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Abstract. Microscopic cellular images segmentation has become an important
routine procedure in modern biological research, due to the rapid advancement
of fluorescence dyes and robotic microscopes in recent years. In this paper we
advocate a discriminative learning approach for cellular image segmentation. In
particular, three new features are proposed to capture the appearance, shape and
context information, respectively. Experiments are conducted on three different
cellular image datasets. Despite the significant disparity among these datasets,
the proposed approach is demonstrated to perform reasonably well. As expected,
for a particular dataset, some features turn out to be more suitable than others.
Interestingly, we observe that a further gain can often be obtained on top of using
the “good” features, by also retaining those features that perform poorly. This
might due to the complementary nature of these features, as well as the capacity
of our approach to better integrate and exploit different sources of information.

1 Introduction
Cellular images segmentation is an indispensable step for modern biological research,
and this is greatly facilitated by the recent development of fluorescence dyes and robotic
microscopes. A number of unsupervised segmentation methods [1], such as threshold-
ing, region-growing, watershed, level-set, and edge-based methods, have been devel-
oped to address this problem in scenarios where the foreground objects and the back-
ground regions have distinct color or textural properties. Many of these methods are
dedicated to specific problems where domain knowledge is heavily exploited by tun-
ing algorithmic parameters manually. This case-by-case approach could be very te-
dious. On the other hand, there are many images (such as in Figure 1) that turns to be
rather difficult for unsupervised approaches [1], partly due to the variations of specimen
types, staining techniques, and imaging hardwares. This leads to a recent development
in learning-based algorithms, including supervised levelset [10], support vector ma-
chines (SVMs) [9], as well as conditional random fields and variants [4]. while they
demonstrate that reasonable segmentation results can be produced for some difficult
cases, these methods are often still dedicated to certain type of microscopic images for
specific problems.

In this paper we propose a flexible learning framework for cellular image segmen-
tation, and we intend to show that it is possible to develop a more generic segmentation
framework that works effectively over a broader spectrum of microscopic images such
as those displayed in Figure 1. This is achieved by carefully integrating information
from both local and global aspects, as illustrated in Figure 2. In particular, three novel
features are proposed: (1) An appearance feature that integrates both color and texture



information; (2) A spoke feature that effectively encodes the shape of cellular fore-
ground objects; (3) Meanwhile the detection score is also used to exploit the strength
of object detection developed over the years in computer vision. Besides, a superpixel-
based coding scheme is devised to incorporate higher-order scene context.

(b)
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Fig. 1. Illustration of some difficult examples encountered in microscopic image segmentation.
These are crop-out examples from three cellular image datasets: (a) hand, (b) serous, (c) ssTEM.
Ground truth is shown in the inlet for each of the examples.

2 Our Approach
The flow chat of our approach is depicted in Figure 2. An image pixel is characterized
by a set of features describing various local aspects in its neighborhood, such as shape,
appearance, and context information. These pixel-based features are further pooled to
form one vector for a superpixel or oversegment [6]. Finally, a global discriminative
classifier is utilized to incorporate these superpixel-based shape, appearance, and con-
text features to produce a segmentation prediction for the input image.
Appearance feature: Unary & Binary Extensions of Color BoW model For a pixel
in color images, its RGB and YUV color values are combined to form a 6D vector. For
grayscale images, 1D intensity feature is used directly. As illustrated in the middle panel
of Figure 3, a visual Bag-of-Words (BoW) model with K codewords is built, and these
color vectors are thus mapped to the quantized space spanned by the codewords [11]. A
novel appearance feature is proposed here by integrating BoW model with local neigh-
boring information by means of unary/binary extensions: A unary extension partitions
the local neighbors into disjoint parts. One scheme is to partition into concentric lay-
ers, as displayed in Figure 3(a). By pooling the codeword assignments of these features
and normalizing to sum to 1, one partition is characterized by a histogram of length K
codewords. A length K × S vector is thus produced by concatenating over S partitions
(S = 3 in Figure 3(a)). Note that other partition schemes might also be possible.
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Fig. 2. An illustrative flowchart of the proposed approach. From a pixel of an input image, a set of
features is extracted to capture various aspects in its neighborhood, including appearance, shape,
and context information. A novel superpixel (over-segmentation) feature is devised to provide a
more compact signature and to incorporate higher-order scene context. These superpixel-based
features are fed to a global discriminative learning model to deliver a segmentation.

Meanwhile, a binary extension considers pairs of neighboring pixels, and similar to
the concept of co-occurrence matrix, accumulates the counts into a 3D array indexed by
(codewords, codewords, distance). Naively this leads to a vector of length K×K×S′,
by accumulating the quantized distance of every feature pair with S′ possible outcomes.
In practice it is further summarized into a more compact vector representation: For a
particular quantized distance, (a) a K-dim vector is extracted from the diagonal ele-
ments, and (b) a K-dim vector is obtained by summing over all the off-diagonal ele-
ments row-wise. For both cases the output vectors are normalized to sum to 1. As each
case ends up giving a K × S′ vector, a concatenation of both finally leads to a vector
representation of length 2K×S′. Our final appearance feature is thus produced by con-
catenating both unary and binary extensions. In this paper, we fix K = 100, S = 3, and
S′ = 3.
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Fig. 3. Unary and binary extensions. (a) A unary feature extension partitions the window into
concentric layers. By pooling the pixels’ codeword assignments in the BoW model (length K)
within each partition, a K × S length vector is produced as a concatenation of S histograms.
Each histogram of length K comes from one partition. (b) A binary feature extension. Each pair
of pixels in the window is used to accumulate the counts in a 3-dimensional array. Naively this
leads to a vector of length K × K × S′, for a quantized distance of S′ possible outcomes. In
practice it is further summarized into a more compact vector of length 2K × S′. Then unary and
binary extensions are concatenated together to form an appearance feature.



Shape feature: Multi-scale Spoke Feature as illustrated in Figure 4(a), for any lo-
cation in an image, its spokes are equally sampled in angular space and each reach
out until an edge is met. Determined by its local convexity (i.e. the orientation of its
signed curvature), the spoke will contribute to one of the three bins: +, 0, and -, that
encode the local shape as being convex, undecided, or concave, respectively. Therefore,
the spoke feature essentially encodes the local shape information from the direct object
boundaries surrounding this location, while being invariant to rigid transformation. As
cellular objects often possess convex shapes, this feature ideally provide sufficient dis-
crimination power to differentiate a location inside a cellular object from being outside.
On the other hand, a single edge map usually does not faithfully retain object bound-
aries of the image. To address this issue, we use Canny edge detector together with its
Gaussian smooth kernels at multiple scales. This gives rise to the multi-scale feature in
Figure 4(c). In practice, for a pixel, 9 spokes are used and the number of scales is set to
5. The elements in the histogram vector of each scale are also normalized to sum to 1.
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Fig. 4. (a) An illustration of the proposed spoke feature, (b) its usages in an edge map of the
image in Figure 2 on four image locations, and (c) a multi-scale spoke feature. Spokes are equally
sampled in angular space, and are further mapped into a histogram vector of three bins marked by
+, 0, and -, which denote locally convex, undecided, and concave, respectively. To alleviate the
issues introduced by edge detection, edge maps are extracted at multiple scales, and the associated
histograms are concatenated to form a multi-scale spoke feature. A common procedure in edge
(e.g. Canny) detectors is to convolve raw image with Gaussian kernel of certain width, which
is regarded as selecting a scale-space [8]. Multi-scale here refers to applying kernel of multiple
widths, leading to multiple edge maps. For a fixed image location, a multi-scale spoke feature is
obtained by concatenating the spoke feature vectors obtained over scales.

Context feature: Detection Score BoW model Object detection is usually regarded
as a separate problem from image segmentation, and thus dealt with by substantially
different techniques. Nevertheless, detection outputs possesses important information
about the locations and sizes of the foreground objects that can be utilized to help seg-
mentation. In addition, as generated through top-down schemes, the detection scores
carries context information over to pixel level. As shown in Figure 5(b), these bounding
box detections are overlayed onto a two dimensional space with each assigning its de-
tection score. This is treated as a separate channel of the input image. Then the context
feature is produced through a BoW model, similar to that of the color BoW model as
previously shown in the middle panel of Figure 3. Here the number of bins in the BoW
model is set to 4.
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Fig. 5. An input image and its context feature from detection scores.

Superpixel-based Feature An image is usually represented as a two-dimensional lat-
tice where each node corresponds to a pixel. However a pixel by itself contains limited
information. Alternatively, an image can be expressed as a general planar graph, and
each node is now a superpixel or oversegmentation [6]containing a set of nearby pixels,
usually obtained using an unsupervised segmentation. As depicted in Figure 2, for pix-
els within a superpixel, their features are pooled to form a higher-order feature vector
that describes the entire superpixel. Similarly, the output vectors are each normalized to
sum to 1. While providing a more compact feature representation, this superpixel-based
feature is also able to capture higher-order scene context.
Global Model and Postprocessing The discriminative learning method we have uti-
lized is a Structured Support Vector Machine (SSVM) [12], where the optimal assign-
ment problem is solved by the graph-cuts algorithm [2] that incorporates both node
and edge energies to ensure local and global compatibilities. The proposed features are
concatenated as a long feature vector used for the node energy; While our edge energy
adopts a simple Ising model [2]. Similar to [13], our postprocessing step utilizes dis-
tance transform and generalized Voronoi diagram, to remove tiny segments and separate
those lightly touched objects.
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Fig. 6. Sample experimental results on the three datasets.



3 Experiments
Image Datasets Three images datasets are used during the experiments, where for each
dataset, half of the images are used for training and the rest images are retained for test-
ing purpose. The hand dataset contains images of hand nerve endings harvested from
fresh frozen adult human cadavers. They are preserved in gluteradehyde and refridger-
ated, then embedded in liquid wax to form a block to facilitate microtome sectioning of
the specimen perpendicular to the longitudinal axis of the axons. They are then stained
with methylene blue and photographed using a light microscope to facilitate the pro-
cess of histomorphometry. They are further partitioned into 24 smaller images of sim-
ilar sizes, with ground-truth provided for nerve endings. To study the drosophila first
instar larva ventral nerve cord (VNC), the ssTEM dataset is generated, which has 30
images[3] 4 taken from a serial section Transmission Electron Microscopy (ssTEM),
with image resolution 4x4 nm/pixel. Ground-truth annotations are provided for mito-
chondria. Finally, the serous dataset [7] contains 10 microscopic images 5 from serous
cytology. Ground-truth annotations are provided for cell nuclei.
Performance Evaluation Performance of a cellular segmentation method is often
quantitatively assessed by two types of metrics: those of pixel-based and those of object-
based. We follow the PASCAL VOC evaluation criteria [5]: For pixel-level, we directly
adopt the criteria of its image segmentation task [5]. The metric for object-level evalua-
tion is an adaptation of the criteria used in its object detection task [5]. For Pixel-based
Evaluation , a common accuracy measures the average percentage of pixels being cor-
rectly classified for both foreground and background classes. This metric however can
be misleading when class distribution is unbalanced, e.g. when the dataset contains
fewer foreground object pixels and a larger percentage of background pixels (the ssTEM
dataset). To rectify this issue, the PASCAL image segmentation task advocates to com-
pute the accuracy as (Eq.(4) of [5]) TP

TP+FN+FP
6. For object-level Evaluation , object-

based image segmentation can be considered as a special object detection task, where
in addition to location and scale, it also demands the detailed shape of a foreground ob-
ject. Following the object detection task of PASCAL [5], we use an intersection/union
ratio to determine a correct object-level match: Given a pair of objects consisting of
a prediction area Op and a ground-truth Ogt, there exists a match if the overlap ratio,
area(Op∩Ogt)
area(Op∪Ogt)

exceeds a threshold t, where ∩ denotes the intersection, and ∪ the union. t

is set to 0.5 as in [5]. Similarly we define object-level accuracy as TP
TP+FN+FP .

Experiments Throughout the experiments, the unsupervised method of [6] is used to
partition an image into superpixels, and the C value of the linear SSVM [12] is fixed to
100.

As expected, a multi-scale shape feature leads to improved performance, when com-
paring to its single-scale counterpart. This is demonstrated in hand dataset, where the
pixel- (and object-) level accuracy is around 68% vs. 51% (and 76% vs. 73%), when
a multi-scale shape feature is compared to a single-scale one. We also observe that no
single feature excels in all datasets. For example, the appearance feature dominates the

4 The dataset is downloaded from http://www.ini.uzh.ch/˜acardona/data/tifs.tar.bz2.
5 The dataset is downloaded from http://users.info.unicaen.fr/˜lezoray/databases/SerousDatabase.zip.
6 TP, TN, FP, and FN refer to True Positive, True Negative, False Positive and False Negative,

respectively.



Dataset Brief Description Pixel Acc. Obj. Acc.

appearance 45.06% 10.01%
shape 51.14% 15.37%

ssTEM context 72.03% 56.25%
three features 75.07% 64.71%

appearance 78.18% 82.07%
shape: only single-scale 51.16% 73.33%

hand shape 68.02% 75.69%
context 74.46% 83.06%
three features 79.05% 85.10%
dedicated unsupervised seg. 56.99% 50.85%

appearance 83.91% 81.43%
serous shape 71.61% 64.07%

context 65.15% 47.60%
three features 85.11% 83.98%
dedicated unsupervised seg. 62.92% 38.28%

Table 1. Comparisons of pixel- & object- level accuracy.

performance for the serous dataset, while it works less well in the hand dataset, and
leads to the worst results for the ssTEM dataset. Meanwhile, it is mostly preferable to
consider all the complementary features. Since our discriminative learning approach is
able to perform an implicit feature selection, through learning it usually allocates higher
weights to the “good” features. Interestingly, even when some features fail or perform
less well when being used alone, a further gain can usually be obtained by retaining
those features: Empirically this phenomenon is observed for all three datasets. Con-
sider the ssTEM dataset for example, by employing the best (context) feature, a pixel-
(object-) level performance of about 72% (56%) is attained; which is much better than
considering the other two features where the corresponding results are merely no more
than 51% (15%). However, when considering all three features jointly, the performance
is further improved to 75% (65%). We think this might be attributed to the complemen-
tary nature of these features.

As a comparison method, a state-of-the-art dedicated unsupervised Segmenter [13]
has been implemented. This method contains a few steps including noise removal,
Gaussian smoothing, and thresholding based on the color histogram. After converted
to binary images, distance transform is applied, and object centers are detected by seed
finding. Then the generalized Voronoi diagram is applied to separate the touching ob-
jects. Unfortunately we can not produce a reasonable result for ssTEM dataset using the
method of [13], despite significant effort in tuning the internal parameters. We specu-
late this is because the mitochondria objects are not sufficiently distinct in any of the
color channels. Notice for each of the datasets, the internal parameters are manually ad-
justed to attain best performance. Nevertheless, as demonstrated in Table 1, this method
performs considerably inferior to those from our approach.

We also compare our results to those of [7], which describes a supervised method
combining pixel classifier and watershed, and has its results on the serous dataset: This
method reports an accuracy of 93.67% when a K-means RGB is used, and 96.47% if
a Bayes RGB is deployed instead. Note [7] uses the traditional pixel-level accuracy,
as the average percentage of pixels being correctly classified for both foreground and



background classes. Meanwhile our approach on serous dataset achieves a better result
of 98.12% under this evaluation criteria (85.11% under our evaluation criteria). Note
that for serous dataset the overall class distributions are 7% for the nuclei pixels and
93% for the background pixels. As explained previously, these scores therefore tend to
be saturated and more biased toward the background class.
4 Conclusion and Outlook
A learning-based segmentation approach is proposed to work with a broad spectrum
of microscopic images. To achieve this, three complementary features are devised and
incorporated to provide a fused result. Experiments are conducted on three notably
different datasets. As expected, for a particular dataset, certain features turn out to be
more suitable than others. An interesting observation from empirical evaluations reveals
that in our approach, a further gain can be obtained by retaining those features that
will perform less favorably if being used as the sole input. This might be attributed to
the complementary nature of these proposed features, as well as the capacity of our
approach to integrate different features toward a better segmentation result. For future
work we plan to evaluate our approach on more microscopic datasets.
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