots at their tips are the root segments, with each being regarded as the
labeled node for its class. In other words, each class (corresponds to a vessel
tree) has exactly its root node labeled, which corresponds to a source node in
graph.

The problem of vessel tracing is to trace blood vessels by sep-
arating them into disjoint vessel trees, each starting from a unique
root segment within the optical disk. The major difficulty here is
to resolve the challenging cross-over issues that are abundant in
the retinal datasets. This problem can be cast into a digraph-based
transduction problem after the following preprocessing steps:
i) Segmentation: As illustrated in Fig. 9 (A)→(B), an input retinal
image is segmented into a binary image, with vessel pixels being
foreground and the remaining as background.
ii) Skeleton map: Build a skeleton map from the binary image,
and remove the optical disk area as marked within red ellipse in
Fig. 9(C). The tips attached to the removed optical disk are the tips
of root segments, which are presented as color dots in Fig. 10(A).
iii) Skeleton to digraph: A segment is defined in the skeleton as
the group of connected pixels that ends in either a junction or a
tip. This segment corresponds to a node in the resulting digraph,
as shown in Fig. 10(A)→(B). Two nodes are then linked with a
directed edge if the two coinciding segments from the skeleton
map contact and satisfy the ordering criteria of [51].

This produces a digraph as shown in Fig. 10(B), where
red-colored and blue-colored nodes corresponding to the root
segments in skeleton map are labeled with distinct class labels,
each for one particular vessel tree. The task is to propagate class
labels (tree ids) to unlabeled nodes. As reported in TABLE 2,
overall our approach consistently outperforms other methods by a
margin. It is followed by ZFL, SGL, and NBC, while WVRN
and SOP tend to produce least accurate predictions. ZFL also
performs reasonably well on vessel tracing problems, which is
however cumbersome when dealing with large matrices, as it
requires to work with (and even invert) dense matrices. Note the

SGL method here is employed as the learning engine in [51] which
is the state-of-the-art in this task. Exemplar images and results
are also presented in Fig. 11 for visual inspection. It suggests that
empirically our approach delivers visually plausible tracing results
when compared to the ground-truths side-by-side, and errors occur
at those challenging spots that are often also difficult for human
observers.

3.8 Analyzing Discriminative Ability of Our Approach

Further, we compare the intra- and inter-class accumulated affinity
scores over different datasets, which offers an empirical explana-
tion for the discriminative ability of our approach. The results
displayed in Fig. 12 are obtained as follows: For each non-zero
(i, j)-th entry in E there is a directed path connected both nodes.
Now group all entries in E into two sets: Those with both nodes
belonging to the same class (i.e. intra-class), and those each of
which is from a different class (i.e. inter-class). Then accumulate
the scores within each set and normalize – which produces the
final scores. The intra-class score is expected to outnumber the
inter-class one, and the larger the gap (or ratio) between the
two suggests a better discriminative ability on the particular
dataset. As revealed in Fig. 12, the ratios are all very large across
various datasets used in this paper, which indeed suggests that our
algorithm is expected to deliver good performance regardless of
any particular set of input labels.

4 CONCLUSION AND OUTLOOK

A novel random walk approach is proposed on digraphs that is able
to preserve edge directions and is shown to perform competitively
against the state-of-the-art methods. For future work, we plan
to explore broader scope of applications, to generalize to work
with problems with structured labels, as well as to investigate its
potentials in spectral clustering on digraphs.
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APPENDIX

PROOF OF PROPOSITION 1
Proof We know [23] that the fundamental matrix of Q̃ is
E =

∑∞
t=0Q

t, and are left to show that (I − αPT )−1 exists,
and E = (I − αPT )−1. (I − αPT )−1 exists, since its spectral
radius ρ(P ) defined as the absolute value of its largest eigenvalue
is always 1, and α < ρ(P )−1 since α ∈ (0, 1). we also have
Q∞ = (αPT )∞ = 0 and the series I + Q + Q2 + . . . will
converge to (I − αPT )−1.

PROOF OF PROPOSITION 2
Proof (i) We focus only on the change in qij . The difference
between Q and Q′ is given by

Q′ −Q = ∆qijεiε
T
j ,
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TABLE 2. Average DIADEM scores (DS) are reported for the synthetic dataset, as well as the widely used DRIVE and STARE testbeds.

NBC NLB CDRN WVRN CTKd SGL SOP ZFL Ours
Syn [51] 0.64 0.62 0.61 0.62 0.61 0.64 0.60 0.70 0.73

DRIVE [3] 0.71 0.69 0.63 0.62 0.68 0.71 0.63 0.73 0.76
STARE [1] 0.33 0.29 0.27 0.25 0.30 0.38 0.22 0.39 0.41
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Fig. 11: Exemplar retinal tracing results on Synthetic dataset, DRIVE, and STARE. The first, second and third column shows the original images, ground-truth
images and tracing results of our approach, respectively. Segments with the same color form a distinct vessel tree. Thus the number of colors equal to the number
of classes (vessel trees). Selected correct (wrong) tracing segments are shown in green circles (red squares).
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Fig. 12: Empirical discriminative ability of our approach. Intra- and inter-
class accumulated affinities are displayed over different datasets. Intuitively
the larger the gap between intra- and inter-class, the better its performance
would be. See text for details.

where εi (εj) is a column vector with the i-th (j-th) entry being 1
and all other entries being 0. By the Sherman-Morrison-Woodbury

formula [52], we have

E′ =(I −Q′)−1 = (I −Q−∆qijεiε
T
j )−1

=(I −Q)−1

+
∆qij

1−∆qijεTj (I −Q)−1εi
(I −Q)−1εiε

T
j (I −Q)−1

=E +
∆qij

1−∆qijeji
E:iEj:,

which completes the proof of part (i).
(ii) The update of E is obtained by noting that

Q′ −Q = εi∆Qi:

and applying the Sherman-Morrison-Woodbury formula as in part
(i).

(iii) By the definition of E, we have

E′ =(I −Q′)−1 =

[
I −Q −u
−vT 1− q

]−1

=

[
(I −Q)−1 + γ(I −Q)−1uvT (I −Q)−1 γ(I −Q)−1u

γvT (I −Q)−1 γ

]
=

[
E + γ(Eu)(vTE) γ(Eu)

γ(vTE) γ

]
,

where γ = 1
(1−q)−vT (I−Q)−1u = 1

(1−q)−vTEu .
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CONNECTIONS TO GRAPH LAPLACIAN IN UNDI-
RECTED GRAPHS

Here we shown that when operating as random walks on undi-
rected graphs, our algorithm is equivalent to a scaled variant of
the graph Laplacian method of [15]. For an undirected graph
G, denote S = D−

1
2WD−

1
2 , and define P = WD−1, where

W = [wij ] is a symmetric matrix and D = diag(d1, · · · , dn),
with di =

∑
j wij . Now consider applying our algorithm (i.e. (4)

and (5)) on undirected graph G. Since

A = (I − αPT )−1Y = D−
1
2 (I − αS)−1D

1
2Y,

we have

D
1
2A = (I − αS)−1

(
D

1
2Y
)
.

Notice that since the goal is to choose the best element from the
current row i as in (5), the result will not change by multiplying
an additional constant d

1
2
i to all elements in the row. Define Â :=

D
1
2 A, and let Ŷ := D

1
2Y we now have

Â = (I − αS)−1Ŷ , (A.1)

which recovers the update formula of [15], with the only difference
that instead of Y , Ŷ is used here as a row-wise scaled variant. In
Section 3.5, we compare the method in (A.1), simply denoted as
UG, with other undirected-graph based methods.

CONNECTIONS TO PARTIALLY ABSORBING RAN-
DOM WALKS (PARW) [17]
The random walks considered in [17] deal with a special form of
absorbing Markov chains where the submatrix of its weight matrix
concerning transient nodes forms a symmetric non-negative matrix
with diagonal entries taking zero values. More formally, denote
this submatrix as

WP =


0 w1 2 · · · w1n

w2 1 0 · · · w2n

· · · · · · · · · · · ·
wn 1 · · · wnn−1 0

 ,
which is a n×n symmetric non-negative matrix with zero diagonal
values. Let ΛP = diag(λ1, · · · , λn) with λi > 0 ∀i, and
define λP = vec(ΛP ), where the operator vec(·) extracts the
diagonal elements of the input matrix to produce a column vector.
The weight matrix of the PARW family proposed in [17] can
be regarded as an extended matrix of WP by introducing an
additional absorbing node, as

W̃P =

(
WP λP

0 1

)
,

with 0 here referring to a 1 × n vector of zero values. Define
the degree matrix DP = diag(d1, · · · , dn) with each element
computed as the sum of the corresponding row of WP , di =∑
j wi j . denote the (sub-) graph Laplacian LP = DP − WP ,

and let PW = (ΛP +DP )−1WP , and Pλ = (ΛP +DP )−1ΛP .
At this point, we are ready to obtain the probability transition
matrix:

P̃P =

(
PW vec(Pλ)
0 1

)
,

which is exactly the same form as of Q̃ defined earlier in
Equation (1) of our approach. Note that the random walks con-
sidered in [17] is a special form of (1) with WP confined to
being a symmetric matrix with zero diagonal entries. Following
Proposition 1, its fundamental matrix becomes

EP =

∞∑
t=0

(
PW

)t
=
(
I − (ΛP + DP )−1WP

)−1

=
(
ΛP + LP

)−1(
ΛP + DP

)
.

It is interesting to observe that the absorption probability matrix,
AP , proposed and discussed in [17] can be related to EP as

AP =
∞∑
t=0

(
PW

)t
PΛ = EP

[(
ΛP +DP

)−1
ΛP
]
.

Interestingly, it corresponds to a special form of the absorbing
probabilities of the Markov chain (see e.g. Theorem 3.3.7 of [23]).
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