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Series Preface 

Mathematics is playing an ever more important role in the physical and biological 
sciences, provoking a blurring of boundaries between scientific disciplines and a 
resurgence of interest in the modern as well as the classical techniques of applied 
mathematics. This renewal of interest, both in research and teaching, has led to 
the establishment of the series: Texts in Applied Mathematics ( TAM). 

The development of new courses is a natural consequence of a high level 
of excitement on the research frontier as newer techniques, such as numerical 
and symbolic computer systems, dynamical systems, and chaos, mix with and 
reinforce the traditional methods of applied mathematics. Thus, the purpose of 
this textbook series is to meet the current and future needs of these advances and 
encourage the teaching of new courses. 

TAM will publish textbooks suitable for use in advanced undergraduate 
and beginning graduate courses, and will complement the Applied Mathematical 
Sciences (AMS) series, which will focus on advanced textbooks and research level 
monographs. 
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Preface 

This book is about dynamics-the mathematics of how things change in time. 
The universe around us presents a kaleidoscope of quantities that vary with time, 
ranging from the extragalactic pulsation of quasars to the fluctuations in sunspot 
activity on our sun; from the changing outdoor temperature associated with 
the four seasons to the daily temperature fluctuations in our bodies; from the 
incidence of infectious diseases such as measles to the tumultuous trend of stock 
prices. 

Since 1984, some of the vocabulary of dynamics-such as chaos, fractals, 
and nonlinear-has evolved from abstruse terminology to a part of common lan­
guage. In addition to a large technical scientific literature, the subjects these terms 
cover are the focus of many popular articles, books, and even novels. These pop­

ularizations have presented "chaos theory" as a scientific revolution. While this 
may be journalistic hyperbole, there is little question that many of the important 

concepts involved in modem dynamics-global multistability, local stability, sen­
sitive dependence on initial conditions, attractors-are highly relevant to many 
areas of study including biology, engineering, medicine, ecology, economics, and 

astronomy. 



X PREFACE 

This book presents the main concepts and applications of nonlinear dy­
namics at an elementary level. The text is based on a one-semester undergraduate 
course that has been offered since 1975 at McGill University and that has been 
constantly updated to keep up with current developments. Most of the students 
enrolled in the course are studying biological sciences and have completed a 
year of calculus with no intention to study further mathematics. Since the main 
concepts of nonlinear dynamics are largely accessible using only elementary ar­
guments, students are able to understand the mathematics and successfully carry 
out computations. The exciting nature and modernity of the concepts and the 
graphics are further stimuli that motivate students. 

Mathematical developments since the mid 1970's have shown that many 
interesting phenomena can arise in simple finite-difference equations. These are 
introduced in Chapter 1, where the student is initiated into three important 
mathematical themes of the course: local stability analysis, global multistability, 
and problem solving using both an algebraic and a geometric approach. The 
graphical iteration of one-dimensional, finite-difference equations, combined 
with the analysis of the local stability of steady states, provides two complementary 
views of the same problem. The concept of chaos is introduced as soon as possible, 
after the student is able graphically to iterate a one-dimensional, finite-difference 
equation, and understands the concept of stability. For most students, this is the 
first exposure to mathematics from the twentieth century! 

From the instructor's point of view, this topic offers the opportunity to 
refresh students' memory and skills in differential calculus. Since some students 
take this course several years after studying geometry and calculus, some skills 
have become rusty. Appendix A reviews important functions such as the Hill 
function, the Gaussian distribution, and the conic sections. Many exercises that 
can help in solidifying geometry and calculus skills are included in Appendix A. 

Chapters 2 and 3 continue the study of discrete-time systems. Networks and 
cellular automata (Chapter 2) are important both from a conceptual and technical 
perspective, and because of their relevance to computers. The recent interest in 
neural and gene networks makes this an important area for applications and 
current research. 

Many students are familiar with fractal images from the myriad populariza­
tions of that topic. While the images provide a compelling motivation for studying 
nonlinear dynamics, the concepts of self-similarity and fractional dimension are 
important from a mathematical perspective. Chapter 3 discusses self-similarity 
and fractals in a way that is closely linked to the dynamics discussed in Chap­
ter 1. Fractals arise from dynamics in many unexpected ways. The concept of 
a fractional dimension is unfamiliar initially but can be appreciated by those 
without advanced technical abilities. Recognizing the importance of computers 
in studying fractals, we use a computer-based notation in presenting some of the 
material. 



PREFACE xi 

Dependencies among the chapters. 

The study of continuous-time systems forms much of the second half of 
the book. Chapter 4 deals with one-dimensional differential equations. Because 
of the importance of exponential growth and decay in applications, we believe 
that every science student should be exposed to the linear one-dimensional dif­
ferential equation, learning what it means and how to solve it. In addition, it is 
essential that those interested in science appreciate the limitations that nonlin­
earities impose on exponential ("Malthusian") growth. In Chapter 4, algebraic 
analysis of the linear stability of steady states of nonlinear equations is combined 
with the graphical analysis of the asymptotic dynamics of nonlinear equations to 
provide another exposure to the complementary use of algebraic and geometric 
methods of analysis. 

Chapter 5 deals with differential equations with two variables. Such equa­
tions often appear in the context of compartmental models, which have been 
proposed in diverse fields including ion channel kinetics, pharmacokinetics, and 
ecological systems. The analysis of the stability of steady states in two-dimensional 
nonlinear equations and the geometric sketching of the trajectories in the phase 
plane provide the most challenging aspect of the course. However, the same ba­
sic conceptual approach is used here as is used in the linear stability analyses in 
Chapter 1 and Chapter 4, and the material can be presented using elementary 
methods only. 

In most students' mathematical education, a chasm exists between the con­
cepts they learn and the applications in which they are interested. To help bridge 
this gap, Chapter 6 discusses methods of data analysis including classical methods 
(mean, standard deviation, the autocorrelation function) and modern methods 
derived from nonlinear dynamics (time-lag embeddings, dimension and related 
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topics). This chapter may be of particular interest to researchers interested in 
applying some of the concepts from nonlinear dynamics to their work. 

In order to illustrate the practical use of concepts from dynamics in ap­
plications, we have punctuated the text with short essays called "Dynamics in 
Action:' These cover a wide diversity of subjects, ranging from the random drift 
of molecules to the deterministic patterns underlying global climate changes. 

Following each chapter is supplementary material. The notes and refer­
ences provide a guide to additional references that may be fun to read and are 
accessible to beginning students. A set of exercises reviewing concepts and math­
ematical skills is also provided for each chapter. Solutions to selected exercises are 
provided at the end of the book. For each chapter, we also give a set of computer 
exercises. The computer exercises introduce students to some of the ways com­
puters can be used in nonlinear dynamics. The computer exercises can provide 
many opportunities for a term project for students. 

The appropriate use of this book in a course depends on the student 
clientele and the orientation of the instructors. In our instruction of biolog­
ical science students at McGill, emphasis has been on developing analytical 
and geometrical skills to carry out stability analysis and analysis of asymptotic 
dynamics in one-dimensional finite-difference equations and in one- and two­
dimensional differential equations. We also include several lectures on neural and 
gene networks, cellular automata, and fractals. 

Although this text is written at a level appropriate to first- and second-year 
undergraduates, most of the material dealing with nonlinear finite-difference 
and differential equations and time-series analysis is not presented in standard 
undergraduate or graduate curricula in the physical sciences or mathematics. This 
book might well be used as a source for supplementary material for traditional 
courses in advanced calculus, differential equations, and mathematical methods 
in physical sciences. The link between dynamics and time series analysis can 
make this book useful to statisticians or signal processing engineers interested 
in a new perspective on their subject and in an introduction to the research 
literature. 

Over the years, a number of teaching assistants have contributed to the 
development of this material and the education of the students. Particular thanks 
go to Carl Graves, David Larocque, Wanzhen Zeng, Marc Courtemanche, Hi­
royuki Ito, and Gil Bub. We also thank Michael Broide, Scott Greenwald, Frank 
Witkowski, Bob Devaney, Michael Shlesinger, Jim Crutchfield, Melanie Mitchell, 
Michael Frame, Jerry Marsden, and the students of McGill University Biology 309 
for their many corrections and suggestions. We thank Andre Duchastel for his 
careful redrawing of many of the figures reproduced from other sources. Finally, 
we thank Jerry Lyons, Liesl Gibson, Karen Kosztolnyik, and Kristen Cassereau for 
their excellent editorial assistance and help in the final stages of preparation of 
this book. 
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man, A. Shrier, M. R. Guevara, and M. C. Mackey. The financial support of the 
Natural Sciences Engineering and Research Council (Canada), the Medical Re­
search Council (Canada), the Canadian Heart and Stroke Association has enabled 
us to carry out research that is reflected in the text. Finally, Leon Glass thanks the 
John Simon Guggenheim Memorial Foundation for Fellowship support during 
the final stages of the preparation of this text. 

We are making available various electronic extensions to this book, includ­
ing additional exercises, solutions, and computer materials. For information, 
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CHAPTER 1 



Finite-Difference 
Equations 

1.1 A MYTHICAL FIELD 

Imagine that a graduate student goes to a meadow on the first day of May, 
walks through the meadow waving a fly net, and counts the number of flies 
caught in the net. She repeats this ritual for several years, following up on the 
work of previous graduate students. The resulting measurements might look like 
the graph shown in Figure 1.1. The graduate student notes the variability in her 
measurements and wants to find out if they contain any important biological 
information. 

Several different approaches could be taken to study the data. The student 
could do statistical analyses of the data to calculate the mean value or to detect 
long-term trends. She could also try to develop a detailed and realistic model of 
the ecosystem, taking into account such factors as weather, predators, and the 
fly populations in previous years. Or she could construct a simplified theoretical 
model for fly population density. 

Sticking to what she knows, the student decides to model the population 
variability in terms of actual measurements. The number of flies in one summer 



2 FINITE-DIFFERENCE EQUATIONS 

:1: :: 'I 
1970 1975 1980 1985 1990 1995 

Figure 1.1 The number of flies caught during the annual fly survey. 

depends on the number of eggs laid the previous year. The number of eggs laid 
depends on the number of flies alive during that summer. Thus, the number of 
flies in one summer depends on the number of flies in the previous summer. In 
mathematical terms, this is a relationship, or function, 

(1.1) 

This equation says simply that the number of flies in the t + 1 summer is de­
termined by (or is a function of) the number of flies in summer t, which is the 
previous summer. Equations of this form, which relate values at discrete times 
( e.g., each May), are called finite-difference equations. Nt is called the state of the 
system at time t. We are interested in how the state changes in time: the dynamics 
of the system. 

Since the real-world ecosystem is complicated and since the measurements 
are imperfect, we do not expect a model like Eq. 1.1 to be able to duplicate 
exactly the actual fly population measurements. For example, birds eat flies, so 
the population of flies is influenced by the bird population, which itself depends 
on a complicated array of factors. The assumption behind Eq. 1.1 is that the 
number of flies in year t + 1 depends solely on the number of flies in year t. While 
this is not strictly true, it may serve as a working approximation. The problem now 
is to figure out an appropriate form for this dependence that is consistent with 
the data and that encapsulates the important aspects of fly population biology. 

1.2 THE LINEAR FINITE-DIFFERENCE EQUATION 

Let us start by making a simple assumption about the propagation of 
flies: For each fly in generation t there will be R flies in generation t + 1. The 
corresponding finite-difference equation is 

(l.2) 
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Equation 1.2 is called a linear equation because a graph of Nt+1 versus Nt 
is a straight line, with a slope of R. 

The solution to Eq. 1.2 is a sequence of states, Nt> N2 , N3 , ••• , that satisfy 
Eq. 1.2 for each value of t. That is, the solution satisfies N2 = RNt> and N3 = 
RN2, and N4 = RN3, and so on. 

One way to find a solution to the equation is by the process of iteration. 
Given the number of flies No in the initial generation, we can calculate the number 

of flies in the next generation, N I. Then, having calculated N1, we can apply Eq. 1.2 

to find N2. We can repeat the process for as long as we care to. The state No is 

called the initial condition. 
For the linear equation, it is possible to carry out the iteration process using 

simple algebra. By iterating Eq. 1.2 we can find Nt> N2 , N3 , and so forth. 

NI = RNo• 

N2 = RNI = R2No• 

N3 = RN2 = R2N1 = R3No• 

There is a simple pattern here: It suggests that the solution to the equation might 

be written as 

(1.3) 

We can verify that Eq. 1.3 is indeed the solution to Eq. 1.2 by substitution. 
Since Eq. 1.3 is valid for all values of time t, it is also valid for time t + 1. By 
replacing the variable t in Eq. 1.3 with t + 1, we can see that Nt+1 = Rt+1 No. 
Expanding this, we get 

which shows that the solution implies the finite-difference equation in Eq. 1.2. 

BEHAVIOR OF THE LINEAR EQUATION 

Equation 1.3 can produce several different types of solution, depending on 

the value of the parameter R: 

Decay When 0 < R < 1, the number of flies in each generation is 

smaller than that in the previous generation. Eventually, the number falls 
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Nt 
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• • • 
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Figure 1.2 
The solution to 
NH! = O.90N,. 

Figure 1.3 
The solution to 
N,+! = l.08N,. 

to zero and the flies become extinct (see Figure l.2). Since the solution is 
an exponential function of time (see Appendix A), this behavior is called 
exponential decay. 

Growth When R > 1, the population of flies increases from generation 
to generation without bound. The solution is said to "explode" to 00 (see 
Figure l.3). Again the solution is an exponential function, and this behavior 
is thus called exponential growth. 

Steady-state behavior When R is exactly 1, the population stays at the 
same level (see Figure 1.4). This is clearly an extraordinary solution, because 

it only happens for a single, exact value of R, whereas the other types of 
solutions occur for a range of R values. 

The behaviors in the fly population study involve R > O. It doesn't make 
biological sense to consider cases where R < 0 in Eq. l.2. After all, how can flies 

Nt 
200 

100 

{\ 

o 

•••••••••••••••••••• 

5 10 15 20 

Figure 1.4 
The solution to 
N,+! = l.OON,. 



1.2 THE LINEAR FINITE-DIFFERENCE EQUATION 5 

Nt 
100 • • • • 

• • • • • • 
Ol-r----------------~~~ 

.10. • • • ·20 • • 
-100 • 

Nt 
500 
200 
" 

• 

••••• ••• • • 

-200 • • • •• 10 •• 20 
• • • -500 

Figure 1.5 
The solution to 
N'+l = -O.90N,. 

Figure 1.6 
The solution to 

N'+l = -l.08N,. 

lay negative eggs? Later, in Section 1.5, we shall see cases where it makes sense to 

talk about R < o. Such cases produce different types of behavior: 

Alternating decay When -1 < R < 0, the solution to Eq. 1.2 alter­
nates between positive and negative values. At the same time, the amplitude 
of the solution decays to zero in the same exponential fashion seen for 
o < R < 1 (see Figure 1.5). 

Alternating growth When R < -1, the solution still alternates between 
positive and negative values. However, the amplitude of the solution grows 
exponentially and explodes to ±oo (see Figure 1.6). 

Periodic cycle When R is exactly -1, the solution alternates between 
No and - No and neither grows nor decays in amplitude. A periodic cycle 
occurs when the solution repeats itself. In this case, the solution repeats 

every two time steps, ... , No, - No, No, -No, ... , and so the duration of 
the period is two time steps (see Figure 1.7). 

100 • • • • • • • • • • 
O-r----------~--------~ 

-100 ••••• 10 ••••• 20 
Figure 1.7 
The solution to 
N'+l = -l.OON,. 
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1.3 METHODS OF ITERATION 

We have seen how the solution to Eq. 1.2 could be found using algebra. 
Later we will encounter finite-difference equations in which an algebraic solution 
cannot be found. Here, we introduce two other methods for iterating finite­
difference equations, the cobweb method and the method of numerical iteration. 

THE COBWEB METHOD 

The cobweb method is a graphical method for iterating a finite-difference 
equation like Eq. 1.1. No algebra is required in order to perform the iteration; 
one only needs to graph the function f (Nt) on a piece of paper. 

To illustrate the cobweb method, we will start with the linear system of 
Eq. 1.2. To perform the iteration using the cobweb method, we do the following: 

1. Graph the function. In this case, f(Nt } = RNt • In order to make a 
plot of the function RNt , we need to pick a specific value for R. (Note 
that the algebraic method for finding solutions did not require this.) As 
an example, we will set R = 1.9 so that the finite-difference equation 
is Nt+ 1 = 1. 9 Nt. The resulting function is shown by the dark line in 
Figure 1.8. 

Figure 1.8 
The cobweb method applied to 
the linear dynamical system 
Nt+! = 1.9Nt with initial 
condition No = 0.7. 
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2. Pick a numerical value for the initial condition. In this case, as an ex­
ample, we will select No = 0.7, shown as the gray dot on the x-axis in 
Figure I.S. (In the algebraic method, we did not need to select a specific 
numerical value. Instead we were able to use the symbol No to stand for 
any initial condition.) 

3. Draw a vertical line from No on the x-axis up to the function. The 
position where this vertical line hits the function (shown as a solid dot 
at the end of the arrow) tells us the value of N I. 

4. Take this value of N I, plot it again on the x -axis, and again draw a vertical 
line to find the value of N2 • There is a simple shortcut in order to avoid 
plotting NI on the x-axis: Draw a horizontal line to the Nt+1 = Nt line 
(shown in gray-it's the 4S-degree line on the plot). The place where 
the horizontal line intersects the 4S-degree line is the point from which 
to draw the next vertical line to find N2 • 

S. In order to find N3 , N4 , and so on, repeat the process of drawing vertical 
lines to the function and horizontal lines to the line of NHI = Nt. 

As Figure I.S shows, the result of iterating Nt+1 = 1.9Nt is growth toward 
00. This is consistent with the algebraic solution we found in Eq. 1.3 for R > 1. 

NUMERICAL ITERATION 

Since the cobweb method is a graphical method, it may not be very precise. 
In order to acheive more precision, we can use numerical iteration. This is a 
simple procedure, easily implemented on a computer or even a hand calculator. 
To illustrate, suppose we want to find a numerical solution to Nt+1 = RNt with 
R = 0.9 and No = 100. 

No = 100, 

NI = f(No) = 0.9 x 100 = 90, 

N2 = f(N1) = 0.9 x 90 = SI, 

N3 = f(N2) = 0.9 x SI = 72.9, 

(lA) 

When applied to the linear finite-difference equation in Eq. 1.2, the cobweb 
method and the method of numerical iteration merely allow us to confirm the 
existence of the types of behavior we found algebraically. Since the cobweb and 
numerical iteration methods require that specific numerical values be specified for 
the parameter R and the initial condition No, it might seem that they are inferior to 
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the algebraic method. However, when we consider nonlinear equations, algebraic 
methods are often impossible and numerical iteration and the cobweb method 
may provide the only means to find solutions. 

1.4 NONLINEAR FINITE-DIFFERENCE EQUATIONS 

The measurements of the fly population shown in Figure 1.1 don't suggest 
explosion or extinction, nor do they remain steady. This suggests that the model 
ofEq. 1.2 is not good. It does not take much of an ecologist to see where a mistake 
was made in formulating Eq. 1.2. Although it is all right to have rapid growth in 
populations for low densities, when the fly population is high, competition for 
food limits growth and starvation may cause a decrease in fertility. The larger 
population may also increase predation, as predators focus their attention on an 
abundant food supply. 

A simple way to modify the model is to add a new term that lowers the 
number of surviving offspring when the population is large. In the linear equation, 
R was the number of offspring of each fly in generation t. In order to make the 
number of offspring per fly decrease as Nt gets larger, we can make the growth 
rate a function of Nt. For simplicity, we will chose the function (R - bNt ). The 
positive number b governs how the growth rate decreases as the population gets 
bigger. R is the growth rate when the population is very, very small. 

This assumption that the number of offspring per fly is (R - b Nt) gives us 
a new finite-difference equation, 

(1.5) 

Equation 1.5 is a nonlinear equation since the rightmost side is not the equation 
of a straight line. Nonlinear equations arise commonly in mathematical models 
of biological systems, and the study of such equations is the focus of this book. 

In Eq. 1.5 there are two parameters, Rand b, that can vary independently. 
However, a simple change of variables shows that there is only one parameter that 
affects the dynamics. We define a new variable Xt = b;" which is just a way of 
scaling the number of flies by the number i. Substituting Xt and Xt+l in Eq. 1.5, 
we find the equation 

(1.6) 

Although Eq. 1.6 (called the quadratic map) may not seem much more 
complicated than Eq. 1.2, the solution cannot generally be found using algebra. 
Numerical iteration and the cobweb method, however, can be used to find so­
lutions. In order to apply the cobweb method to Eq. 1.6, we first must draw a 
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0.8 

0.6 

Figure 1.9 
Cobweb iteration of 
X,+l = 1.5(1 - x,)x,. 

graph of the function. (Anyone who has not practiced calculus recently may find 
sketching the graph of an equation intimidating. If you are in this category, go 
over the material in Appendix A and pay particular attention to the section on 
quadratic functions since this is what we have here.) In this case, the graph is a 
parabola, with intercepts at Xt = 0 and X t = 1, as Figure 1.9 shows. 

Next, we need to pick specific values for the parameter R in Eq. 1.6. Since 
we don't yet know what the behavior of this equation will be, we will have to study 
a range of parameter values. Doing so reveals a number of different behaviors: 

Steady state The nonlinear equation can have a solution that ap­
proaches a certain state and remains fixed there. This is shown in 
Figure 1.10 for R = 1.5, where the solution creeps up on the steady state 
from one side; this is called a monotonic approach. 
As shown for R = 2.9 in Figure 1.11, the approach to a steady state can 
also alternate from one side to the other. 

Xt 
1 

• 
••••••••••••••••••• 

OL---------------------o 5 10 15 20 

Figure 1.10 
The solution to 
X,+l = 1.5(1 - x,)x,. 
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••••••••••••••••••• 
• 

OL-----------------------o 5 10 15 20 

0.2 0.4 0.6 0.8 Xt 1 

Figure 1.11 
The solution to 
Xt+l = 2.9(1 - X,)Xt • 

Figure 1.12 
Cobweb iteration of 
Xt+l = 3.3(1 - xt)xt • 

Periodic cycles The solution to the nonlinear equation can have cycles. 
This is shown for R = 3.3 in Figures 1.12 and 1.13, where the cycle has 
duration 2. When carrying out the cobweb iteration, a cycle of period two 
looks like a square that is repeatedly traced out (see Figure 1.12). The cycle 

in this case follows the sequence XI = 0.48, XI+l = 0.82, XI+2 = 0.48, and 
soon. 

For R = b = 3.52 (see Figure 1.14), the cycle has duration 4 and 

follows the sequence XI = 0.88, XI+! = 0.37, XI+2 = 0.82, x t +3 = 0.51, 
XtH = 0.88, and so forth. 

Xt 

1 

• 

••••••••••••• 
• • • • • • 

OL-____________________ __ 

o 5 10 15 20 

Figure 1.13 
The solution to 
Xt+l = 3.3(1 - xt)xt • 
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• • 
15 
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20 
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Figure 1.14 
The solution to 
Xt+l = 3.52(1 - x,)x,. 

Figure 1.15 
The solution to 
X,+l = 4(1 - x,)x,. 

Aperiodic behavior The solution to the nonlinear equation mayoscil­
late, but not in a periodic manner. Setting R = 4, we find the behavior 
shown in Figures 1.15 and 1.I6-a kind of irregular oscillation that is nei­
ther exponential growth or decay, nor a steady state. The cobweb iteration 
shows how the irregular iteration arises from the shape of the function (see 
Figure 1.15). This behavior is called chaos, and we will investigate it in 
greater detail in later sections in the book. 

Figure 1.16 

0.2 0.4 0.6 0.8 Cobweb iteration of 
Xt X'+ l = 4(1 - x,)x,. 
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1.5 STEADY STATES AND THEIR STABILITY 

A simple, but important, type of dynamical behavior is when the system 
stays at a steady state. A steady state is a state of the system that remains fixed, 
that is, where 

Xt+l = Xt. 

Steady states in finite-difference equations are associated with the math­
ematical concept of a fixed point. A fixed point of a function f (Xt) is a value 
x; that satisfies x; = f (x;). Later on, we shall see how fixed points can also be 
associated with periodic cycles. 

There are three important questions to ask about fixed points in a finite­
difference equation: 

• Are there any fixed points-in other words, are there any values of x; 
that satisfy x; = f(x;)? 

• If the initial condition happens to be near a fixed point, will the subse­
quent iterates approach the fixed point? If subsequent iterates approach 
the fixed point, we say the fixed point is locally stable. (Mathematicians 
call this "locally asymptotic stability.") 

• Will the system approach a given fixed point regardless of the initial 
condition? If the fixed point is approached for all initial conditions, we 
say that the fixed point is globally stable. 

FINDING FIXED POINTS 

From the graph of Xt+ 1 = f (Xt) it is easy to locate fixed points: They are 
simply those points where the graph intersects the line Xt+ 1 = Xt. Or, we can use 
algebra to solve the equation Xt = f (Xt). 

For the linear finite-difference equation, x; is a fixed point if it satisfies the 
equation x; = Rx;. One solution to this equation is always x; = o. This means 
that the origin is a fixed point for a linear system. This has an obvious biological 
interpretation: If there are no flies in one year, there can't be any the next year 
(unless, of course, they migrate from distant parts or evolve again, both of which 
are beyond the scope of our simple model). 

The solution Xt = 0 is the only fixed point, unless R = 1. If R is exactly 
I, then all points are fixed points. Clearly, this is an exceptional case, because any 
change in R, no matter how small, will eliminate all of the fixed points except the 
one at the origin. 

Nonlinear finite-difference equations can have more than one fixed point. 
Figures 1.17 and 1.18 showthelocation of the fixed points for Eq. 1.6 for R = 2.9 
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0.2 0.4 0.6 0.8 Xc 1 
Figure 1.17 
Xt+l = 2.9(1 - x,)x, 

and R = 3.52, respectively. For the quadratic map of Eq. 1.6, the fixed points 
can also be found using algebra from the roots of the quadratic equation 

Xt = RXt{l - Xt) or, xt(R - RXt - 1) = o. 

The roots of this equation are 

Xt = 0 

XC+l Fixed Points 

0.2 0.4 0.6 

R -1 
and Xt = 

R 

0.8 
Xc 

Figure 1.18 
X,+l = 3.52(1 - x,)x, 
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Again, in our model the biological meaning of the root xr = 0 is that flies 
don't appear from nowhere. The biological interpretation of the fixed point at 
xr = R;l is that this is a self-sustaining level of the population, with neither a 
decrease nor an increase. 

Clearly, it is impossible for the fly population to be at both these fixed points 
at the same time. So now we have to address the question of which of these fixed 
points will be reached by iterating from the initial condition, if indeed either of 
them will be. 

LOCAL STABILITY OF FIXED POINTS 

Figures 1.17 and 1.18 both have two fixed points, but in Figure 1.17 the 
iterates approach the nonzero fixed point while in Figure 1.18 the iterates do not. 
The difference between these cases is the local stability of the fixed points. 

We say that a fixed point is locally stable if, given an initial condition 
sufficiently close to the fixed point, subsequent iterates eventually approach the 
fixed point. 

How do we tell if a fixed point is locally stable? For a linear finite-difference 
equation, Xt+! = Rx" we already know the answer: The stability of the fixed 
point at the origin depends on the slope R of the line. If I R I < 1, future iterates 
are successively closer to the fixed point at the origin-this is exponential decay 
to zero. If IRI > 1, future iterates are successively farther away from the fixed 
point at the origin. 

How does one determine the stability of a fixed point in a nonlinear finite­
difference equation? In calculus classes, one discusses the notion that over limited 
regions a curve can be approximated by a straight line of the appropriate slope. 
In the neighborhood of the intersection of the straight line Xr+l = Xr with the 
curve Xr+ 1 = f (Xr), it is therefore possible to approximate the curve by a straight 
line. 

Figures 1.19 through 1.22 illustrate four separate cases that show the region 
of intersection. Let x * be a fixed point of f (.), that is a state for which X* = f (x*). 

The slope of the curve at the fixed point, * Ix" establishes the stability of the 
fixed point. We will designate this slope by m. Figures 1.19 through 1.22 plot Yr+ 1 

versus Yr, where Yr = Xr - x*. This means that in the figures the fixed point 
appears at the origin, whereas in the original variable, x" the fixed point is at x*. 

Observe that 

• If Iml < 1, the fixed point is stable so that nearby points approach the 
fixed point under iteration. 

• Iflm I > 1, the fixed point is unstable and points leave the neighborhood 
of the fixed point. 

Also, note that 
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Yt+l 
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Figure 1.19 
The dynamics of y,+l = my, . 
m > 1 produces monotonic 
growth as shown here with 
m = 1.9. 

Figure 1.20 
The dynamics 
of y,+l = my,. 
o < m < 1 produces 
monotonic decay to 
y, = O. Here, m = 0.5. 
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2 
Yr., 

-2 

Figure 1.21 
The dynamics of Y'+l = my,. 
-1 < m < 0 produces 
alternating decay as shown here 
with m = -0.5. 

• If m > 0, the points approach or leave the fixed point in a monotonic 
fashion. 

• If m < 0, the points approach or leave the fixed point in an oscillatory 
fashion. 

From the above considerations, a general method can be given for determin­
ing the stability of a fixed point in finite-difference equations with one variable. 
The steps are as follows: 

1. Solve for the fixed points. This involves solving the equation 

XI = !(xI ). 

Figure 1.22 
ThedynamicsofY'+l = my,. 
m < -1 produces alternating 
growth. Here, m = -1.9. 
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Linear equations always have only one fixed point-the one at x, = o. 
Nonlinear equations may have more than one fixed point. Steps 2 and 
3 can be applied to each of the fixed points, one at a time. Call the fixed 
point we are studying x*. Like all fixed points, this satisfies x* = f (x*). 

2. Calculate the slope m of f(xt), evaluatingxt at the fixed point x*. That 
is, compute 

df I m= - . 
dXt x t =* 

3. The slope m at the fixed point determines its stability. 
1 < m Unstable, exponential growth. 

o < m < 1 Stable, monotonic approach to y, = 0 (i.e., approach to 
Xt = x*). 

-1 < m < 0 Stable, oscillatory approach to Yt = 0 (i.e., approach to 
Xt = x*). 

m < -1 Unstable, oscillatory exponential growth. 

TRANSIENT AND ASYMPTOTIC BEHAVIOR 

If a fixed point is locally stable, then once the state is very near to the fixed 
point, it will stay near throughout the future. Before the state reaches the fixed 
point, it may show different behavior. For example, in Figure 1.10, the state is far 
enough away from the fixed point for the first five or six iterations that we can see 
it change from iteration to iteration. After that, the state appears to have reached 
the fixed point. In Figure 1.11, the movement toward the fixed point is visible 
for approximately twenty iterations. The term asymptotic dynamics refers to the 
dynamics as time goes to infinity. Behavior before the asymptotic dynamics is 
called transient. 

STABILITY AND NUMERICAL ITERATION 

Suppose that we want to use numerical iteration to find fixed points. One 
strategy would be to pick a large number of initial conditions and iterate numer­
ically each of these initial conditions. If the iterates converge to a fixed value; then 
we have identified a fixed point at that value. (Figure 1.10 shows an example of 
this.) 

If a fixed point is locally stable, then this strategy may well succeed, since 
the fixed point will eventually be approached if any of the initial conditions is 
close to the fixed point. Once the state is close to the fixed point, it will remain 
near the fixed point. 
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If a fixed point is unstable, however, then we will find it only if one of the 
iterates happens to land on the fixed point exactly, and this is extremely unlikely. 
In general, we can use numerical iteration only to find stable fixed points. If we 
want to find unstable fixed points, another approach is needed, namely solving 
the equation Xt = f (Xt). 

o ExAMPLE 1.1 

Cells reproduce by division; the process by which the cell nucleus divides is 
called mitosis. One way to regulate the rate of reproduction of cells is by regulating 
mitosis. There is (controversial!) biochemical evidence that there are compounds, 
called chalones, that are tissue-specific inhibitors of mitosis (see Bullough and 
Laurence, 1968). 

For simplicity, assume that the generations of cells are distinct and that the 
number of cells in each generation is given by Nt. Following the same logic as in 
Eq. 1.2, assume that for each cell in generation t, there are R cells in generation 
t + 1. (If every cell divided in half every time step, then R would equal 2. ) The finite­
difference equation describing this situation is the linear equation Nt+1 = RNt , 

which leads either to exponential growth or to decay to zero. 
A possible role of chalones is to make R depend on the number of cells. 

Assume that the amount of chalone produced is proportional to the number of 
cells. The more chalone there is, the greater the inhibitory effect on mitosis. 

The biochemical action of chalones is to bind to a protein involved in 
mitosis, rendering the protein inactive. Binding of molecules to proteins is often 
modeled by a Hill function (see Section A.5), which suggests that an appropriate 
equation for the hypothetical chalone control mechanism is 

where (J and n are parameters. We will assume that n ~ 2. Figure 1.23 shows this 
finite difference equation when R = 2, (J = 5, and n = 3. 

Find the fixed points of this system and determine their stability. 

1. To determine the fixed points we solve the equation 

RN* 
N* = 1 + (~. r . 

I 

There are two real solutions: N* = 0 and N* = (J(R - 1) ;; . These 
are the only fixed points. There are also imaginary solutions that can 
be ignored in this case because we are only concerned with biologically 
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6 

2 4 6 8 10 12 14 

Figure 1.23 A cobweb analysis of chalone production for the parameters R = 2, 
(J = 5, n = 3. 

meaningful solutions, and the number of cells in each generation must 

be a real number. 

2. To determine the stability of the fixed points it is necessary to compute 
the slope at the fixed points. Differentiating the right-hand side of the 
finite-difference equation, we find 

df 

dN, 
= 

R + R( ~ )\1 - n) 

(1+(~rr 

3. From the above equation we find that the slope at the fixed point x, = 0 

is just R. If R > 1, the fixed point at the origin is always unstable. (To be 

a plausible model of the regulation of cell reproduction, we must have 

R > 1. Otherwise, the population would always fall to zero even in the 

complete absence of the mitosis-inhibiting chalones.) 

The slope at the fixed point N* = O(R - 1) ~ is 

df I = 1 + n (~ - 1) . 
dN, N' R 
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For R = 2, the fixed point will be unstable when n > 4 and stable 
otherwise. o 

GLOBAL STABILITY OF FIXED POINTS 

In this section we've studied local stability. Local stability tells us whether 
the fixed point is approached if the initial condition is sufficiently close to the 
fixed point. The local stability can be assessed simply by looking at the slope of 
the function at the fixed point. 

A slightly different-and often much more difficult-question is whether 
a locally stable fixed point is globally stable. 

For linear finite-difference equations, the answer is straightforward. A lo­
cally stable fixed point is also globally stable: Regardless of the initial condition, 
the iterates will eventually reach the locally stable point (i.e., the origin) from any 
initial condition. 

For nonlinear finite-difference equations, there can be more than one fixed 
point. When multiple fixed points are present, none of the fixed points can be 
globally stable. 

The set of initial conditions that eventually leads to a fixed point is called 
the basin of attraction of the fixed point. Often, the basin of attraction for fixed 
points in nonlinear systems can have a very complicated geometry (see Chapter 3). 
If multiple fixed are locally stable we say there is multistability. 

1.6 CYCLES AND THEIR STABILITY 

In Figures 1.7, 1.13, and 1.14 we can see that periodic cycles are one form of 
behavior for finite-difference equations. In everyday language, a cycle is a pattern 
that repeats itself, and the period of the cycle is the length of time between 
repetitions. In finite-difference equations like Eq. 1.1, a cycle arises when 

Xt+n = x" but Xt+i i= Xt for j = 1, 2, ... , n - 1. (1.7) 

There is a useful correspondence between fixed points and periodic cycles 
which helps in understanding how to find cycles and assess their stability. A simple 
case is a cycle of period 2. Consider the finite-difference equation 

Xt+l = !(Xt) = 3.3(1 - Xt)Xt. (1.8) 
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As shown in Figure 1.13, the solution is a cycle of period 2. The definition of a 
cycle of period 2 is that 

Xt+2 = Xt while XHI f. Xt· (1.9) 

By substitution into Xt+ 1 = I (Xt), we can write the value of Xt+2 as 

(1.10) 

If there is a cycle of period 2, thenXt = 1(f(Xt)). For the quadratic map (Eq.1.6), 
we can find I (f (Xt)) with a bit of algebra: 

1(f(Xt)) = I(Xt+l) = RXHI - RX~l 

= R(RXt - Rx~) - R(Rxt - Rx~)2 (Lll) 

= R2Xt - (R2 + R3)X~ + 2R3X~ - R3Xi. 

The equation may seem a little formidable, but the M-shaped graph, shown in 
the lower graph in Figure 1.24, is quite simple. 

We can see from Eq. 1.10 that there is an analogy between fixed points 
and cycles: If a system Xt+ 1 = I (Xt) has a cycle of period 2, then the function 
I (f (Xt )) has at least two fixed points. Thus, we can find the cycles of period 2 by 
solving the equation Xt = l(f(xt)). This can be done graphically, algebraically, 
or numerically. 

One trivial type of solution to Xt = I (f (Xt)) is a solution to Xt = I (Xt). 

These solutions correspond to the fixed points of I (Xt) and hence are not cycles 
of period 2-they are "cycles of period 1:' that is, steady states. In the graph of 
Eq.LlI shown in Figure 1.24, we can see four fixed points of l(f(xt)): atxt = 0, 
at Xt = 0.479, at Xt = 0.697, and at Xt = 0.823. Two of these values are also 
fixed points of I(xt) and therefore correspond to cycles of period 1. 

Longer cycles can be found in the same way. A cycle of period n is found 
by solving the equation 

Xt = l(f('" I(xt)), 
~ 

n times 

avoiding solutions that correspond to periods less than n. In practice, this problem 
can be very hard to solve algebraically. 

STABILITY OF CYCLES 

Just as a fixed point can be locally stable or unstable, a cycle can be stable or 
unstable. We say that a cycle is locally stable if, given that the initial condition is 
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Figure 1.24 A cycle of period 2 in the system Xt+l = R(l - Xt)Xt = !(xt ) for 
R = 3.3. The graph of Xt+l versus Xt has two fixed points, marked as gray dots, 
but neither of them is stable. When plotted as Xt+2 versus Xt , the cycle of period 
two looks like 2 fixed points in the finite-difference equation Xt+2 = !(f(xt )). 

Altogether, this system has four fixed points-the two corresponding to the cycle of 
period 2 (marked as small gray squares) and the two fixed points from the system 
Xt+l = !(xt ) . 
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close to a point on the cycle, subsequent iterates approach the cycle. (Again, this 
is what mathematicans call "local asymptotic stability"). 

We can now consider the computation of the stability of the fixed point of the 
finite-difference equation Xt+2 = f (f (Xt)). We will use x* to denote a solution to 
the equation Xt = f (f (Xt)) that is not also a fixed point of Xt = f (Xt). Referring 
to Section 1.5, we can see that the stability of the fixed point of Xt+2 = f (f (Xt)) 

depends on the value of 

df(f(Xt» I . 
dXt x, 

Using the chain rule for derivatives, we have 

Thus, the stability of a fixed point of period 2 depends on the slope of the function 
f(xt) at both of the two points X* and f(x*). 

A method for finding cycles by numerical iteration is quite easy in principle: 
Start at some initial condition and at each iteration, see if the value has been 
produced previously. Once the same value is encountered twice, the intervening 
values will cycle over and over again. 

When cycles are found by numerical iteration, it is important to realize that 
unstable cycles will tend not to be found. This is exactly analogous to the situation 
when using numerical iteration to look for fixed points. When a cycle is stable, 
any initial condition in the cycle's basin of attraction will eventually lead to the 
cycle. For unstable cycles, the cycle will not be approached unless some iterate of 
the initial condition lands exactly on a point on the cycle. 

o ExAMPLE 1.2 

Consider the finite-difference equation 

1 - Xt 
Xt+l = 

3xt + 1 

a. Sketch Xt+! as a function of Xt. 

b. Determine the fixed point(s), if any, and test algebraically for stability. 

c. Algebraically determine Xt+2 as a function of Xt and determine if there 
are any cycles of period 2. If so, are they stable? Based on the analysis 
above, determine the dynamics starting from any initial condition. 
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-4 -2 

Xt 

-2 

-4 

Solution: 

Figure 1.25 
The graph of Xt+! = i-xI 

3xt+! • 

a. This is the graph of a hyperbola, see Figure 1.25. There are no local 
maxima or minima, but there are asymptotes at Xt = - ~ and at Xt+ 1 = 

1 
-3"' 

b. The fixed points are determined by setting Xt+l = Xt to give the 
quadratic equation 

3x; + 2xt - 1 = O. 

This equation can be factored to yield two solutions, Xt = ~ and Xt = 
-1. To determine stability, we compute 

dXt+l 

dXt 

-4 
( 3Xt + 1)2 . 

When this is evaluated at the fixed points, the slope is -1. Note that 
a slope of -1 does not fall into the classification scheme presented in 
Section 1.5-ifthe slope were slightly steeper than -1, the fixed point 
would be unstable; if the slope were slightly less steep than -1, the 
fixed point would be stable. We cannot determine the stability of the 
steady states from this computation: The steady state is neither stable 
nor unstable. 

c. Iterating directly we find that 

1 - Xt+l 
Xt+2 = 

3Xt+l + 1 
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3(..!.::!!..) +1 3Xt+1 

=Xt· 

Amazingly, all initial conditions are on a cycle of period 2. The cycles 
are neither locally stable nor unstable, since initial conditions neither 
approach nor diverge from any given cycle. o 

The preceding discussion shows that if there are stable cycles, then an exam­
ination of the graph of Xt+n as a function of Xt will show certain definite features. 
If there is a stable cycle of period n, there must be at least n fixed points associated 
with the stable cycle, where the slope at each of the fixed points is equal and the 
absolute value of the slope at each of the fixed points is less than 1. 

Now let's consider a specific situation, the quadratic map 

(1.12) 

This now-familiar parabola is plotted again in Figure 1.26. We can see that 
there are two fixed points, both of which are unstable because the slope of the 
function at these fixed points is steeper than 1. 

To look for cycles of period 2, we can plot Xt+2 versus Xt as shown in 
Figure 1.27. The four places where this graph intersects the line Xt+2 = Xt (i.e., 
the 45-degree line) are the possible points on the cycle of period 2-recall that 
two of the intersection points correspond to cycles of period 1. Since the slope of 

0.8 
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0.2 0.4 0.6 0.8 Xt 1 
Figure 1.26 
XI+l versus XI for Eq. 1.12. 
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0.2 0.4 0.6 0.8 Xt 1 
Figure 1.27 
Xt+2 versus X t for Eq. 1.12. 

the function at all these points is steeper than I, we can conclude that there are 
no stable cycles of period 2 in Eq. 1.12. 

We can continue looking for longer cycles. Figure 1.28 shows the graph of 

Xt+3 = f (f (f (Xt))). This graph intersects the line Xt+3 = Xt in eight places. (Of 
these, two correspond to cycles of period 1.) At all of these places the slope of the 
function is steeper than 1, so all of the possible cycles of period 3 are unstable. 
Similarly, Figure 1.29 shows that the cycles of period four are also unstable. 

In fact, there are no stable cycles of any length, no matter how long, in 
Eq. 1.12, although we will not prove this here. What are the dynamics in Eq. 1.12? 
The next section will explore the answer to this question. 

0.2 0.4 0.6 0.8 Xt 1 
Figure 1.28 
Xt+3 versus Xt for Eq. 1.12. 
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1.7 CHAOS 

DEFINITION OF CHAOS 

Let's do a numerical experiment to investigate the properties ofEq. 1.12. 
Pick an initial condition, say Xo = 0.523423, and iterate. Now start over, but 
change the initial condition by just a little bit, to Xo = 0.523424. The results are 
shown in Figure 1.29. 

There are several important features of the dynamics illustrated in Fig­
ure 1.29. In fact, based on the figure we have strong evidence that this equation 
displays chaos-which is defined to be aperiodic bounded dynamics in a 
deterministic system with sensitive dependence on initial conditions. 

Each of these terms has a specific meaning. We define the terms and explain 
why each of these properties appears to be satisfied by the dynamics in Figure 1.29. 

Aperiodic means that the same state is never repeated twice. Examina­
tion of the numerical values used in this graph shows this to be the case. 
However, in practice, by either graphically iterating or using a computer 
with finite precision, we eventually may return to the same value. Although 
a computer simulation or graphical iteration always leaves some doubt 
about whether behavior is periodic, the presence of very long cycles or of 
aperiodic dynamics in computer simulations is partial evidence for chaos. 

Bounded means that on successive iterations the state stays in a finite 
range and does not approach ±oo. In the present case, as long as the initial 
condition Xo is in the range 0 ::: Xo ::: 1, then all future iterates will also 
fall in this range. This is because for 0 ::: Xt ::: 1, the minimum value 
of 4(1 - Xt )Xt is 0 and the maximum value is 1. Recall that in the linear 
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Figure 1.30 Two solutions to Xt+! = (4 - 4xt )xt • The solution marked with a dot 
has the initial condition Xo = 0.523423, while the solution marked with a circle 
has Xo = 0.523424. The solutions are almost exactly the same for the first seven 
iterations, and then move apart. 

finite-difference equation, Eq. 1.2, we have already seen a system where the 
dynamics are not bounded and there is explosive growth. 

Deterministic means that there is a definite rule with no random terms 
governing the dynamics. The finite-difference equation 1.12 is an example 
of a deterministic system. For one-dimensional, finite-difference equations, 
"deterministic" means that for each possible value of Xt, there is only a single 
possible value for Xt+ 1 = f (Xt). In principal, for a deterministic system Xo 
can be used to calculate all future values of Xt. 

Sensitive dependence on initial conditions means that two points 
that are initially close will drift apart as time proceeds. This is an essential 
aspect of chaos. It means that we may be able to predict what happens for 
short times, but that over long times prediction will be impossible since 
we can never be certain of the exact value of the initial condition in any 
realistic system. In contrast, for finite-difference equations with stable fixed 
points or cycles, two slightly different initial conditions may often lead to 

the same fixed point or cycle. (But this is not always the case; see Chapter 
3.) 

Although the possibility for chaos in dynamical systems was already known 
to the French mathematician Henri Poincare in the nineteenth century, the con­

cept did not gain broad recognition amongst scientists until T.-Y. Li and J. Yorke 
introduced the term "chaos" in 1975 in their analysis of the quadratic map, 
Eq. 1.12. The search for chaotic dynamics in diverse physical and biological fields, 
and the mathematical analysis of chaotic dynamics in nonlinear equations, have 
sparked research in recent years. 
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THE PERIOD-DOUBLING ROUTE TO CHAOS 

We have seen that the simple finite-difference equation 

can display various qualitative types of behavior for different values of R: steady 
states, periodic cycles of different lengths, and chaos. The change from one form 
of qualitative behavior to another as a parameter is changed is called a bifurca­
tion. An important goal in studying nonlinear finite-difference equations is to 
understand the bifurcations that can occur as a parameter is changed. 

There are many different types of bifurcations. For example, in the linear 
finite-difference equation Xt+ 1 = RXt, there is decay to zero when -1 < R < 1. 

For R > 1, however, the behavior changes to exponential growth. The bifurcation 
point, or the point at which a change in R causes the behavior to change, is 
at R = 1. Nonlinear systems can show many other types of bifurcations. For 
example, changing a parameter can cause a stable fixed point to become unstable 
and can lead to a change of behavior from a steady state to a periodic cycle. 

The finite-difference equation in Eq. 1.6 and many other nonlinear systems 
displays a sequence of bifurcations in which the period of the oscillation doubles as 
a parameter is changed slightly. This type of behavior is called a period-doubling 
bifurcation. 

We can derive an algebraic criterion for a period-doubling bifurcation. In 
a nonlinear finite-difference equation there are n fixed points of the function 

Xt = f(f(·· . f(Xt)) 
'-,-' 

n times 

that are associated with a period-n cycle. The slope at each of these fixed points 
is the same. As a parameter is changed in the system, the slope at each of these 
fixed points also changes. When the slope for some parameter value is equal to 

-1, it is typical to find that at that parameter value the periodic cycle of period 
n loses stability and a periodic cycle of period 2n gains stability. In other words, 
there is a period-doubling bifurcation. Unfortunately, application of this algebraic 
criterion can be very difficult in nonlinear equations since iteration of nonlinear 

equations such as Eq. 1.6 can lead to complex algebraic expressions that are not 
handled easily. Consequently, people have turned to numerical studies. 

Using a programmable pocket calculator in a numerical investigation of 
period-doubling bifurcations in Eq. 1.6 led Mitchell J. Feigenbaum to one of 
the major discoveries in nonlinear dynamics. Feigenbaum observed that as the 
parameter R varies in Eq. 1.6, there are successive doublings of the period of 
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oscillation. Numerical estimation of the values of R at the successive bifurcations 
lead to the following approximate values: 

• For 3.0000 < R < 3.4495, there is a stable cycle of period 2. 

• For 3.4495 < R < 3.5441, there is a stable cycle of period 4. 

• For 3.5441 < R < 3.5644, there is a stable cycle of period 8. 

• For 3.5644 < R < 3.5688, there is a stable cycle of period 16. 

• As R is increased closer to 3.570, there are stable cycles of period 2n, 
where the period of the cycles increases as 3.570 is approached. 

• For values of R > 3.570, there are narrow ranges of periodic solutions 
as well as aperiodic behavior. 

These results illustrate a sequence of period-doubling bifurcations at R = 3.0000, 
R = 3.4495, R = 3.5441, R = 3.5644, with additional period-doubling bifur­
cations as R increases. This transition from the stable periodic cycles to the chaotic 
behavior at R = 3.570 is called the period-doubling route to chaos. 

Notice that the range of values for each successive periodic cycle gets nar­
rower and narrower. Call !l.n the range of R values that give a period-n cycle. 
For example, since 3.4495 < R < 3.5441 gives a period-4 cycle, we have 
!l.4 = 3.5441 - 3.4495 = 0.0946. Similarly, !l.s = 3.5644 - 3.5441 = 0.0203. 

The ratio t is ~:~~~~ = 4.6601. By considering successive period 
doublings, Feigenbaum discovered that 

I. !l.n 
1m - = 4.6692 .... 

n ..... oo !l.2n 

The constant, 4.6692 ... is now called Feigenbaum's number. This number ap­
pears not only in the simple theoretical model that we have discussed here but 
also in other theoretical models and in experimental systems in which there is a 

period-doubling route to chaos. 
One way to represent graphically complex bifurcations in finite-difference 

equations is to plot the asymptotic values of the variable as a function of a pa­

rameter that varies. This type of plot is called a bifurcation diagram. Figure 1.31 
shows a bifurcation diagram of Eq. 1.6. This figure is constructed by scanning 
manyvaluesofRintherange3:::: R :::: 4. For each value ofR, 1.6 is iterated many 
times. After allowing enough time for transients to decay, several of the values 

Xt, Xt+l, Xt+2, and so on are plotted. For example, when R = 3.2, Eq. 1.6 ap­
proaches a cycle of period 2, so there are two values plotted. The period-doubling 
bifurcations appear as "forks" in this diagram. 

A summary of the dynamic behaviors discussed in Eq. 1.6 is contained in 
Figure 1.32. As the parameter R changes, different behaviors are observed. If you 
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Figure 1.31 A bifurcation diagram of Eq. 1.6. The asymptotic values of x, are 
plotted as a function of R using the method described in the text. 
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Figure 1.32 The various types of qualitative dynamics seen in x,+! = Rx, (1 - x,) 
for different values of the parameter R. 
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understand the origin of each of these behaviors, you have mastered the material 
in this chapter! 

o ExAMPLE 1.3 

The following equation, called the tent map, is often used as a very simple 
equation that gives chaotic dynamics. 

Consider the finite-difference equation 

where f(x/} is given as 

o ~ XI ~ 1, 

1 
forO < XI < -, - - 2 

1 
for - < XI < 1. 2 - -

(1.13) 

Draw a graph of XHI as a function of XI. Graphically iterate this equation and 
determine if the dynamics are chaotic. 

Solution: The graph of this equation looks like an old-fashioned pup tent 
(see Figure 1.33). Starting at two points chosen randomly near to each other we 
find that both points lead to aperiodic dynamics, where the distance between 
subsequent iterates of the points initially increases on subsequent iterations. 
Therefore, this system gives chaotic dynamics. This problem is tricky, however, 
since many people will start at a point such as 0.1, find that the subsequent iterates 
are 0.2, 0.4, 0.8, 0.4, 0.8, ... , and then conclude that since they have found a cycle 

Figure 1.33 
The graph ofEq. 1.13. 



1 .8 QUA SIP E RIO Die I TY 33 

the dynamics in this equation are not chaotic. However, although there are many 
other such cycles in this equation, "almost all" values between 0 and 1 give rise 
to aperiodic chaotic dynamics. This is because the cycles are all unstable, as was 
defined in Section 1.6. Most equations that display chaotic dynamics also exhibit 
unstable cycles for some initial conditions, and thus this example is typical of 
what is found in other circumstances. 

If you use a computer to iterate this map, watch out! You will probably 
find that the map rapidly converges to the fixed point at Xt = 0, even though 
this is an unstable fixed point. The reason involves the fact that numbers are 
represented in computers in base 2-all of the numbers that a computer can 
store in finite precision will be attracted to X t = O. To eliminate this problem, 
you can approximate the 2 in Eq. 1.13 by 1.9999999. 

D 

1.8 QUASI PERIODICITY 

In chaotic dynamics there is an aperiodic behavior in which two points 
that are initially close will diverge over time. There is another type of aperiodic 
behavior in which two points that are initially close will remain close over time. 
This type of behavior is called quasiperiodicity. In quasiperiodic dynamics there 
are no fixed points, cycles, or chaos. 

To see how this type of dynamics can arise, consider the equation 

Xt+l = !(Xt) = Xl + b (mod 1), (1.14) 

where (mod 1) is the "modulus" operator that takes the fractional part of a num­
ber (e.g., 3.67 (mod 1) = 0.67). To iterate this equation, we calculate Xt + band 
then take the fractional remainder. For example, if Xt = 0.9 and the parameter 
b = 0.3, then Xt + b = l.2 and Xt + b(mod 1) = 0.2. Now consider the second 
iterate. We can do the iteration algebraically: 

Xt+2 = Xt+l + b (mod 1) = (Xt + b (mod 1) + b) (mod 1) 

= Xt + 2b (mod 1). 

In similar fashion, we can find that 

Consequently, if nb(mod 1) = 0, then all values are on a cycle of period n; 
otherwise no values will be. 
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One way to think of this is by analogy to the odometer of a car, that shows 
the total mileage driven. Imagine that the odometer has a decimal point in front 
of it so that it shows a number between zero and one, for instance .07325. Every 
day the car goes b miles. After reaching .99999 the odometer resets to zero. XI is 
the odometer value at the end of the trip on day t. 

An example illustrates these ideas. In Figure 1.34 we show a graph ofEq. 1.14 

for the particular case where b = ~. This graph shows that the function has no 
fixed points, because there are no intersections of the function with the line 
XI+I = XI' The cobweb diagram for several iterations shows that there does not 
appear to be a cycle but that nearby points stay close together under subsequent 
iterations. Therefore, the dynamics appear to be quasiperiodic. 

Can we know that there are never any periodic points no matter how many 
iterations we take? Here's where a bit of advanced mathematics can help. Recall 
the definition of a rational number: A number that can be written as the ratio of 
two integers ~. Irrational numbers cannot be written as a ratio of two integers. 
7r is an irrational number and ~ is therefore also an irrational number. It follows 
immediately that i (mod 1) can never be equal to 0 for any integer n. Therefore, 
there can never be any periodic cycles for Eq. 1.14 with b = ~. Also, from the 
algebraic iteration, we see that the iterates of two initial conditions that are very 
close will remain very close. Therefore, the dynamics are quasiperiodic. 

Though the concept of quasiperiodicity depends on abstract concepts in 
number theory, quasiperiodic dynamics can be observed in a large number of 
different settings. Consider the following odd sleep habits exhibited by one of our 
colleagues when he was in graduate school. The first day of graduate school the 
graduate student fell asleep exactly at midnight. Each day thereafter, the graduate 
student got up, worked, and went to sleep. However, this graduate student did 

0.2 0.4 0.6 0.8 

Figure 1.34 
Iteration of 
Xt+l = X, + ~ (mod 1). The 
dynamics are an example of 
quasiperiodicity. 
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not do this at the regular rhythms but rather with a rhythm of about 25 hours. 
The graduate student came into work about an hour later each day. Eventually, 
after 24 days, the graduate student goes to sleep again at about midnight. If 
the student's sleep cycle were exactly 25 hours, then there would be a cycle: 25 
calendar days would equal 24 graduate student days exactly. However, it would 
be very unlikely that the graduate student's day would be exactly 25 hours. For 
example, suppose the graduate student days were 25 + O.OOlJr hours. Then, 
using the same arguments above, the graduate student would never again go to 
sleep exactly at midnight (independent of the length of time needed to complete 
graduate school!). 

Another area in which quasiperiodic dynamics are often observed is in car­
diology. There can be several different pacemakers in one heart. Normally one 
is in charge and sets the rhythm of the entire heart by interactions with other 
pacemakers (we will turn to this just ahead). However, in some pathological 
circumstances, pacemakers carryon their own rhythm-they are not directly 
coupled to each other. Typically one sees variable time intervals between the fir­
ing times of one pacemaker and the other. Cardiologists generally invent esoteric 
names to describe reasonably simple dynamic phenomena and have classifica­
tion schemes for naming rhythms that are not based on nonlinear dynamics. 
Thus, two different rhythms that can be considered as quasiperiodic (to a first 
approximation) are parasystole and third-degree atrioventricular heart block. The 
analysis of these cardiac arrhythmias leads naturally into problems in number 
theory. 

o ExAMPLE 1.4 

The finite-difference equation, sometimes called the sine map, 

where 0 ::: XI ::: 1, has been considered as a mathematical model for the in­
teraction of two nonlinear oscillators (Glass and Perez, 1982). See Dynamics in 
Action 1 for a typical experiment. 

This system displays period-doubling bifurcations as the parameter b is 
varied. 

a. Find the fixed points of this equation. 

b. Algebraically determine the stability of all fixed points for 0 < b ::: 1. 

What are the dynamics in the neighborhood of each fixed point? 
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Figure 1.35 (left) The graph of XI+l = XI + b sin(21f XI) for b = 0.4; (right) Xt+2 

versus XI, showing the cycle of period 2 when b = 0.4. 

Solution: 

a. There are fixed points when 

Xt+l = XI + b sin 21fxt . 

Thiswillbetruewhenb sin 2rrxt = o which occurs whenxt = 0, ~, 1. 

b. To evaluate the stability we must first determine the slope at the steady 
states. The slope evaluated at the steady state is given by 

dXt+l ---- = 1 + 2rrb cos 21fxt. 
dXt 

Therefore, when Xt = 0 or Xt = 1, the slope at the steady state is 
1 + 21fb > 1, which indicates that the steady state is unstable. For 

Xt = ~ the slope at the steady state is 1 - 2rrb. For 0 < b < ~ this is 
a stable steady state, which is approached in an oscillatory fashion; and 
for b > ~ this is an unstable steady state, which is left in an oscillatory 
fashion (see Figure 1.35). The slope is -1 at b = ~, so this value of b 

gives a period-doubling bifurcation. o 
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DYNAMICS IN ACTION 

1 CHAOS IN PERIODICALLY STIMULATED HEART CELLS 

We are all familiar with bodily functions such as sleep, breathing, locomotion, 

heartbeat, and reproduction, which depend in a fundamental way on rhythmic 

behaviors. Such rhythmic behaviors occur throughout the animal kingdom, and a 
vast literature analyzes the mechanisms of the oscillations and how they interact 

with one another and the extemal environment. Anyone interested in obtaining an 

idea of the scope of the inquiry should consult the classic book by A. T. Winfree, 
The Geometry of Biological Time (1980). 

A 

5 5 5' 5' 5' 

Phase resetting in the human heart. The wavey black line is an electrocardio­
grarn--each sharp A-shaped spike corresponds to one beat. Those labeled 5 
originate in the sinus node as normal. The beat labeled A originates elsewhere 
in the atria. In the absence of beat A, beats would have occurred at the times 
labeled 5', however A resets the phase of the sinus node. Adapted from Chou 
(1991). 

It tums out that the mathematical formulation of finite-difference equations has direct 
applications to the study of the effects of periodic stimulation on biological oscilla­

tors. The examination of periodic stimulation of biological oscillators involves many 

difficult issues, both in the biological and mathematical domains, and scientific 

investigation of these matters is still a research question under active investigation. 

However, compelling examples of chaotic dynamics in biological systems are found 

in the periodic stimulation of biological oscillations. AppreCiation of the origin of 

the chaotic dynamics is possible using the material presented so far inthis chapter. 

Understanding the basics of the periodic stimulation of biological oscillators in­

volves two related concepts: phase and phase resetting. The phase of an 
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oscillation is a measure of the stage of the oscillation cycle. Because of the cyclicity 
of oscillations, it is common to represent the phases of the cycle as a point on the 
circle. For example a phase of 1200 can represent a time that is one third of the Wcfi 

through a cycle. Altematively, we can also represent a phase of 1200 as .333 .... 

o 

~ 

500 msec 

Recording of transmembrane voltage from spontaneously beating aggregates of 
embryonic chick heart cells. The intrinsic cycle length is To. A stimulus delivered 
at a time 8 following the start of the third action potential leads to a phase 
resetting so that the subsequent action potential occurs after time T. After this, 
the aggregate retums to its intrinsic cycle length. Adapted from Guevara et al. 
e 1981). Copyright 1981 by the MAS. 

The term ·phase resetting" refers to a change of phase that is induced by a stimulus. 
One example of phase resetting that many people experience is a consequence of 
jet travel. If you think about travel through different time zones, you will realize that 
the phenomenon of jet lag is associated with a discordance between the phase of 
your sleep-wake oscillator and the current local time. 5tcrting in the new time zone 
for several days will lead to a phase resetting of your sleep-wake cycle. In this case 
the phase resetting takes place in a gradual fashion due to the different light-dark 
cycles and social stimuli in the new environment. 

M.ore abrupt phase resetting can be induced in many biological systems by ap­
propriately chosen stimuli. For example, the rhythm of the human heart is normally 
set by a specialized region of the atria called the sinus node. However, in some 
people's hearts there are extra beats that can interfere with the normal sinus rhythm. 
Sometimes these extra beats can reset the rhythm. The figure on page 37 shows 
an example of an electrocardiographic (ECG) record. The normal sinus beats are 
labeled 5 and an atrial premature contraction is labeled A. If the atrial premature 
contraction had not occurred, the following sinus beat would have been expected 
at times labeled 5'. However, the sinus firing is reset by the atrial premature stimulus, 
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leading to a sinus beat at a different time than would presumably have occurred 
without the atrial premature contraction. 

1.0 sec 

o 
Jmv 
-50 

Periodic stimulation of spontaneously beating chick heart cell aggregates at a 
period slightly longer than the intrinsic period. The interaction of the intrinsic 
cycle and the periodic stimulation results in chaotic dynamics. Adapted from 
Guevara et al. (1981). Copyright 1981 by the MAS. 

Since it is difficult to study the effects that electrical stimuli have on the heart, exper­
imental preparations have been developed that enable detailed analysis (Guevara 
et aI., 1981; Glass et aI., 1984). The figure on page 38 shows phase resetting of 
spontaneously oscillating cardiac tissue derived from embryonic chick hearts. The 
upward deflections are called action potentials and are associated with the con­
traction cycle of the chick heart cells. The intrinsic length of the heart cycle is To. The 
sharp spike delivered after a time interval of 8 after the onset of an action potential 
is an electrical stimulus delivered to the aggregate. The stimulus phase resets the 
rhythm so that following the stimulus the new cycle length is T (rather than To). 
Experimental studies show that the magnitude of phase resetting depends on both 
the amplitude of the stimulus and the phase of the cycle at which the stimulus is 
delivered. 

What happens when periodic stimulation is delivered to the oscillating heart cells? 
Each stimulus phase resets the rhythm. In fact, to a first approximation the amount of 
phase resetting during periodic stimulation depends on the phase of the stimulus 

in the cycle. The consequence of this is that the effects of periodic stimulation can 
be approximated by the finite-difference equation 

tPi+1 = g(tPi) + 1: (mod 1), (1.15) 

where tPi is the phase of the oscillation when the ith stimulus is delivered, g(tPi) is the 
new phase resulting from the ith stimulus, and 1: is the time interval between stimuli 
(measured in units of the intrinsic cycle length). Here we take tP to lie between 0 



40 FINITE-DIFFERENCE EQUATIONS 

and 1. As explained before, the expression (mod 1) means take the fractional part 

of the number. 

1.0 

CPi+1 
0.5 

." 
( 

o 0.5 1.0 

Each stimulus in the preceding figure occurs at a specific phase of the intrinsic 
cycle. Here, we plot the phase of each stimulus as a function of the phase of 
the preceeding stimulus, calculated for the experiment shown in the previous 
figure. The points suggest a function similar to the quadratic map. Adapted from 
Glass et al. (1984). Reprinted with permission from Glass (1984). Copyright 1984 
by the American Physical Society. 

Does the theory work? M. R. Guevara, L. Glass, and A. Shrier (1981) measured 
g(cp) by carrying out phase resetting experiments. They used the resulting finite­
difference equation to predict the dynamics. For a moderate stimulation strength, 
they computed that chaotic dynamics should result, provided that the stimulation 

period was 15 percent larger ('l' = 1.15) than the intrinsic cycle length. The effects 

of periodic stimulation with 'l' = 1.15 are shown in the figure on page 39. Note the 

irregular rhythm. On this record, the phase of each stimulus can be measured and 

successive phases can be plotted as a function of the preceding phase; see the 

figure on this page. The phases fall on a one-dimensional curve that is very similar 

to functions that give chaotic dynamics, as we have seen earlier. This observation, 

combined with the more extensive analyses of Glass et al. (1984), gives convincing 
evidence for chaotic dynamics in this experimental system. 
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SOURCES AND NOTES 

There are now a number of elementary texts on chaos. A fine introduction to 
these topics from a noncalculus perspective is in Peak and Frame (1994). Those 
who have a good background in calculus and are interested in a presentation 
from a mathematical perspective should consult Devaney (1992). Elementary 
texts from the perspectives of physics (Baker and Gollub, 1990) and engineer­
ing (Moon, 1992) have also appeared. The application of chaos and nonlinear 
dynamics to physiology and human disease is discussed by Glass and Mackey 
(1988). 

Edward N. Lorenz realized the practical implications of the sensitive de­
pendence to initial conditions in his famous essay on deducing the climate from 
the governing fluid-dynamical equations (Lorenz, 1964a). Another influential 
paper (May, 1976) introduced many to the concept of chaos, with an ecological 
twist, and contained extensive references to early experimental and mathematical 
work. Descriptions of the occurrence of chaos in many different contexts can be 
found in assorted collections of papers (Hao, 1984; Holden, 1986; Cvitanovic, 
1989). The popularization by James Gleick (1987) provides a enjoyable account 
of some of the recent discoveries concerning chaos and description of many of the 
scientists, such as Mitchell Feigenbaum, who have played a role. Another good 
read, by Thomas Bass, recounts how a group of physics graduate students in Santa 
Cruz (dubbed the "Santa Cruz collective" by Gleick) in the late 1970s tried to use 
their knowledge of nonlinear dynamics and physics to make a fortune playing 
roulette (Bass, 1985). Curiously, some of the same people are trying to predict the 
fluctuations of the currency market and have started a company, The Prediction 
Company in Santa Fe, New Mexico. The Santa Cruz collective presents a brief 
introduction to chaos in Crutchfield et al. (1986). Feigenbaum (1980) gives a 
memorable description of how he discovered his number. 

Those scholars interested in the history of chaos will want to look through 
the many volumes of Poincare's (1954) collected works trying to find the earliest 
reference to the concept of chaos-most cite "New Methods of Celestial Mechan­
ics" as the earliest source, but we have not tried to check out if there are earlier 
citations. Li and Yorke (1975) first used "chaos" in its current meaning, but their 

paper is not for the faint-hearted. 
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~ EXERCISES 

~ 1.1 Assume that the density of flies in a swamp is described by the equation 

R 2 
Xt+l = RXt - --x 

2000 t· 

Consider three values of R, where one value of R comes from each of the 
following ranges: 

a. 1 :::: R < 3.00 

b. 3.00 :::: R :::: 3.449 

c. 3.570 :::: R :::: 4.00. 

For each value of R graph Xt+ 1 as a function of Xt. Using the cobweb method follow 
Xt for several generations. Describe the qualitative behavior found for each case. 

~ 1.2 Not every finite-difference equation has fixed points that can be found 
algebraically. For example, the system 

Xt+l = cos(Xt) 

involves a transcendental function and cannot be solved algebraically. Use a graph 
to find the approximate location and number of the fixed points. If you enter an 
initial condition into a pocket calculator and press the cosine key repeatedly, you 
are in effect iterating the finite-difference equation. Does the calculator approach 
a fixed point? Does the existence, location, or stability of the fixed point depend 
on whether Xt is measured in radians or in degrees? 

~ 1.3 Find a function for a nonlinear finite-difference equation with four 

fixed points, all of which are unstable. Find a function with eleven fixed points, 

three of which are stable. Find a function with no fixed points, stable or unstable. 

(HINT: Just give a graph of the function without worrying about specifying the 
algebraic form.) 

~ 1.4 In a remote region in the Northwest Territories of Canada, the dynamics 

of fly populations have been studied. The population satisfies the finite-difference 

equation 

Xt+l = 11 - O.Olx;, 

where Xt is the population density (Xt must be positive). 
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a. Sketch Xt+l as a function of Xt. 

b. Determine the fixed-point population densities and determine the 
stability of every fixed point algebraically. 

c. Assume thatthe initial density is less than (11 00) ! . Discuss the dynamics 
ast ~ 00. 

(f!? 1.5 A population of flies in a mangrove swamp is described by the finite-

difference equation 

{
O.OIX;, 

Xt+l = 
0.01K2 exp[-r(xt - K)], 

for Xt < K; 

for Xt ~ K. 

Assume that K = 103 and r = l. 75 X 104• 

a. Draw a graph of Xt+! as a function of Xt. 

b. From this graph determine the fixed points of the fly population. 

c. Determine the local stability of the fly population at each fixed point. 

d. Determine the dynamics for future times if the initial population of fly 
is (i) 60; (ii) 600; (iii) 6000; (iv) 60,000. For each case graphically iterate 
the equation for several generations and guess the dynamics as t ~ 00. 

(f!? 1.6 Consider the finite-difference equation 

2 
Xt+l = Xt + c, -00 < X t < 00, 

where c is a real number that can be positive or negative. 

a. Sketch this function for c = o. Be sure to show any maxima, minima, 
and inflection points (these should be determined algebraically). Show 
the location of all steady states. 

b. For what value(s) of c are there zero steady states? one steady state? two 
steady states? 

c. For what value of c is there a period-doubling bifurcation? 

d. Considerthesequencexo, Xl, X2 • •••• X n • For what range ofcwillxn be 

finite given the initial condition Xo = O? 

(f!? 1.7 The following equation plays a role in the analysis of nonlinear models 
of gene and neural networks (Glass and Pasternack, 1978): 

aXt 
X -

t+l - 1 + f3 Xt • 

where a and f3 are positive numbers and Xt ~ o. 
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a. Algebraically determine the fixed points. For each fixed point give the 
range of a and fJ for which it exists, indicate whether the fixed point is 
stable or unstable, and state whether the dynamics in the neighborhood 
of the fixed point are monotonic or oscillatory. 

For parts b and c assume a = 1, fJ = 1. 

b. Sketch the graph of X,+l as a function of x,. Graphically iterate the 
equation starting from the initial condition Xo = 10. What happens as 
the number of iterates approaches oo? 

c. Algebraically determine X,+2 as a function of XI> and Xt+3 as a function 
of X,. Based on these computations what is the algebraic expression for 
X,+n as a function of x,? What is the behavior of Xt+n as n ~ oo? This 
should agree with what you found in part b. 

(If? 1.8 In cardiac electrophysiology, many phenomena occur in which two 
behaviors alternate on a beat-to-beat basis. For example, there may be an alterna­
tion in the conduction time of excitation from one region of the heart to another, 
or there may be an alternation of the morphology of the electrical complexes 
associated with each beat. A natural hypothesis is that these phenomena in elec­
trophysiology are associated with period-doubling bifurcations in appropriate 
mathematical models of these phenomena. Both this problem and Problem 1.9 
are motivated by possible connections between period-doubling bifurcations and 
cardiac electrophysiology. 

During rapid electrical stimulation of cardiac tissues there is sometimes a 
beat-to-beat alternation of the action-potential duration. 

Consider the equation 

X'+l = !(x,), 

where x, is the duration of the action potential of beat t and 

!(X,) = 200 - 20 exp(x,j62) for 0 ::: x, < 128; 

!(X,) = 40 for 128 < x, ::: 200. 

All quantities are measured in milliseconds (msec). 

a. State the conditions (using calculus) for maxima, minima, and inflection 
points and say if any such points satisfy these conditions for the function 

defined above. 
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b. Sketch f (Xt) for 0 ::: Xt ::: 200. 

c. Determine the fixed points (an approximation is adequate). 

d. In the neighborhood of each fixed point determine the stability of the 
dynamics and indicate if the dynamics are oscillatory or monotonic. 

e. Starting from a point near the fixed point, graphically iterate the equation 
and say what the behavior will be in the limit t -+ 00. A rough picture 
is adequate. 

~ 1.9 In the heart, excitation generated by the normal pacemaker in the atria 
travels to the ventricles, causing contraction of the heart and the pumping of 
blood to the body and the lungs. The excitation must pass through the atri­
oventricular node, which electrically connects the atria and the ventricles. The 
following problem is based on a mathematical model for atrioventricular (AV) 

conduction in mammals (Simson et al., 1981). 
Assume that subsequent values of AV conduction time, designated Xt, are 

given by the finite-difference equation 

375 
Xt+l = + 100, 

Xt - 90 
Xt ~ 90. 

The units of all quantities are msec. 

a. Sketch Xt+l as a function of Xt. Indicate whether there are any maxima, 
minima, and inflection points. 

b. Determine the fixed point(s) of this equation in the range Xt ~ 90 msec. 

c. Determine the stability of the fixed point( s} found in part b. 

d. Based on your analysis, how will the dynamics evolve starting from an 
initial condition of Xo = 200 msec? 

~ 1.10 The following equation was proposed as a model for population 
densities of insects in successive years: 

where a and fJ are positive numbers and Xt ~ o. 

a. Sketch the graph of Xt+l as a function of Xt. Determine any maxima or 
minima, but it is not necessary to compute the values of any inflection 
points. 

b. Fora = 2.72andfJ = 0.33, determine the fixedpoint(s) and determine 
their stability. (HINT: The natural logarithm, designated as ln, is the 
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logarithm to the base e. Since e ~ 2.72, you can assume that In ex ~ 1, 
to simplify the algebra.) 

c. Starting from an initial value of Xo = 137, what are the possible 
dynamics in the limit t -+ oo? 

~ 1.11 The following equation has been proposed to describe the population 
dynamics of flies: 

Nt+! = g(Nt}, Nt:::: 0, 

where the fly density in generation t is Nt and 

g(Nt} = Nt exp [r (1 - 1 :N~,z)]' 
where r > 0 and p > 1. 

a. For 0 < Nt « 1, Nt+! is approximately given by 

Nt+! = Nter • 

In this case will N! be greater than, less than, or equal to No? 

b. For Nt » 1 show that Nt+! can be approximately computed from the 
formula 

N t+! = KNt , 

where K does not depend on Nt. Compute K for No » 1; will N! be 
greater than, less than, or equal to No? 

c. Determine all fixed-point values of Nt (Nt :::: O). (HINT: If A = B, then 
log A = log B.) 

dg(Nt } 
d. Compute ---. 

dNt 

e. Assume that p = 2 and r = 1.2. Use the result from part d to com­
pute all values of Nt, Nt > 0 for which g(Nt} is either a maximum or 
minimum. (HINT: Let z = N/.) 

f. Assume that p = 2 and r = 1.2. Use the result from part d to compute 
the stability of all fixed points found in part c. 

g. Sketch the graph of Nt+! versus Nt for p = 2, r = 1.2. 
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t!? 1.12 Assume an ecological system is described by the finite-difference 
equation 

Xt+! = CX;(2 - Xt), o ::: Xt ::: 2, 

where Xt is the population density in year t and C is a positive constant that we 
assume is equal to ~. 

a. Sketch the graph of the right-hand side of this equation. Indicate the 
maxima, minima, and inflection points. 

b. Determine the fixed points of this system. 

c. Determine the stability at each fixed point and describe the dynamics in 
the neighborhood of the fixed points. 

d. In a brief sentence or two describe the expected dynamics starting from 
initial values of Xo = ~ and also Xo = 1 in the limit as t -+ 00. In 
particular, comment on the possibility that the population may go to 
extinction or to chaotic dynamics in the limit t -+ 00. 

t!? 1.13 In this problem Pt represents the fraction of neurons of a large neural 
network that fire at time t. As a simple model of epilepsy, the dynamics of the 
network can be described by the finite-difference equation 

Pt+1 = 4CP/ - 6CP/ + (1 + 2C)Pt , 

where C is a positive number, and 0 ::: Pt ::: 1. 

a. Compute the fixed points. 

b. Determine the stability at each fixed point and describe the dynamics in 
the neighborhood of the fixed points as a function of C. 

c. Sketch Pt+! as a function of Pt for C = 4. Show all maxima, minima, 
and inflection points. 

d. On the basis of the preceding work discuss the dynamics as t -+ 00 

starting from an initial condition of Po = 0.45 with C = 4. Try to do 
this graphically and, if possible, on a computer. 

t!? 1.14 This problem deals with the equation 

Xt+l = !(Xt) = 3.3xt - 3.3x;. 

a. Determine the fixed points of Xt+2 = ! (f (Xt)). Which ofthese points 
are also fixed points of Xt+l = !(Xt)? 



48 FINITE-DIFFERENCE EQUATIONS 

b. Are there any cycles of period 3? 

~ 1.15 Show that if there is one solution to Xt = g(g(xt)),wherext #- g(Xt), 
then there must also be another, different solution. 

~ 1.16 The dependence of the stability of a fixed point on the derivative 
can be shown algebraically using Taylor series. The Taylor series gives a polyno­
mial expansion of a function in the neighborhood of a point. The Taylor series 
expansion of f (x) at a point a is 

df I (x - a)2 d2 f I + .... f(x) = f(a) + (x - a) - + ---
dx a 2! dx 2 a 

(1.16) 

This problem is aimed at using the Taylor series to derive analytically the local 
stability criteria for a fixed point in the finite-difference equation 

Assume that there is a fixed point defined by Xt = f(Xt) = x*. Define 

df I m- -
- dx x' 

Derive the stability criteria for the fixed point at X* using the Taylor se­
ries. (HINT: Define Yt = Xt - x* and consider the linear terms in the resulting 
equation.) 

~ 1.17 Periodically stimulated oscillators can often be described by one­
dimensional finite-difference equations (see the Dynamics in Action 1 box). The 
variable <Pt refers to the phase of stimulus t during the cycle. The phase of the 
subsequent stimulus <PH! is a function of <Pt. The next three problems are all mo­
tivated by theoretical models that have been proposed for periodically stimulated 

oscillators. 
The following finite-difference equation has been considered as a mathe­

matical model for a periodically stimulated biological oscillator (Belair and Glass, 

1983): 

{ 
6<Pt - 12<p;, 

<Pt+! = 2 
12<Pt - 18<pt + 7, 

o :::: <Pt < 0.5; 

0.5 :::: <Pt :::: 1. 

a. Sketch <Pt+! as a function of <Pt for 0 :::: <Pt :::: 1. Be sure to show all 
maxima and minima and to compute the values of <Pt+! at these extremal 
points. 
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b. Compute all fixed points. What are the qualitative dynamics in the 
neighborhood of each fixed point? 

c. If you have done part (a) correctly, you should be able to find a cycle of 
period 2. What is this cycle? Show it on your sketch. 

iff? 1.18 The finite-difference equation 

ifJt+l = 0.5 + ex sin 2nifJt, o ~ <Pt < 1, 

where 0 ~ ex < 0.5, has been used as a mathematical model for periodic 
stimulation of biological oscillators. 

a. There is one steady state. Determine this steady state and its stability as 
a function of ex • 

b. For what value of ex is there a period-doubling bifurcation? 

c. Sketch ifJt+l as a function of ifJt for ex = 0.25. Be sure to indicate all 
maxima, minima, and inflection points. 

d. For ex = 0.25 there is a stable period-2 orbit. What is it? 

iff? 1.19 The following equation arose in the study of two independent oscilla­
tors competing for control of the heart. The resulting cardiac arrhythmia is called 
parasystole. Theoretical analysis of parasystole shows interesting rhythms obey­
ing rules derived from number theory. The following example illustrates typical 
dynamics found when the ratio between the two frequencies is a rational number. 
For more details on the mathematical modeling of this cardiac arrhythmia, see 
Glass et al. (1986). 

A mathematical model for a periodically forced biological oscillator can be 
written as 

{ 

ifJt + 0.4, for 0 ~ ifJi < 0.6; 

ifJt+l = ifJt - 0.2, for 0.6 ~ ifJi < 0.7; 

ifJt - 0.6, for 0.7 ~ ifJt < 1.0, 

where ifJt is the phase in the cycle of the forced oscillator at which the tth periodic 
stimulus falls, 0 < ifJt < 1. 

a. Accurately plot on graph paper ifJt+l as a function of ifJt. 

b. Determine the fixed points, if any, and determine their stability. 

c. Take an initial condition ifJo = 0.65 and determine the dynamics (both 
algebraically and graphically) until a periodic orbit is reached. Do the 
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same for an initial condition of <Po = 0.95. An accurate graph is essential 
here. 

d. Are the periodic orbits in part c stable? 

(/? 1.20 The population of a species is described by the finite-difference 
equation 

Xt+l = aXt exp(-xt), Xt 2: 0, 

where a is a positive constant. 

a. Determine the fixed points. 

b. Evaluate the stability of the fixed points. 

c. For what value of a is there a period-doubling bifurcation? 

d. For what values of a will the population go extinct starting from any 
initial condition? 

e. On a computer, generate the bifurcation diagram as a function of a. Even 
though you might not be able to do this computation, do you expect 
that the bifurcation diagram will display the period-doubling route to 
chaos similar to that shown in Figure 1.31? 

(/? 1.21 If you are tired about problems concerning flies, consider the fol­
lowing model about bird populations. Birds eat flies. Milton and Belair (1990) 
proposed this equation as a model for bird densities in successive years: 

13.22Xt 

Xt+l = 
0.5xt 

for 0 S Xt S 1 
(1.17) 

for 1 < Xt. 

Draw a graph of Xt+l as a function of Xt. Graphically iterate this equation 
and determine if the dynamics are chaotic. 

(/? 1.22 Print your last name. Count the number of letters and multiply the 
number by 0.1. Your magic number, m, is 1 plus the number that you just 
computed. If your last name has nine or more letters, assume that m = 1.9. 

Consider the finite-difference equation given by the following equations: 

1 
Xt+ 1 = mxto for 0 S Xt S -

m 

1 
Xt+l = mXt - 1, for - < Xt S 1. 

m 

a. Draw a graph of Xt+l as a function of Xt. 
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b. Determine the fixed point(s) and determine their stability. 

c. Graphically iterate this equation. 

d. Are the dynamics chaotic? 

tfJJl 1.23 In Example 1.4 in the text, we looked for period-doubling bifurcations 
in the finite-difference equation: 

We found that fixed points became unstable when b = ~. At these bifurcation 
points, a stable period-2 cycle emerges. Here, we are interested in studying the 
stability of these cycles of period 2. In particular, we want to know when the cycles 
are "superstable;' meaning that a nearby point is immediately moved onto the 
cycle rather than approaching it exponentially. Such superstability occurs when 
the graph has slope zero at the fixed points of the cycle, which will occur when 
the graph is at a maximum or a minimum on the cycle. 

a. Sketch the graph of the equation for b = ~. Determine the values of 
all maxima, minima, and inflection points. 

b. For a particular value of b the maximum and minimum of f (Xt) are on 
a cycle of period 2. Sketch the function for this case showing the cycle 
of period 2. It is not necessary to determine the value of b that leads to 
this behavior. However, will b be greater than or less than ~? 

~ COMPUTER PROJECTS 

Consider the two following one-dimensional finite-difference equations. 

Equation A 

Xt+l = Asinrrxt. Equation B 

where 0 :::: Xt :::: 1. 0:::: A :::: 1. 
For both Equation A and Equation B carry out Projects 1-5. 

Project 1 Write a computer program that can be used to iterate these 
equations. 

Project 2 Compute a bifurcation diagram such as shown in Fig. 1.31. To 
compute this first set a value for A. Then iterate the equation equation 200 times, 
but only save the values of the last 100 iterates. Plot these 100 values on a graph 
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above the corresponding value of A. Increment A in small steps. In doing this you 
may wish to experiment with the step size in A, the length of the transient and 
the number of plotted points. Getting a nice looking picture depends on taking 
fine steps in A, taking a sufficiently long transient, and plotting a sufficiently large 
number of points. 

Project 3 Write a program that can determine if a sequence of values gener­
ated from iteration of the equations is periodic. If it is periodic, what is the period 
of the cycle? In doing this, it is best for you to set a specific value for convergence 
to a periodic orbit. This means that if the distance between 2 points is closer than 
some value, for example E = 10-5, you would declare that a periodic orbit had 

been found. 

The next two projects make use of the techniques developed above. Carrying 
them out successfully requires some skill and careful numerical work. If you get 
stuck you might wish to look back at original sources. Project 4 is based on 
Metropolis et al. (1973), and Project 5 is based on Feigenbaum (1980). 

Project 4 Determine the sequence of periodic orbits that are encountered 
as a function of A. In doing this there are 3 parameters that you will have to 
adjust: the number of iterates, the increment in A, and the convergence criterion. 
Although it probably seems like it should be trivial to decide what the period 
is for any value of A you may surprised to find that different sets of the 3 pa­
rameters will give different answers. The situation can be particularly delicate 
when you are near values of A that lead to bifurcations in the dynamics. The 
sequences of periodic orbits for the 2 different maps should be the same. Are 
they? 

Project 5 Locate sequences of period doubling bifurcations. Write a pro­
gram that can compute automatically the value of Feigenbaum's number for the 

two functions given above. Do you obtain the same value that has been found 
by Feigenbaum? Is the value the same for both of the functions? Is the value the 
same for the sequences of periodic orbits 2, 4, 8, ... and 3, 6, 12, ... ? 

Project 6 Now that you have mastered functions with one parameter you 
are ready to explore functions with 2 parameters. Consider the function (often 

called the sine circle map) 

Xt+l = Xt + a + b sin(2JTxt) (mod 1), 

where 0 ::: a ::: 1, 0 ::: Xt ::: 1, and b ~ O. Your task is to study the periodic 
orbits as a function of a and b. Since there are 2 parameters now, you will make 
a plot of the behavior with a on the horizontal axis and b on the vertical. At each 

value of a and b, plot a dot whose color depends on the length of the period 
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found. You will have to consider what to do if you do not find any period. An 
additional complication comes from the fact that the cycle that you find in some 
regions of parameter space will depend on the initial condition. 



CHAPTER 2 



Boolean 
Networks 
and Cellular 
Automata 

In Chapter 1 we studied dynamical systems of the form 

Xt+! = !(Xt). 

In this equation there is a single dynamical variable, Xt. If we know the value 
of x at time t, we can calculate the value at time t + 1 and at future times. In 
this chapter, we shall study systems in which there is more than one dynamical 
variable. Most complex systems that are found in biology-such as the genetic 
regulatory system, the nervous system, the immune system, and ecosystems-are 
composed of multiple interacting elements. In a living organism it is impossible 
to consider the dynamics of a single neuron, or gene, or immune cell, without 
considering the interactions with other elements of the network. However, be­
cause of the complexity of these systems, accurate mathematical descriptions are 
usually impossible, and one thus resorts to simplifications. One simplification is 
that time is discrete, and that the behavior of a system at one time depends on the 
state of the system at a preceding time. A second assumption is that the elements 
of the network have only a limited number of different values. For example, at 
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Input 1 

Input __ ~. 

Input 3 

Figure 2.1 
An element has inputs and a 
single output. The output may be 
connected as an input to more 
than one element. 

any given time a gene might be "turned on" or "turned off;' or a neuron might be 
firing or not firing. Despite the rather gross simplifying assumptions, you should 
realize at the outset that the resulting networks can nevertheless be extraordi­
narily complex, and there remain many outstanding issues that are not yet well 
understood. 

2.1 ELEMENTS AND NETWORKS 

A network is a collection of connected elements. Each element can be 
thought of as having a single output and possibly many inputs (see Fig­
ure 2.1). Each element also has a rule to tell what the output should be given 
the inputs. For example, an element might have a rule that says that the output 
should be the sum of the inputs. In a network, the output of an element can be 
the input of some other element, or can even be an input to itself. An element 
may send its output to more than one element. 

As Figures 2.2 and 2.3 show, the connectivity of a network can be visualized 
as a set of nodes (which are drawn as gray circles), and a set of edges (drawn as 
black arrows) connecting pairs of nodes. The nodes correspond to the elements, 
and the edges correspond to the inputs and outputs. Whether an edge is an input 
or output for a given node is indicated by an arrowhead. 

Figure 2.2 
A simple network consisting of two elements. 
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Figure 2.3 
A network with three elements. 

In order to complete the description of the network, it is necessary to specify 
the rule that governs how the output of each node is related to the inputs. One can 
imagine any number of rules. In this chapter, we will consider several different 
types of rules that produce interesting dynamical behavior. 

Since there is only one output for each node, we can identify the output 
with the name of the node. The rule for node A in the two-element network 
shown in Figure 2.2 can be written as 

which says simply that the output of A at time t + 1 is a function of the input at 
time t. Similarly, the rule for node B is Bt+! = fB(A t}. (This notation is similar 
to that used in Chapter 1. The only difference here is that the function f has a 
subscript that identifies to which node the function applies.) 

For the three-element network shown in Figure 2.3, the rule for node B is 

Bt+! = fB(A t , Ct}. 

This says that the value of output B at time t + 1 depends on the values of both A 

and C at time t . In general, the order of the arguments to a function is important, 
so that fB(A t , Ct} may not be equal to fB(Ct , At}. The graphs, however, do not 
specify the order of arguments to the rule. A complete description of a network 
is given by a list of functions and arguments. For example, a description for the 
three-element network in Figure 2.3 is 

Bt+! = fB(A t , Ct}, 

Ct+I = fdAt , Bt}. 
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Once we specify the forms of the functions fA 0, In 0, and fe 0, we have a 
complete description of the network. We will see some ways to do this in the 
following sections. 

In this chapter we are going to consider networks where the output of 
each node can have only a finite set of discrete values-for example, 0, 1, 2, 
3-as opposed to the continuum of values for the dynamical systems studied in 
Chapter 1. 

2.2 BOOLEAN VARIABLES, FUNCTIONS, AND 
NETWORKS 

An extreme limiting case for the input/output rules for elements is where 
the output can have only a single value. This is obviously not a case of much 
interest-if the output of each element can have only one value, then nothing can 
change in the network. 

As soon as we allow each output to have two values, however, interesting 
things can start to happen. By convention, the two allowed values are usually 
written as 1 or 0 (or, alternatively, ON or OFF). A variable that can have only the 
values 1 or 0 is called a Boolean variable, and a rule that tells how a Boolean output 
is determined by a Boolean input is called a Boolean function. The foundations 
for this analysis were laid by George Boole (1815-1864). One area of application 
of the study of Boolean variables is in computer science--Boolean variables and 
functions are central to digital circuit design and computer architecture. 

A basic concept is the state of a network, which specifies whether each 
element is ON or OFF. For example, a possible state for a three-element network at 
time i is Ai = 0, Bi = 1, Ci = 1. As a shorthand notation, we will sometimes 
write this as (011). For a Boolean network with two elements, there are four 
possible states: 

(00), (01), (10), (11). 

For a network with three elements, there are eight possible states: 

(000), (001), (010), (011), (100), (101), (110), (111). 

You should see the relationship between the number of elements and the number 
of possible states. For a network with N elements, there are 2N possible states. 
This number can be very large--for a network with 100 elements, there are 
~ 1.27 x 1030 possible states. The state at time t = 0 is called the initial 
condition of the network. 
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NETWORKS OF SINGLE-INPUT BOOLEAN ELEMENTS 

Networks can be constructed out of Boolean elements with a single input. 
These networks can be readily studied and produce some interesting types of 
dynamical behavior: fixed points, cycles, and multistability. These behaviors are 
easy to understand with the simple connectivities that are possible in single-input 
networks. 

Only four Boolean rules are possible for relating a single input to an output. 
They are explained in the following table. 

Name 

IDENTITY 

INVERSE 

ZERO 

ONE 

Input 
(O) (I) 

o 
1 

o 
1 

1 

o 
o 
1 

For example, if an element has the IDENTITY rule and its input is (O), then 
its output will also be O. On the other hand, an element whose rule is INVERSE will 
produce a 0 output only when its input is (I), and will produce a 1 when its input 
is (O). For both ZERO and ONE, the output is not influenced by the input. 

The first thing to realize about single-input networks is that to analyze the 
dynamics we have to understand the dynamics generated by only three different 
classes of connectivities: unclosed strings, simple closed loops and loops to which 
strings are attached. It is impossible for single-input networks to have two or 
more connected loops (for example, a figure-eight structure). 

STRINGS 

The dynamics of networks with a string connectivity are very simple. 
Consider a string network with four elements A, B, C, and D in which ele­

ment A has no input, and the inputs to the other elements follow the scheme 
A ~ B ~ C ~ D. Since A has no input, it is constant in value. The dynamical 
equations for the other elements are 

By substitution, we have 
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This says that, independent of the value Bo, after one "startup" or transient it­

eration, B will assume a constant value, Br~.1 = fB(Ao). Similarly, after two 
iterations, C will have a value that remains constant, Cr~2 = !c(fB(Ao». After 
three iterations, D also remains constant; Dr~3 = fD(fC(fB(Ao»). 

We can generalize to strings oflength N and find that after N - 1 iterations, 
all the elements of the string will reach a constant value that depends only on the 
value of the first element in the string. All strings reach a fixed point after a 
transient that lasts N - 1 time steps. Figure 2.4 depicts an open string network. 

CLOSED LOOPS-THE BUCKET BRIGADE 

The dynamics of closed loops is much more interesting. 
If a loop has a node whose rule is ZERO or ONE, then it is effectively cut open 

into a string. The rules ZERO and ONE disregard their input, and so in drawing the 
graph of a network including ZERO or ONE nodes, we can erase the inputs to those 
nodes; this clearly turns a loop into a string. (Similarly, a string is effectively cut 
into two parts by a ZERO or ONE node.) Since we have already seen the dynamical 
behavior of strings, we will consider only loops that have IDENTITY or INVERSE 

nodes exclusively. 
A helpful way to think about loops is as a kind of "bucket brigade" (see 

Figure 2.5). Bucket brigades are an old-fashioned way of fighting fires using a 
ring of people, each person with a bucket. The ring is stretched lengthwise like a 
rubber band; at one end is a well or other source of water, at the other end the 
fire. At each call by a pacemaster, every person in the ring passes his or her bucket 
to his or her neighbor and takes a bucket from the neighbor on the other side. 
The buckets move around the ring, with the person at the water source filling 
the empty buckets, and the person at the fire emptying the full buckets. (In some 
towns in colonial America, each adult male was required to own a bucket with 
his name on it so that he could participate in bucket brigades.) 

Figure 2.4 
An open string network. 
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Figure 2.5 
A closed loop network. 

To apply the analogy of the bucket brigade to single-input Boolean net­
works, imagine that people in the loop can have either an IDENTITY or INVERSE 

rule. Those with the IDENTITY rule will simply pass along the bucket without 
changing its contents. Those with the INVERSE rule will empty out any full bucket 
that arrives, or fill any empty bucket, before passing it to his or her neighbor. 

In terms of our notation for networks, a full bucket corresponds to an 
output value 1 and an empty bucket to value O. Every node in the bucket brigade 
has the IDENTITY rule (which means that the bucket is passed on unchanged), 
except for the nodes at the water source and the fire, which have the ONE and 
ZERO rules, respectively. The initial condition is that everyone is holding an empty 
bucket, that is, initially the state is 000 ... 000. Also, each person starts holding a 
bucket with his or her own name on it. 

If there are N nodes in the loop, then after N time steps every bucket is 
returned to its original owner. It's easy to see that if every node has the IDENTITY 

rule, then each bucket would arrive back at its owner in the same full or empty 
state whence it started out. Thus, the network would return to its initial condition 
after N time steps. The same is true if there is an even number of INVERSE nodes 
in the loop. On the other hand, if there is an odd number of INVERSE nodes, then 
a bucket will arive back at its owner in the inverse condition to how it started 
the loop. After two cycles, though, each bucket will be restored to its original 
condition, and the network will return to its initial condition after 2N time steps. 
Loops with an odd number of INVERSE nodes are said to be frustrated. Loops with 
an even number of INVERSE nodes are called unfrustrated. 

Whatever the initial condition, a loop provides a guarantee that it will 
be returned to after N time steps for unfrustrated loops or 2N time steps for 
frustrated loops. Thus, every possible initial condition is part of a cycle. For a cycle 
of period N, the network as a whole will have N different states reached in turn. 

In the Boolean networks, as opposed to the colonial bucket brigades, the 
"buckets" do not belong to anyone and do not have names written on them. It is 
possible, therefore, to have a return to the initial condition after fewer than N or 
2N time steps and therefore to have a cycle of period m less than N. 
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Given a network, how many different cycles are there? This is an important 
question, since it addresses the issue of how many different types of behavior are 
possible in a given network. We can put a lower bound on the number of different 
cycles by assuming that all cycles are of maximum length N for unfrustrated 
networks or 2N for frustrated networks. There are 2N possible states for the 
network, but only N different states are reached within a given cycle, and the 
minimum number of distinct cycles is ~ for unfrustrated networks and 2';;' 
for frustrated networks. The actual number of cycles depends on the symmetry 
of the network and is an advanced topic. We will see some examples ahead. 

Since every possible initial condition is part of a cycle, there are no transients 
or attractors in a loop. 

LOOPS WITH STRINGS 

If you look carefully at the topology of networks that consist of loops with 
strings coming off the loop, you will see that there is an element of the loop at the 
head of each string (see Figure 2.6). Since no element of the loop has an input 
from any string, the dynamics of the elements in the loop are unaffected by the 
strings. The strings simply pass along the output the loop sends them; they are 
in a sense passive recipients of the dynamics of the loop and will have the same 
period as the loop to which they are attached. 

o ExAMPLE 2.1 

A loop network with N elements can have cycles oflength up to N if the 
network is unfrustrated, and up to 2N if the network is frustrated. What periodic 
cycles can appear in the two networks shown in Figures 2.7 and 2.S? Are the 
networks frustrated or unfrustrated? 

Solution: The network shown in Figure 2.7 is unfrustrated, because there 
is an even number of INVERSE nodes in the loop. To find the cycles, pick one of the 

Figure 2.6 
A closed loop with strings. 
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Figure 2.7 
An un frustrated network with three nodes. 

Figure 2.8 
A frustrated network with three nodes. 

possible states of the network, for example (Ill), use this as an initial condition, 
and follow the evolution of the state in time. For example, since B inverts its 
input, if At = 1, then Bt+! = O. Similarly, since C also has INVERSE as a rule, 
Ht = 1 gives CHI = O. Ct = 1 leads to A t +! = 1, since A has IDENTITY as a 
rule. The state at time t + 2 can be found in a similar fashion and the process 
can iterate indefinitely. When the state returns back to its initial condition, the 
complete cycle has been traced out. Then, pick some other state that is not on the 
cycle to use as another initial condition, and trace out the evolution of this state 
until it returns back to the initial condition. Repeat this using all possible states. 
Following this procedure for the network in Figure 2.7, we find that the network 
has two cycles of period 3 and two cycles of period 1 (i.e., fixed points): 

(Ill) -+ (100) -+ (001) -+ (Ill) -+ .. . 

(000) -+ (011) -+ (110) -+ (000) -+ .. . 

(101) -+ (101) -+ . . . 

(010) -+ (010) -+ .. . 

This network in Figure 2.8 is frustrated, because there is an odd number of 
INVERSE nodes in the loop. The network has one cycle of period 6 and one cycle 
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of period 2: 

(111) ~ (101) ~ (100) ~ (000) ~ (010) ~ (011) ~ (111) ~ ... 

(110) ~ (001) ~ (110) ~ .... 

DYNAMICS IN ACTION 

2 A LAMBDA BACTERIOPHAGE MODEL 

The lambda bacteriophage is a virus that invades E. coli bacteria. The lambda 

bacteriophage has two distinct modes of operation: It can become integrated 
into the host cell DNA and be replicated automatically each time the bacterium 

divides; or it can multiply in the cytoplasm of the bacterium, eventually killing its 

host. Once one of these modes is established, it is maintained. The mechanism for 
this involves two proteins: The lambda repressor blocks expression of the gene for 

the ero protein, and the ero protein blocks expression of the gene for the lambda 
repressor. When ero is expressed, the bacteriophage multiplies in the cytoplasm; 
otherwise the bacteriophage is integrated into the host cell DNA. 

A simple model for this system is provided by a one-input Boolean network. Imagine 
that there are two nodes as the figure here shows, one for the lambda repressor gene 
and one for the ero gene. The node has output 1 if the gene is being expressed, 
and output 0 if it is not being expressed. (Expression of a gene means that the 
corresponding protein is being produced.) Since ero blocks expression of lambda 

repressor and vice versa, both of the nodes are INVERSE. 

lambda 

A Boolean model of gene expression in the 
lambda bacteriophage. 

There are two nodes, so the network has 22 = 4 possible states. There are two 

fixed points: (10) corresponds to the exclusive expression of lambda repressor; 

o 
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(01) corresponds to the expression of ero. These are the two observed modes of 
the lambda bacteriophage. 

Although this simple model shows how the lambda bacteriophage can stay locked 

into one of two possible modes, it does not match other aspects of gene expres­
sion in the bacteriophage. In the model network, there is also a cycle of period 2, 
(11) ---+ (00) ---+ (11), which is not a behavior observed in the lambda bac­

teriophage. This shows that the simple model is not a complete description of 

the lambda bacteriophage system. In the model, which of the two fixed points is 

reached depends only on the initial condition of the system; however, a real lambda 

bacteriophage can switch between the two if it finds itself in unfavorable condi­

tions. The model gives a simple way to think of the control circuit, but it also shows 

that to understand the dynamics of the lambda bacteriophage we need more in­
formation about the gene regulation network than simply" lambda repressor blocks 

ero expression and vice versa." (For more discussion of the lambda bacteriophage 

and logical models, see Thomas, et al. (1976) and Thieffry and Thomas (1994).) 

NETWORKS OF MULTIPLE-INPUT BOOLEAN ELEMENTS 

As we have seen, the behavior of networks of single-input Boolean elements 
is quite simple: fixed points and cycles, where the length of the cycle is no more 
than twice the number of nodes in the loop generating the cycle. 

When elements have more than one input, there can be much more 
complicated dynamics. There are two reasons for this: 

• The connectivity of the network can become much more complicated. 
In single-input networks, the only geometries are strings, simple loops, 
and loops with strings. When some nodes have more than one input, 
there can be multiple, connected loops. 

• The Boolean functions of multiple inputs are much more complicated 
than the functions of a single input. 

See Figure 2.9 for a schematic of a network where some elements have two 
inputs. 

BOOLEAN FUNCTIONS AND NETWORKS 
OF TWO OR MORE INPUTS 

In order to count the number of Boolean functions of two inputs, you 
should recognize that two inputs can take on 22 = 4 possible states altogether: 
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Figure 2.9 
A network where some elements have two 
inputs (the number of inputs to each node is 
marked). 

(00), (01), (10), (ll). Each rule assigns a single Boolean value to each possible 
input state. Since there are four input states, the number of functions equals the 
number of distinct ways of combining the four zeros or ones that can be the 
output. Thus, there are 24 = 16 distinct Boolean functions of two inputs, which 
are shown in Table 2.1. 

If you look carefully at the table, you will notice certain patterns. For exam­
ple, the output of most functions (e.g., AND, OR) depends on both of the inputs, 
while other functions (3,5, 10, 12) depend on only one input. Two of the functions 
(CONTRADICTION and TAUTOLOGY) are constant regardless of their inputs. 

Following the same type of procedure, we can devise a Boolean function 
of any number of inputs. Calling K the number of inputs, a function can be 
constructed in the following way: 

1. Write down all the different ways of writing K zeros and ones. These 
are all the .possible input states to a Boolean function of K inputs. For 
example, for K = 3 there are eight possible input states. These are (000), 
(001), (010), (Oll), (100), (101), (1l0), and (Ill). There are, altogether, 
2K different ways of writing K zeros and ones. 

2. Assign a 0 or 1 to each of the 2K possible input states. These are the 
outputs that correspond to each of the inputs. 

This procedure generates a single Boolean function of K inputs. How many 

such Boolean functions are there? Since there are 2 K different possible input states, 
a single function corresponds to one way of writing 2K zeros and ones. There are 
22K possible distinct ways of writing 2K zeros and ones. 

The number of possible Boolean functions increases enormously as the 
number of inputs increases, and a significant body of mathematical and engi­
neering expertise has been developed to classify these networks and to design and 
build switching circuits that can compute some desired Boolean function. For 
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Table 2.1 The sixteen Boolean functions of two inputs 

Name Input States 

(00) (01) (10) (11) 

Output 

0 CONTRADICTION 0 0 0 0 

1 AND 0 0 0 1 

2 INHIBITION 0 0 1 0 

3 TRANSFER 0 0 1 1 

4 INHIBITION 0 0 0 

5 TRANSFER 0 1 0 

6 XOR 0 1 0 

7 OR 0 1 1 I 

8 NOR 1 0 0 0 

9 XNOR 1 0 0 1 

10 COMPLEMENT 1 0 1 0 

11 IMPLICATION 1 0 1 

12 COMPLEMENT 0 0 

l3 IMPLICATION 0 

14 NAND 1 0 

15 TAUTOLOGY 1 1 1 1 

example, a series circuit can be used to calculate the AND function, and a parallel 
circuit can be used to calculate the OR function. It is more difficult to figure out 
circuits that compute other functions such as the XOR function. 

In Chapter 1 we used the cobweb method to trace the dynamics of a one­
dimensional map starting from a specified initial condition. The dynamics of 
a Boolean network can also be traced from an initial condition. To do this, we 
make use of the concept of the state of the network, which was introduced at the 

beginning of Section 2.2. 
As an example of a simple, two-input Boolean network, consider the five­

node, two-input network shown in Figure 2.10, where each of the nodes applies 
the NOR rule to its two inputs. The "state of the network" at time t describes the 
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Figure 2.10 
A network with five nodes with two 
inputs per node. 

state of each of the individual nodes at that time. For example, if the state at time 

o is (10000), then Ao = 1, Bo = Co = Do = Eo = O. Applying the appropriate 
Boolean rule to each of the nodes individually, we can easily see that Al = 1, 
BI = 0, C I = 0, DI = 1, and EI = 1, giving a state at time 1 of (10011). More 
generally, we can create a table that relates every possible state at time t to the 
successor state at time t + 1. We call such a table a lookup table or a truth table. 
For the network shown here, the table has 32 rows, because there are 25 = 32 
possible states. 

The truth table allows us to determine the dynamics. Given the state at 
time t, we can simply look up the state at time t + 1, and iterate the process to 
find future states. For example, we can see from the table that there is a cycle of 
period 2: (00000) ~ (11111) ~ (00000). 

One useful way to visualize the dynamics of a Boolean network is to do so 
graphically. We can represent the state at each time as a sequence of black and 
white dots, where a black dot stands for a 1, and a very small point stands for a 

•••• .. . ••• • •• •• ••• .. . ••••• .. . 
••• •• •• 
• • ••• .. . ••• • • .. . ••••• ... •••• • ... ••• •• •• •••• 

Figure 2.11 
A schematic representation of the dynamics in the Boolean 
network with five elements shown in Fig. 2.10. The state of 
each element is either 1 (.) or 0 (.). Time 0 is at the top line . 
Each successive iteration corresponds to a new line . 
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Table 2.2 Truth table for the network in Figure 2.10. 

(ABCDE)t ---+ (ABCDE)t+l (ABCDE)t ---+ (ABCDE)t+l 

(00000) ---+ (11111) (00001) ---+ (00111) 

(00010) ---+ (01110) (00011) ---+ (00110) 

(00100) ---+ (11100) (00101) ---+ (00100) 

(00110) ---+ (01100) (00111) ---+ (00100) 

(01000) ---+ (11001) (01001) ---+ (00001) 

(01010) ---+ (01000) (01011) ---+ (00000) 

(01100) ---+ (11000) (01101) ---+ (00000) 

(01110) ---+ (01000) (01111) ---+ (00000) 

(10000) ---+ (10011) (10001) ---+ (00011) 

(10010) ---+ (00010) (10011) ---+ (00010) 

(10100) ---+ (10000) (10101) ---+ (00000) 

(10110) ---+ (00000) (10111) ---+ (00000) 

(11000) ---+ (10001) (11001) ---+ (00001) 

(11010) ---+ (00000) (11011) ---+ (00000) 

(11100) ---+ (10000) (11101) ---+ (00000) 

(11110) ---+ (00000) (11111) ---+ (00000) 

o. For example, the state (11101) is represented as e e e . e. Then, we can make 
a "movie" of the dynamics by plotting the state at time t + 1 below the state 
at time t. Such a movie made from an initial condition of (00111) is shown in 
Figure 2.11. It should be clear that as the numbers of elements of multi-input 
networks increase, the possibility arises for enormously long cycles. Surprisingly, 
there are still many mathematical questions that have not been studied about 
the dynamics in multi-input networks. However, guided in part by biological 
and physical questions, a number of surprising properties have been found for 
Boolean networks and networks in which there are a few states per element. 
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DYNAMICS IN ACTION 

3 LOCOMOTION IN SALAMANDERS 

Networks of neurons are believed to underlie important biological functions such 

as respiration and locomotion. The earliest suggestion that logical models might 
be useful in providing a simplified description of the structure of neural networks 

was provided by G. Szekely (1965), who was studying locomotion in salamanders. 

Szekely hypothesized that a neural network generated a rhythm that innervated four 
different muscle pools: extensors of the elbow (A), adductors of the shoulder (8), 

flexors of the elbow (0 and abductors of the shoulder (D). A simplified diagram 
indicating the contraction sequence of the limb muscles during stepping is shown 

in the upper figure here. 

l­
I 
1.9 
C2 

t:;: 
w 
-' 

The sequence of contraction of muscles during locomotion in the salamander. 
On each side the four muscle groves fire sequentially. Adapted from Szekely 
(1965). 

Translating Szekely's original work into the current notation, we show in the bot­
tom diagram a simplified logical organization that can generate the sequential 

contraction pattem in one limb. It is assumed that each neuron pool responsible 

for driving a muscle pool receives tonic excitation and will fire unless inhibited. 

The inhibition is provided by other neuron pools. The inhibitory connections 
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lead to a sequential pattern of activation that is similar to what is experimentally 
observed. 

In order to appreciate how this network leads to the correct sequential pattems of 

muscle activation, we break the analysis into a series of steps. We first write down 

the truth table for this network showing the state at time t + 1 given the state at time 

t. The truth table can be calculated immediately from the knowledge of the input 

functions to each element. On the left hand of the table we write down all the states 

of the system. The elements on the right side are filled in sequentially, column by 
column, until completed. For example, notice that A receives input from Band C. 

If either B or C is 1 at t, A will be 0 at t + 1. Otherwise A is 1 at t + 1. Thus, we 

obtain the truth table below. 

(0000) -+ (1111) 

(0010) -+ (0011) 

(0100) -+ (0110) 

(0110) -+ (0010) 

(1000) -+ (1100) 

(1010) -+ (0000) 

(1100) -+ (0100) 

(1110) -+ (0000) 

(ABCD)t+1 

(0001) -+ (1001) 

(0011) -+ (0001) 

(0101) -+ (0000) 

(0111) -+ (0000) 

(1001) -+ (1000) 

(1011) -+ (0000) 

(1101) -+ (0000) 

(1111) -+ (0000) 

Now assume that at time t = 0, the state of the network is Al = 1, Be = Co = 

Do = o. We can compute all subsequent states until a cycle is reached simply by 
using the truth table. Starting at the state (1000) we undergo a transition to the state 

(1100). By using the table the following cycle is confirmed: 

1000 -+ 1100 -+ 0100 -+ 0110 -+ 0010 -+ 0011 

-+ 0001 -+ 1001 -+ 1000 -+ .... 

The removal of the inhibition lets each cell fire in tum. This pattern of activity mimics 
the activity shown in the figure on the facing page. 
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A neural network that gen­
erates the sequence ob­
served in the salamander. 

For more d iscussion of this sort of simpli fied approach to the study of neural 

networks, see Glass and Young (1 979) and Thomas and D'Ari (1 990). 

Suppose that we have measured a given pattern of oscillatory activity, and 
we want to construct a network that will produce this behavior. For example, 
assume that we want to design a network of four logical units with no self-input 
to generate the same sequence of states seen in locomotion in the salamander 
model: 

1000 -+ 1100 -+ 0100 -+ 0110 -+ 0010 -+ 0011 

-+ 0001 -+ 1001 -+ 1000 -+ .... 

How many different logical switching networks can generate this cyclic 

activity? What are they? 

Solution: Call the elements w, x, y, and z. Start by filling in the truth table 
based on the transitions that have been given. This will give rise to a table with 
24 = 16 entries, only eight of which can be filled in from the measurements. 

Since by' assumption there is no self-input, the truth table for each of the , 
individual elements can be written only in terms of the other three elements. This 
means that we can extract the truth table into the following four sets of rules, one 
for each of w, x, y, and z. 

Since eight different places in the truth tables are not filled in, there are a 
total of 28 = 256 different possible ways to fill in these places. Therefore, there 
are 256 different networks with no self-input that all have the same cycle. 
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(wxyz), (wxyz),+l (wxyz), (WXYZ),+l 

(0000) ? (0001) (1001) 

(0010) (0011) (0011) (0001) 

(0100) (0110) (0101) ? 

(0110) (0010) (0111) ? 

(1000) (1100) (1001) (1000) 

(1010) ? (1011) ? 

(1100) (0100) (1101) 

(1110) ? (1111) 

(xyz), (w)'+l (yzw), (X)t+l (zwx), (y)t+l (wxy), (z)'+l 

(000) 1 (000) 1 (000) 1 (000) 1 

(001) 1 (001) 1 (001) 1 (001) 1 

(010) 0 (010) 0 (010) 0 (010) 0 

(011) 0 (011) 0 (011) 0 (011) 0 

(100) 0 (100) 0 (100) 0 (100) 0 

(101) ? (101) ? (101) ? (101) ? 

(110) 0 (110) 0 (110) 0 (110) 0 

(Ill) ? (111) ? (111) ? (111) ? 

The simplest way to fill in these places is for them all to be O. In this case, 
each element only depends on the state of two inputs and we recover the network 
proposed for salamander locomotion. o 

2.3 BOOLEAN FUNCTIONS AND BIOCHEMISTRY 

In many enzyme and gene control systems the synthetic rates or the activity 
of key compounds display a sigmoidal (see Appendix A) dependence on the 
concentration of regulatory molecules, as in Figure 2.12. 
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Figure 2.12 
Activity of enzyme A as a 
function of the concentration 
of B for activation of A by B. 
A 82.7 Th" I = 1+82.7 ' IS IS an examp e 
of a sigmoidal function. 

Although the details of how these control systems function are still the 
subject of active research, many of the mechanisms for the regulation of the syn­
thesis and activities of enzymes and genes have been worked out. The sigmoidal 
functions that are experimentally found have suggested to theoreticians that bio­
logical control systems can be approximated by Boolean switching networks. See 
the following table. 

1 

o 
1 

o 

The truth table approximating 
activation as a Boolean 
function. 

BI 

1 

o 

At+l 

o 
1 

The approximating truth table 
for inhibition. 

The activity of some enzymes is controlled by compounds that are not 
the substrate of the enzyme, but which are believed to alter the configuration 
of the enzyme and thereby modify the activity of the enzyme. Examples of such 
allosteric activation and inhibition abound in biochemistry. If the activity of the 
enzyme is plotted as a function of the controllers, the kinetics are as shown in 
Figure 2.12. An idealization of these kinetics is that the activity of the enzyme can 
be modeled by a Boolean function-the IDENTITY function for activation, and the 
INVERSE function for inhibition. 

Regulatory mechanisms also exist for the control of gene transcription. 
Recall that a gene is a segment of the DNA that carries the code for a specific 
protein. The gene is composed of sections called exons which carry the code for 
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specific amino acid sequences in a protein, and of intervening sequences called 
introns which do not code for amino acid sequences. 

Although all cells of the body carry the DNA instructions to code for all 
the proteins in the body, in any given cell only a subset of the proteins in the 
body will be made. Thus, in a given cell certain genes are expressed ("turned 
on") while others are not. Brilliant advances in molecular biology in recent years 
have reduced the problem of determining the sequence of the DNA problem to 
a technical matter. Given enough time and money it is possible to determine the 
genetic code for any organism. However, even after the genetic code in a given 
organism is known, the mechanisms that govern the ways in which the genes a,re 
expressed are still not completely known. 

F. Jacob and J. Monod (1961) provided a major advance in our under­
standing of the expression of genes. They demonstrated the existence of control 
networks that could serve to provide flexible regulation of the synthesis of pro­
teins in prokaryotes. Their work has led to much fruitful experimental work about 
enzyme systems in E. coli, and has now been largely substantiated for a number 
of individual cases. 

In addition to structural genes, which specify the sequence of amino acids in 
the structural and enzyme proteins that are produced, Jacob and Monod showed 
that there are also regulatory genes that produce repressors. The repressor can be 
chemically bound to a portion of the DNA, called the operator, adjacent to the 
structural genes. If the repressor is bound, transcription of the structural genes 
is prevented. If the repressor is unbound, transcription is allowed. 

The binding of repressor molecules to the DNA can be modulated by 
additional molecules in the cellular medium, which are thought to cause a con­
formational change in the repressor. Different mechanisms have been envisaged. 
For example, in inducible systems, a molecule called an inducer combines with 
the repressor, thereby preventing the repressor from binding to the operator. In 
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Figure 2.13 
Activity of enzyme A as a 
function of the concentration 
of B for inhibition of A by B. 
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E. coli the sugar lactose induces the production of fJ -galactosidase, an enzyme 
used to metabolize lactose. 

At Rt Et+1 

1 1 1 

1 0 1 

0 1 0 

0 0 1 

Truth table for the induction 
of enzyme E by inducer A 
with the repressor R. 

This example shows how biochemicals can conspire to produce a two-input 
Boolean rule for their generation (here Rule 11 from Table 2.1). 

A different type of control can arise if the repressor is able to bind to 
the operator only after a third substance, called a corepressor, combines with the 
repressor. For example, tryptophan is a corepressor for the synthesis of tryptophan 
synthetase. This is the the NAND function, Rule 14 from Table 2.1. 

Rt It Et+1 

1 1 0 

1 0 1 

0 1 1 

0 0 1 

R is a repressor. I is a 
corepressor of the synthesis 
ofE. 

The preceding discussion demonstrates that the control mechanisms, in 
which activities of proteins and genes are regulated by circulating molecules, 
can be modeled by Boolean functions. Thus, it has seemed to some that it may 
be feasible to build chemical computers, but this has not yet been carried out by 
humans. However, it has been conjectured that the dynamics of Boolean networks 
provide a framework for understanding complex dynamics and organization in 
the regulatory gene networks that are found in living organisms. 
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2.4 RANDOM BOOLEAN NETWORKS 

Although nobody thinks that the gene control networks in living organisms 
are random, Stuart Kauffman (1969, 1993) has hypothesized that the connectivity 
of gene networks in living organisms might appear indistinguishable from a 
random network with the same number of nodes. The analogy between gene 
expression and Boolean networks led to the study of random Boolean networks. 
A random Boolean network is a perfectly ordinary Boolean network, where the 
choice of connections and Boolean functions is made randomly when the network 
is designed. There is nothing random about the process of iterating the dynamics 
of the network once it is designed-that process is the same for random Boolean 
networks as it is for any other "nonrandom" type of network. 

To set up a random Boolean network, we select the number of nodes N and 
the number of inputs K to each node. Then, we use a random-number generator 
to select the inputs to each node. For example, for N = 10 and K = 4, the inputs 
to node 1 might be nodes 2, 5, 9, and 10. Next, for each node we randomly assign 
a Boolean function. Since there are 22K Boolean functions of K inputs, picking a 

random Boolean function of K inputs can be accomplished by randomly selecting 
a number in the range 0 to 22K - 1, as in Table 2.1. Alternatively, we could set up 

the truth table for each element and then generate ones and zeros to populate it. 
Kauffman was the first person to investigate the possible relationship 

between random Boolean networks and gene expression. In the 1960s he pro­
grammed a computer to iterate the dynamics of random Boolean networks and 
examined many different random Boolean networks for values of N between 15 
and 8181. 

He found the following types of behavior in networks with K = 2: 

• A given network can have more than one fixed point or cycle. Typically, 
the number of fixed points or cycles increases approximately as ,IN (see 
Figure 2.14). 

• Starting in a randomly choosen initial condition, there is a startup tran­
sient before reaching the asymptotic behavior. (Of course, once a fixed 
point or cycle is reached, it is never left.) The length of the startup 
transient varies but is roughly the same as the longest cycle found in a 
network. 

• The different cycles in a given network can have different lengths. The 
median length of a cycle scales roughly as NO•3• Some cycles are much 
longer than this, though. 

• By perturbing the state of the network (Le., "manually" flipping a node 
from 0 to 1 or vice versa), the dynamics may move from one asymp­
totic cycle to another. In the networks Kauffman studied there can be a 
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Figure 2.14 (A) A fixed point in a random Boolean network with N = 100 and 
K = 2. The transient lasts for twelve time steps. (B) A cycle oflength 16. N = 100 
and K = 2. Seventeen time steps are shown; note that the state in the first time 
step is identical to the state in the last one shown-once the network returns to its 
initial state, the network will cycle indefinitely. 

10,000 

100 1000 10,000 100,000 1,000,000 

No. of elements in the random net and estimated no. of genes per cell 

.... .. -.... 

10,000,000 100,000,000 

Figure 2.15 Typical cycle times versus number of Boolean elements for random 
Boolean networks, compared to the cell cycle time versus genome size for different 
organisms. Adapted from Kauffman (1969). 
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transition from a given asymptotic cycle to only a few other asymptotic 
cycles when one node is flipped. 

Kauffman argues that in real cells, similar global behavior is observed (see 
Figure 2.15.) For a given organism, there are only a limited number of cell types, 
generally fewer than one hundred. Also, cell cycles are short, of the order of several 
hours. This corresponds roughly to the cycle lengths found by Kauffman, if one 
assumes that the time between iterates is the time it takes to turn a gene on or 
off-roughly one minute. Further, in many organisms, cells have only a limited 
ability to differentiate. They can only differentiate into a limited number of cell 
types, and these transitions will occur only if the cell is in the "right" place at the 
"right" time. 

The "short" cycles observed by Kauffman correspond to a huge amount of 
dynamical order being generated by the random Boolean network. For Kauffman's 
networks with K = 2, the typical cycle has a length of roughly six time steps 
when N = 200. On the other hand, it has been found that for random Boolean 
networks where K = N, the cycle times are huge, roughly 2 !f • For N = 200 
this is ten million times the estimated age ofthe universe (assuming 10-6 sec per 
transition). Thus, it seems that the specific N -input Boolean functions that arise 
from networks with K = 2 inputs produce much shorter cycles than randomly 
selected Boolean functions. 

2.5 CELLULAR AUTOMATA 

Gene networks consist of many different genes, each of which may have its 
own distinct regulatory mechanism. In contrast, some systems consist of many 
copies of the same thing, each regulated by exactly the same mechanism. For 
example, this is the case of the cells in living organisms, each of which contains 
the same set of genetic instructions. It might be thought that in a network of 
similar elements, all elements will behave similarly. This is often far from the 
case, however. 

Motivated by the examples of living organisms, scientists have formulated 
the concept of a cellular automaton. In a cellular automaton, there are identical 

elements, usually located in a regular array that can be one-dimensional, two­
dimensional, or even higher-dimensional. The update rule for each "cell" depends 
on that cell and some ofits nearest neighbors as shown in Figures 2.16 and 2.17. 

For the geometries drawn in these figures, the nodes on the edge of the 
automaton do not have as many neighbors as the nodes in the center. In order 
to make all nodes the same, it is conventional to connect the nodes on the edge 
to one another, so that one-dimensional cellular automata have the topology of 
a ring, and two-dimensional cellular automata have the topology of a torus. 
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Figure 2.16 A geometry of a one-dimensional cellular automaton in which each 
cell has two neighbors. In some cases, a connection is made between the two cells 
on the ends in order to form a ring. 

Figure 2.17 
A geometry of a two-dimensional cellular 
automaton in which each cells has four 
neighbors. The cells on the edges can be 
connected to each other, forming a torus. 

BOOLEAN CELLULAR AUTOMATA 

In Boolean cellular automata, the state of each of the nodes is 0 or 1 and the 
nodes have a Boolean rule. One type of geometry for a one-dimensional cellular 
automaton has each node take input from itself and from its nearest neighbors 
on either side. Since there are three inputs, there are 223 = 256 possible Boolean 
rules. These cellular automata can produce varied types of behavior, depending on 
the rule and the initial condition. For example, the rule (111) ~ 0, (110) ~ 0, 
(101) ~ 0, (100) ~ 0, (011) ~ 1, (010) ~ 0, (001) ~ 1, (000) ~ 0 

(which is conventionally named rule 10 because the binary digit 00001010 equals 
ten) produces left drifting stripes. In a "movie" of the automaton's activity, which 
Figure 2.18 depicts, these lines wrap around from one side to the other, as a result 

of the ring geometry. (The stripes can be either one or two nodes wide. Why?) 
Not all rules produce such simple behavior. For example, rule 45 « 111) ~ 

0, (110) ~ 0, (101) ~ 1, (100) ~ 0, (011) ~ 1, (010) ~ 1, (001) ~ 0, 

(000) ~ 1) produces a much more complicated pattern, as Figure 2.19 displays. 
Another one-dimensional cellular automaton that produces interesting 

patterns is rule 90: (111) ~ 0, (110) ~ 1, (101) ~ 0, (100) ~ 1, (011) ~ 1, 

(010) ~ 0, (001) ~ 1, (000) ~ O. Figure 2.20 shows the pattern gener-
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Figure 2.18 
Activity of rule 10 in a cellular automaton with 
fifteen cells in a ring topology . 

ated using rule 90 from a randomly selected initial condition. Such patterns can 
also be found in nature: A photo of a conus sea shell shows a strikingly similar 
pigmentation (see Figure 2.21). 

Although one should not presume that this superficial resemblance implies 
that anything controlling pattern formation results in seashells, it is remarkable 
that such subtle patterns can be generated using simple algorithms. We will return 
to this subject further in Chapter 3 . 
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Figure 2.19 
Activity of rule 45 for fifteen cells in a ring 
topology. 
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Figure 2.20 
Activity of rule 90. 

It is possible, of course, to have Boolean cellular automata with more than 
three inputs to each node. An early cellular automaton was the game of "Life" 
invented by the British mathematician John Conway in the 1970s. Conway imag­
ined a two-dimensional geometry where each node is connected to itself and to 
its eight nearest neighbors. There are 229 = 1.34 X 10154 possible Boolean cel­
lular automata with nine inputs, but Conway chose a particular rule inspired by 
interactions ofliving organisms with one another. Conway imagined that at any 

Figure 2.21 A conus sea shell. 
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Figure 2.22 
A fixed point in the "game of Life:' 

time each node was either "alive" (1) or "dead" (0). In order for a living cell to stay 
alive at time t + 1, either two or three of its neighbors have to be alive at time t. 
The rationale for this is that if fewer than two neighbors are alive, then life cannot 
sustain itself. If more than three neighbors are alive, then there is overcrowding 
and once again the conditions for staying alive are not met. On the other hand, if 
a node is dead and four of its neighbors are alive, the node is "born" and becomes 
alive. 

As whimsical as these rules may be, they do provide for a rich evolution 
starting from arbitrary initial conditions. Various forms of fixed points, cycles, 
and transients are possible. For example, an isolated square island of four living 
nodes is a fixed point (Figure 2.22), as is an isolated arrangement of eight living 
nodes surrounding a dead node. Periodic cycles are also possible: There is a cycle 
of period 2 involving a cluster off our and five cells (Figure 2.23). 

NON-BOOLEAN CELLULAR AUTOMATA 

Although we have just considered cellular automata in which the rules in 
each cell were Boolean functions, it is easy to imagine extending this concept so 
that variables may assume more than two values and other rules besides Boolean 
functions are allowed. For example, numerical schemes to solve partial differential 

• ••• • 
• • •• • 

Figure 2.23 A cycle of period 2 in the "game of Life:' 

• • •• • 
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equations that represent dynamics in space can be thought of in terms of cellular 
automata. Consider the problem of diffusion. If we allow the state of each element 
to be any real number, we can make a cellular automaton model of diffusion along 
a line. If Ct [m] is the concentration of the substance at site m at time t, then we 
canwritect+l[m] as a function ofct[m - 1],ct[m],andct[m + 1]: 

ct+dm] = D(ct[m - 1] + crfm + 1]) + (I - 2D)ct[m]. 

D is the diffusion coefficient, which describes how fast the substance diffuses. 
The activity of this cellular automaton is shown in Figure 2.24, where the initial 
condition is that a single node has a nonzero concentration of the substance. As 
time progresses, the substance diffuses out to other nodes. 

There are many other physical and biological phenomena that have been 
modeled with cellular automata, including the patterns of coloration in animals, 
the immune system, interaction of predators and prey, aggregation of particles, 
fluid flow, structure of the visual cortex, organization of ant trails, and growth of 

bacteria. 

EXCITABLE MEDIA 

One important application of cellular automata relates to excitable me­
dia. There are many systems in which a wave of some sort can pass through a 
medium, after which the medium cannot support another wave until a suitable 
length of time, called the refractory time, has passed. For example, if a wave of 
fire burns through a forest, there cannot be another forest fire until enough vege­
tation has grown to support a new fire. Media that display the joint properties of 
wave propagation and refractoriness are called excitable media. Other examples 

Space 

Time Figure 2.24 
Diffusion in a cellular 
automaton. 



2 .5 CELLULAR AUTOMATA 85 

include certain chemical media, such as the Belousov-Zhabotinsky reaction (see 
Figure 2.25) in which autocatalytic oxidation reactions take place, as well as neural 
and cardiac tissue. 

If an excitable medium is two-dimensional (i.e., a sheet of medium, or a 
very thin layer), there are several fundamentally different geometries of waves 
that can be observed. In one, waves originate from a point source (e.g., the place 
where lightning started a forest fire) and spread in concentric circles. The effect is 
similar to ripples on a pond, except that two waves that meet will annihilate each 

other due to the refractory properties of the medium. Once the wave has moved 
off the edge of the medium, another wave will not occur unless it is started anew. 
An excitable medium-which is nonlinear-is fundamentally different than a 
linear medium. Waves in a linear medium, such as small waves on the surface of 
a pond, pass through one another, rather than annihilating each other. 

Figure 2.25 Waves in the Belousov-Zhabotinsky reaction. Reprinted from Winfree 
(1975). Copyright 1975 by the AAAS. 
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For an appropriate geometry of an excitable medium, waves can also move 
in closed circuits. Imagine an excitable medium arranged in the form of a ring. 
If a wave that propagates in one direction is started, it will eventually come back 
to its starting place. If the circumference of the ring divided by the speed of the 
wave is longer than the refractory period of the medium, the wave will continue 
circulating around and around the ring. In a linear medium, waves can also travel 
along a ring. However, the amplitude of the wave will eventually diminish due 
to dissipation of energy, and the wave will die out. In an excitable medium, the 
wave may never die out. 

Another geometry of waves involves propagation of spiral waves of activity 
(see Figure 2.12). Here the wave moves in a circuit even though there is no hole in 
the medium. Instead, the wave is formed into a spiral and the "hole" is a functional 
one created from moment to moment by areas of refractory medium. The spirals 
can be stable, or can meander in complex geometries, or might even break up 
into multiple spirals (see Figure 2.26). Such phenomena are believed to under­
lie pathological patterns of excitation in cardiac tissue, called tachycardia and 
fibrillation. In tachycardia, the heart beats much more rapidly than normal. In 
fibrillation, the heart does not contract in an organized way and is ineffective in 
pumping blood; this condition is the immediate cause of death in perhaps one in 
three people. 

Cellular automata provide a mathematical model for excitable media. Let 
each node be in one of several states: 

Q Quiescent but excitable. This is the state of those nodes that are not 
carrying a wave, but that could do so if stimulated. 

E Excited. This is the state of those nodes the wave is passing through at 
the present instant. 

R Refractory. This is the state of nodes that a wave has recently passed 
through, and which have not yet recovered enough to become excitable. 

The rules of the automaton are simple: 

• If a node is quiescent at time t, then it stays quiescent at time t + 1 unless 
one or more of its neighbors is excited at time t, in which case the node 
becomes excited at time t + 1. 

• If a node is excited at time t, it becomes refractory at time t + 1. 

• If a node is refractory at time t, it becomes quiescent at time t + 1. 
Actually, it is often desirable to have the refractory period last more 
than one time unit. If this is the case, then when the node first becomes 
refractory it is assigned a value r = T. If the node has value r at time 
t, then its value becomes r - 1 at time t + 1. When r = 0, the cell is 
quiescent. T is the refractory period. 
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(A) (8) 

• 

• 

Figure 2.26 Waves in an excitable medium. The excited nodes are shown in black, 
the refractory nodes in shades of gray, and the quiescent nodes in white. Each node 
gets inputs from itself and from its four nearest neighbors. (A) Time i = o. The 
medium is stimulated at two points to start waves. (B) Time i = 8. The waves 
spread out from each point. (C) Time i = 14. When the wavefronts touch, they 
annihilate each other. (D) Time i = 17. The waves will spread out until the whole 
medium becomes quiescent. No new wave will start until the medium is stimulated 
again. 

These rules for cellular automata not only generate spreading waves, as seen 
in Figure 2.26, but also spiral waves as illustrated in Figure 2.27. 

These rules can be modified to correspond to specific physical situations­

for example, in heart tissue the refractory period can be made to depend on the 
time between excitations-but the essential rule for excitable media is simple: 
quiescent until excited, then refractory, then quiescent again. 



88 BOOLEAN NETWORKS AND CELLULAR AUTOMATA 

Figure 2.27 The state of the network in four successive times in a spiral wave in 
an excitable medium. The wave is rotating counterclockwise. 

DYNAMICS IN ACTION 

4 SPIRAL WAVES IN CHEMISTRY AND BIOLOGY 

The study of excitable media has been one of the triumphs of applications of non­
linear dynamics. For a detailed accounting, see Winfree (1987). We briefly mention 
two different aspects of excitable media: oscillations and waves in chemistry, and 
oscillations and waves in biological systems. 

The earliest published report of an oscillating chemical reaction that we are aware 
of was published byW. C. Bray in 1921. This reaction uses very common ingredients 
that are easy to find. Bray's recipe is shown in the following table. Prepare a mixture 
at the concentrations shown. Heat to 600 C. If you follow this recipe you should be 

able to observe spatially homogeneous oscillations in which there is a s low buildup 
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of a brownish color (12) and a rapid disappearance. It takes a bit of a time for the 
oscillation to set in, so be patient. We can only speculate whether periodic acid 
(Cotton and Wilkinson, 1980) is an intermediate in this reaction. 

0.19M 
.094M 

.073-.0961 N 

The interest in oscillating chemical reactions and excitable media was stimulated in 
the early 1970s as news of the Belousov-Zhabotinsky reaction spread. A recipe for 
this reaction was given by Winfree (1972, 1980). Here is the recipe, but consult the 
original sources for a couple of tricks. 

To 67 ml of water, add 2 ml of concentrated sulfuric acid and 5 gm of sodium 
bromate (total 70 ml). To 6 ml of this in a glass vessel, add 1 ml of malonic acid 
solution (1 g per 10 ml). Add 0.5 ml of sodium bromide solution (1 gin 10 ml) 
and wait for the bromine color to vanish. Add 1 ml of 25 mM phenanthroline 
ferrous sulfate and a drop of Triton X-100 surfactant solution (1 g in 1000 ml) to 
facilitate spreading. Mix well, pour into a covered 90 ml Petri dish illuminated 
from below. 

Once the reaction gets started you should see blue rings propagating from localized 
regions on a red background. If you give the dish a gentle shake to break up the 
rings, you will see spectacular geometries similar to those shown in Figure 2.25. 

The observation of spiral geometries in living systems has important implications for 
human health. In the normal heart, a specialized region-the sinoatrial node-sets 
the frequency. However, in some dangerous cardiac arrhythmias, the frequency of 

the oscillation is set by the time it takes a wave of cardiac excitation to travel in a 
circuituous pathway. This type of mechanism is bel ieved to underl ie potentially fatal 
cardiac arrhythmias such as ventricular fibrillation. In order to record the activation 
of cardiac tissue in space and time, a new methodology has been developed in the 
past decade that promises to revolutionize the study of waves in excitable media, 
by using fluorescent dyes that respond to local changes in membrane potential or 
chemical concentrations. A dramatic demonstration of reentrant waves in cardiac 
tissue was given by J. M. Davidenko and coworkers (1992), who studied this type of 
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wave in a piece of cardiac muscle in vitro (see figure on the next page). Spiral waves 
have been found in other biological systems, including aggregation of slime molds, 

where they are due to chemotactic mechanisms relying on pulsatile secretion of 
cyclic adenosine monophosphate (NAP). Spiral waves have also been associated 
with fluctuations of Ca2+ in amphibian oocytes. 

Spiral waves in cardiac tissue. From Oavidenko et al. (1992). Reprinted with 
permission from Nature. Copyright 1992 Macmillan Magazines Umited. 

Thus, spiral waves of activity can be observed in a wide range of different systems. 

These waves can be a chemical curiosity, a life-threatening condition, a vital step 
in the life cycle of amoeba, or of still-unknown significance (the Ca2+ waves). In 

each of these, the underlying physical and chemical mechanisms are certainly dif­

ferent. Yet, spiral waves emerge from the basic mechanism of wave propagation 
in excitable media that we have discussed and modeled in a simple way in the 

cellular automata. Therefore, in understanding spiral waves, it is as important to 

understand the mathematics of excitable media as it is to understand the specific 
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mechanisms of halogen chemistry, the ionics of cardiac propagation, or cyclic AMP 
or Ca2+ metabolism. 

2.6 ADVANCED TOPIC: EVOLUTION AND 
COMPUTATION 

In the networks considered so far, the structure does not change in 
time. However, in many biological situations network structure and connec­
tivities do change in time or evolve. Many unsolved problems in science involve 
understanding the mechanisms by which networks can change their structure. 

In a biological organism, the inherited instructions are contained in the 
genes, and are called the genotype. The term phenotype refers to the visible 
properties of the organism as determined by the genotype and the environment. 

Classical Darwinian evolution assumes that there is random phenotypic 
variation combined with selection of the fittest. Although Darwin did not know 
about genes, we now recognize that the phenotype is an expression of the geno­
type. Natural populations consist of organisms with different genotypes. The 
relative prevalence of a given genotype depends on the success of reproducing­
the fitness--of the corresponding phenotype in preceding generations. There 
are two different types of mutations, point mutations and mutations in which 
segments of DNA recombine. 

John Holland has used the term genetic algorithm to refer a vastly 
simplified computer simulation of biological evolution. Nevertheless, genetic 
algorithms implemented on computers preserve the following essential fea­
tures of biological evolution: a population of genotypes, reproduction with 
mutation, and selection according to the phenotype. The presence of recombi­
nation distinguishes genetic algorithms from other types of search optimization 
algorithms. 

In order to study the evolution of dynamical systems, investigators have 
studied cellular automata whose rules evolve in time. Since for a cellular automa­
ton, the same Boolean rule is applied to every cell, we can consider the genome 
of a cellular automaton to be the sequence of ones and zeros in the output of the 
Boolean rule. A point mutation is caused when a 1 is randomly changed to a 0, 
and a recombination occurs when some of the ones and zeros from one rule are 
replaced with the ones and zeros from another. This provides all of the features 
for evolution, except for selection. 
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In nature, organisms are selected based on the ability of their phenotype to 
survive and reproduce in their environment. For cellular automata, we impose a 
selection criterion based on the performance of a computational task. One task 
that has been studied is the ability of a cellular automaton to perform the following 
computation-the determination of whether 50 percent or more of the cells in 
an initial condition are ON. If more than 50 percent of the cells are ON, the cellular 
automaton should approach a steady state in which all cells are ON. Otherwise it 
should approach a steady state in which all cells are OFF. If the cellular automaton 
has only a small local neighborhood, it is not known which cellular automaton 
can perform the task the best. 

Norman Packard studied this problem for a cellular automaton in a class 
of I-dimensional Boolean cellular automata in which the state of each element 
depends on itself and on its three nearest neighbors on each side-7 inputs al­
together. Since there are 27 = 128 different states of the inputs for each cell, 
there are 227 = 2 128 different cellular automata that can be constructed. This is 
an astronomically large number, and consequently it is impossible to study the 
dynamics of each member of this class. Since there is no theory that allows one 
to predict the dynamics of any given network without actually simulating it, it is 
necessary to search the space of different cellular automata. 

Packard (1988) approached the problem using genetic algorithms. In the 
first generation a population ofrandomly generated cellular automata were it­
erated for many time steps for each of several different initial conditions. Each 
cellular automaton was rated based on its ability to carry out the assigned com­
putational task. Then, in analogy to biological evolution, those cellular automata 
in the population that performed best were allowed to "reproduce" for the next 
generation. In addition, the cellular automata were allowed to interchange bits 
and pieces of their truth tables, and to mutate by changing entries in their truth 
tables. This yields a new population of cellular automata-generation 2. Once 
again each cellular automation in generation 2 was tested against a set of new 
initial conditions. As before, the cellular automata reproduced and mutated. The 
process was continued for many generations. 

Packard's work was preliminary and was subsequently redone and greatly 
extended by James Crutchfield, Raja Das, Peter Hraber, and Melanie Mitchell. 
Here, we present the most interesting results from the computer experiments 
performed by Das, Mitchell, and Crutchfield (1994). Figure 2.28 shows an illus­
tration of the best cellular automation that was found in generation 12. About 46 
percent of the cells are OFF in the initial state and after 148 iterations, all the cells 
are ON. Therefore, this cellular automaton has incorrectly classified the original 
distribution (though on many other initial conditions it comes up with the cor­
rect classification). This cellular automaton had a simple strategy for classifying 
figures. Unless there are large blocks that are all OFF cells, it will map to a state 
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Generation 12 
0 Figure 2.28 

A cellular automaton that 
has evolved under selective 
pressure to perform the 
computational task of 

w deciding if there are more 
E ON or OFF cells at time zero. F 

This one makes the wrong 
decision. Figure provided by 
James P. Crutchfield based 
on results in Crutchfield and 
Mtichell (1994) and Das, 

148 Mitchell, and Crutchfield 
0 Site 148 (1994). 

of all ON cells. Figure 2.29 shows the operation of the best cellular automaton in 
generation 18. Starting from the same initial condition, this cellular automaton 
correctly classifies the initial condition since all the cells converge to a OFF state. 
This system has developed a more sophisticated strategy for classifying the ini­
tial configuration based on transmitting information to make logical decisions 
about the initial condition. This is seen in the figure as the emergence over time 
of particles and particle interactions. The particles appear as boundaries between 
homogeneous regions. Their propagation and subsequent interaction implement 

Generation 18 Figure 2.29 

0 The best cellular automaton 
at generation 18 with the 
same initial condition as in 
Figure 2.28. This cellular 
automaton successfully 

w classifies the initial 
E condition and converges to F 

a state in which all cells are 
OFF. Figure provided by 
James P. Crutchfield based 
on results in Crutchfield 
and Mitchell (1994) 

148 and Das, Mitchell, and 
0 Site 148 Crutchfield (1994). 
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Figure 2.30 Best fitness in a population of cellular automata as a function of 
generation number. Generations 12 and 18 are marked with arrows. Figure provided 
by James P. Crutchfield based on results in Crutchfield and Mitchell (1994) and Das, 
Mitchell, and Crutchfield (1994). 

the new computational strategy: Various logical decisions are made about large 
regions in which the initial condition's density was ambiguous. 

What is interesting here is that over several generations, the genetic algo­
rithm leads to an evolution in the truth tables so that the performance on this 
simple computational task improves over time. Figure 2.30 illustrates this evo­
lution showing the increase of the best fitness over several generations. This is 
an important finding. It shows that one can simulate evolution in simple model 
settings. To figure out what is happening, we have to think about what strat­
egy (computation) the cellular automata have been evolved to adopt in order to 

"survive" -almost as though they are alive. Thus, these sorts of simple models 
may provide the sorts of "data" that will help researchers formulate rules for 
evolution in complex systems. 

SOURCES AND NOTES 

To obtain an introduction to the mathematics of Boolean algebra see (Hohn, 
1966). 

Jacob and Monod (1961) and Monod et al. (1965) present early discussions 

of the control of cellular metabolism by gene networks. More recent texts pro­
vide introductions to genetic enzymatic regulatory mechanisms (Alberts, 1983; 
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Ptashne, 1986). Kauffman's (1969) original exposition of the properties of his 
model gene networks presents a provocative notion of how genes can be orga­
nized. The flowering of these ideas over the past quarter of a century is recounted 
in (Kauffman, 1993). 

The analysis of excitable media is a very active area of current research with 
implications in physics, chemistry, and biology. Winfree (1980) gives some hints 
on how to get the Belousov-Zhabotinsky reaction to run (p. 301). Winfree ( 1987) 
presents a good introduction to the field with extensive references to problems in 
cardiac arrhythmias, aggregation of slime molds, and chemical oscillations. Ger­
hardt et al. (1990) demonstrated that many of the subtle properties of excitable 
media can be captured by cellular automata models and provide references to ear­
lier studies of cellular automata models of excitable media. Experimental obser­
vation of spiral waves in cardiac tissue was carried out by Davidenko et al. (1992). 
Spiral waves ofCa2+ in oocytes were photographed by Lechleiter et al. (1991). 

A discussion of logical models for lambda bacteriophage is given by 
Thomas, Gathoye, and Lambert (1976) and Thieffry and Thomas (1994). Thomas 

has been particularly interested in logical models for a variety of systems as re­
viewed in the monograph by Thomas and D'Ari (1990). A review of biological 
application of cellular automata models in diverse applications can be found in 
Ermentrout and Edelstein-Keshet (1993). 

The study of computation and evolution has generated a significant inter­
est among scientists and in the popular press. An important contribution was 
John Holland's (1975) formulation of the concept of genetic algorithms. Think­
ing about cellular automata from the perspective of mathematics and physics 
is ably reviewed by Stephen Wolfram (1983,1984), who is better known as the 
guiding force behind the development ofMathematica®. More recently, Packard 
(1988), Kauffman (1993) and others at the Santa Fe Institute in New Mexico 
have been pursuing the hypothesis that a simple generalization will be found that 
will have predictive value in explaining evolution in diverse settings. The hope is 
that a "law" will be found for evolution in complex adaptive systems of similar 
power to the second law of thermodynamics in closed chemical systems. Packard 
interpreted his results as indicating that on the computational task described in 
the text, there was evolution to the "edge of chaos'~ In another context, Crutch­
field and Young (1989) analyzed computation at the "onset of chaos'~ Several 

recent popularizations (Waldrop, 1992; Lewin, 1992) have focused on the theme 
of evolution in complex systems as a central theme. 

In their careful studies, Mitchell, Hraber, and Crutchfield (1993) failed 
to reproduce the aspects of the original results of Packard that supported the 

argument that there was evolution to the "edge of chaos". They also gave theoretical 
arguments as to why Packard's results could not support the "edge of chaos" claim. 
Finally, they note that in finite state systems, there is no clear definition of "chaos" 
or the "edge of chaos". 
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Nevertheless, Mitchell et al. (l993) and Das et al. (l994) concluded that 
the conception of using genetic algorithms to evolve computation in cellular 
automata is an important idea, and they have made significant advances in 
understanding the evolution of computational strategies in cellular automata. 

~ EXERCISES 

~ 2.1 Explain the English-Ia.nguage names given to the Boolean functions of 
two inputs in Table 2.1. (HINT: The x in XOR stands for "exclusive:' The N in NAND 

and NOR means "not:' XNOR might make more sense if it were written NXOR, but 
that would be too hard to pronounce.) 

~ 2.2 Show that the network in Figure 2.31 and the following truth table are 
equivalent: 

(00) 

(01) 

(10) 

(00) 

(10) 

(11) 

(11) 

(01) 

If the initial state att = 0 is (00), then the network cycles through the states 
(00) ---+ (10) ---+ (11) ---+ (01) ---+ (00) .... This network is frustrated, and the 
cycle oflength 4 is the only possible activity for the network. Why? 

Write down the truth table for the three-node inverting network shown in 
Figure 2.32, and determine all modes of behavior starting from any initial state. Is 
this network frustrated? What is the longest possible cycle in this network? How 
many possible states of the network are there? Show that there must be more than 

one cycle or fixed point. 

~ 2.3 Consider a single-input Boolean network with n components arranged 
in a loop. The nodes will be numbered 1,2, ... , n. We will write the state of 

Figure 2.31 
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Figure 2.32 

node k at time t as x/(k). The input to node 1 is node n. For all other nodes 
k = 2,3, .. . , n the input comes from node (k - 1). All the nodes follow the 
IDENTITY rule, except for node n, which follows the INVERSE rule. This logical 
organization is a model for feedback inhibition, in which an end product can act 
to inhibit the production of an initial product. Start from an initial condition 
with xo(1)=1 and xo(k) = 0 for k = 2,3, .. . , n. 

a. What are the dynamics when n = 2? 

b. What are the dynamics when n = 3? 

c. Generalize this to all values of n. 

~ 2.4 The neural network shown in Figure 2.33 has been proposed as a model 
of a biological oscillator. The symbol -l represents an inhibitory synapse and the 
symbol -< represents an excitatory synapse. 

Note that neuron 1 receives inhibitory inputs from neurons 3 and 4; neuron 
2 receives excitatory inputs from neurons 1 and 3 and inhibitory input from 

Figure 2.33 
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neuron 4, and so on. The truth table that relates the activity in this network at 
time t to the activity at time t + 1 is shown below. 

State at State at State at State at 
timet timet + 1 timet timet + 1 

(0000) (1000) (1000) (1100) 

(0001) (0000) (l001) (0000) 

(0010) (0101) (l01O) (0100) 

(0011) (0001) (lOll) (0000) 

(0100) (l01O) (1100) (1110) 

(0101) (0010) (1101) (0010) 

(0110) (0111) (1110) (0110) 

(0111) (0011) (1111) (0010) 

a. For each neuron, write the truth table for that neuron as a function of 
its inputs only. 

b. Assume that at t = 0 the state is ( 1000). Determine all future states until 
a steady state or cycle is reached. 

~ 2.5 Consider a one-dimensional Boolean cellular automaton, where each 
cell takes input from its two neighboring cells but not from itself. The Boolean 
rule is 

Input at Output at 
timet timet + 1 

(00) 0 

(01) 1 

(10) 1 

(11) 0 

Let there be ten cells in the network. 

a. Assume that at time t = 0, the state in three cells (of your choosing) is 
equal to 1. The rest are o. In the chart below, follow the evolution as time 
proceeds for five iterations using the scheme shown below. (Remember 
that cellI is connected to cell 10, and vice versa.) 
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XI X2 X3 X4 Xs X6 X7 Xs X9 XIO 

t = 0 

t = 1 

t = 2 

t = 3 

t = 4 

t = 5 

Each square in your 10 x 6 array will have a 1 or a O. 

b. Consider the evolution of the system described above in the limit t ~ 
00, but starting from any arbitrary initial condition at t = O. Does an 
initial condition exist which will give rise to (i) a steady state, (ii) a cycle, 
(iii) or chaos (i.e., aperiodic dynamics)? 

c. Give an upper limit (if one exists) for the length of a cycle in this system. 

tif7 2.6 The following is a random Boolean switching network with three 
variables X, y, and z: 

(YX)t Zt+1 (yz)t Xt+1 (zx)t Yt+1 

(11) 0 (1 1) 0 (11) 1 

(10) 0 (10) 0 (10) 0 

(01) 0 (01) 0 (01) 1 

(00) 1 (00) 1 (00) 0 

a. Fill in the following table: 

(XYZ)t (XYZ)t+1 (xyz)t (XYZ)t+1 

(111) (011) 

(110) (010) 

(101) (001) 

(100) (000) 

b. Determine the dynamics starting from all initial conditions. 

c. How many steady states and cycles are there in this network? 
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if{? 2.7 Consider a two-dimensional 5 x 5 Boolean cellular automaton. The 
neighbors of any given cell are the four cells that share a common edge with that 
cell. The rule for evolution is as follows: The state of a given cell will be 1 at time 
t + 1 if the state of that cell or the state of any of its neighbors was 1 at time t. 
Otherwise the state of the cell will be 0 at time t + 1. 

a. Choose three of the cells randomly and assume that the state of those 
cells is 1 at t = O. Assume that the states of all the other cells in the 
network is 0 at t = O. Draw a 5 x 5 grid and show the states of each of 
the twenty-five cells at t = O. 

b. Show the subsequent evolution of this system. At each time step, show 
the state of each cell (either 1 or 0) until either a steady state or a cycle 
is reached. 

c. How many different ways could you have chosen the initial configuration 
in part a? 

d. Find an initial condition with three cells in state 1 that gives the 
shortest transient until a steady state or a cycle is reached. Show this 
configuration, and give state the length of the transient. 

if{? 2.8 A Kauffman network contains four elements w, x, Y, and z where the 
activity of each element can be represented by a Boolean switching network. 

(YX)t Wt+l (wz)/ Xt+l (xw)t Yt+l (wY)t Zt+l 

(00) 0 (00) 1 (00) 1 (00) 1 

(01) 1 (01) 0 (01) 0 (01) 1 

(10) 1 (10) 0 (10) 0 (10) 0 

(ll) 0 (11) 1 (11) 0 (ll) 1 

a. Write a table that shows the state at time t + 1 given the state at time t 
for each of the sixteen possible states of the network. 

b. How many fixed points and cycles are there in this network? What are 
they? 

if{? 2.9 A Boolean switching network has three elements. The network displays 
the following transitions: 

001 -+ 011 -+ III -+ 110 -+ 100 -+ 000 -+ 001 -+ ... 

010 -+ 101 -+ 010 -+ .... 



COM P U TE R PRO J E C T S 101 

a. Write a truth table that gives the state of the network at time t + 1 for 
each of the possible states at time t. 

b. For each element of the network, indicate the inputs and the truth table 
that gives the output of that element as a function of the inputs. 

c. Out of the 4096 different "Kauffman-type networks" with three elements 
and no self-input, how many will have the same dynamical behavior? 
Justify your answer. By "same dynamical behavior" we mean networks 
with two cycles, one with six states and the other with two states. In the 
cycle with six states, each state is different from the preceding state in 
one node only. The cycle of two states flips between two states that differ 
in all three nodes. HINT: This requires some thought. There are a couple 
of ways to get the answer. You might wish to think about different ways 
of generating frustrated networks with three elements. 

t:? 2.10 What does it mean to pick a "random" Boolean function? A Boolean 
function of k inputs gives the output for any given combination of ones and zeros. 
For example, one of the Boolean functions of two inputs, AND, is (00) -+ 0, 
(01) -+ 1, (10) -+ 0, and (11) -+ O. We know that for two inputs there are four 
possible input states (00), (01), (10), (11). If we adopt the convention that the 
input states will always be written in increasing order (in base 2), we can make a 
shorthand notation for this Boolean function of (0001), which reflects the output 
of the function for each of the four possible input states. Thus, the sixteen possible 
Boolean functions of two inputs can be written as 

0000,0001,0010,0011, ... ,1110,1111. 

If we read this in base 2, then these sixteen Boolean functions are just 
0, 1,2,3, ... , 14, 15. So, each possible Boolean function of two inputs has a 
unique identifying number. 

Consider Boolean functions of k inputs, and describe how to generate the 
unique identifying number for them. 

In studying random Boolean networks, we may not want to use the Boolean 
functions CONTRADICTION and TAUTOLOGY. Show that for Boolean functions of 
k inputs, these two functions have the identifying numbers 0 and 22k - I, 

respectively. 

~. COMPUTER PROJECTS 

Project 1 Write a program to generate random Boolean switching networks 
where each element receives 2 inputs. Restrict yourself to networks in which there 
is no self input. Starting from an initial condition iterate the network until a steady 
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state or cycle is reached. Your program should allow you to change the number 
of elements in the network. 

Project 2 Generate 100 different random networks with 10 elements. For 
each network count the number of different cycles that you find starting from 
different initial conditions. It is necessary to test a large number of different initial 
conditions to guarantee that you have found all possible attractors. Find the mean 
number and standard deviation of the number of attractors per network. 

Project 3 Now consider the influence of changing the number of elements 
of the network. As the number of elements increases, it is possible that the cycle 
can get astronomically long (but this does not happen too often). You will want 
to increase the number of elements in your network in a rather gradual manner, 
and figure out what to do if you never find a cycle. You might wish to consider 
the possibility of looking for cycles in a clever way. For example, suppose you 
just keep track of which elements change their states at each time step. What 
would happen if there is a periodic cycle? When Kauffman (1969) carried out 
this computation computers were rather primitive. You might wish to test your 
computing skills and your computers abilities to see how far up you can push the 
number of elements. Test to see if the cycle length and the number of cycles per 
network increase as the square root of the number of elements as was found by 
Kauffman. 

Project 4 Generate random Boolean networks in which the number of 
inputs per element is different from 2. What happens to the cycle length and the 
number of cycles per network as a function of the size of the network? 

Project 5 The game of "Life" and extensions provide students and recre­
ational mathematicians with an interesting exercise: write a program to simulate 
the game oflife. In doing this you should assume a geometry with cyclic bound­
ary conditions. Generate random initial conditions and see what happens under 
subsequent iterations. How many different patterns can you find that represent 

repeating cycles? 

Project 6 The following project is a difficult one, but would be a challenge 
to someone with interests in finite mathematics. Consider cellular automata that 
follow rule 90 with cyclic boundary conditions. Write a program to determine the 
number of different steady states and periodic orbits that are found for networks 
of different size as t ~ 00. In doing this you should try to take account of the 

cyclic symmetry so that two periodic cycles that only differ by their location on 
the ring are counted the same. Explore the way the number of attractors changes 
as the number of cells changes. 

Project 7 Write a computer program to simulate wave propagation in ex­
citable media. Vary the size of the neighborhood that can excite a given cell, the 
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number of inputs that have to be active in the neighborhood of a cell to excite 
the cell, and the duration of time each element is excited or refractory. Assign 
different colors to excited states, excitable states and refractory states. Try to find 
an initial condition that will evolve to spiral waves. One way to do this is to start 
from an initial condition in which a wave of excitation covers a some of the space, 
but a free end is left dangling into the rest of the media. How close can you come 
to simulating spiral waves such as are observed in the Belousov-Zhabotinsky 

reaction? 



CHAPTER 3 



Self -Si m i larity 
and Fractal 
Geometry 

If you cut a limb off a tree, the resulting object will resemble--in miniature--the 
tree itself. If you cut a branch off this limb, the shape of the resulting object will 
be similar to the limb and to the entire tree. If you cut a twig off this branch, it 
too will resemble the entire tree. The term self-similar describes the geometry of 
objects in which a small part when expanded looks like the whole. 

Many objects encountered in nature and biology are self-similar. Examples 
include the geometry of the vascular system, the branching system of bronchi in 
the lungs; and the network of creeks, streams, and rivulets that flow into rivers. 
All these objects have treelike shapes. 

But self-similarity is not limited to objects with treelike geometry. Some 
types of clouds are self-similar. Mountains often have small outcroppings that 
resemble the mountain as a whole. The shore of a lake or ocean often has inlets 
or bays, which often contain inlets or bays of smaller size themselves, and so on. 

Of course, not everything is self-similar. If you remove a part from an 
automobile, the part will not look like a smaller version of the car. A single house 
in a neighborhood does not look like the neighborhood itself. An arm or a leg 

does not look like an entire body. 
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In this chapter we will discuss the geometry of self-similar objects, called 
fractal geometry. We will introduce the concept of dimension to describe the 
scaling of self-similar objects, and we will describe the relationship between fractal 
geometry and dynamics. 

3.1 DESCRIBING A TREE 

Suppose you were asked to develop a method for describing the shapes of 
trees. The reason for doing this might be to help in creating a theory that would 
link the shapes of trees to their environment-the stresses on branches from wind 
and snow, the availability of sunlight. 

One way to describe the shape of a tree is to consider sections of branches as 
cylinders and to write down the length, diameter, and orientation of each cylinder. 
This might provide an accurate description, but not only would it require you to 
keep a long list of many cylinders, it would also be difficult to compare two trees 
to see if they are similar. 

Another method for describing the shape of a tree is to look at the shape of 
the volume of space that contains the tree. For example, many types of fir trees 
resemble cones, while some deciduous trees roughly resemble spheres. Although 
this type of description is not very detailed, it makes it easy to compare the overall 
shapes of different trees. 

Another possible type of description makes use of the self-similar structure 
of many trees. Since the structure of each limb or branch looks like the tree 
as a whole, but in miniature, you might quantify the self-similarity by use of 
a scale factor. For example, at the end of each branch many trees have two 
smaller branches separated by a certain angle. To describe the local geometry of 
the tree, you would need to use only two numbers: the angle between the two 
smaller branches, and the scale factor that tells how large the smaller branches 
are compared to the larger branch from which they stem. (To determine the scale 
factor, we take the ratio of the lengths of the parent and child branches, not 
their volumes or areas.) For three-dimensional trees, it makes sense to measure a 
second angle, which represents how the plane containing the two smaller branches 
intersects the plane containing the parent branch and its twin. To describe the 
whole tree, two additional numbers would be needed: the size of the main trunk 
and the size of the smallest twig. Given just these five numbers-two angles, a 
scaling factor, and the largest and smallest sizes-it is possible to write a computer 
program that draws realistic-looking trees. 

How is this done? Assume for a moment that you have already written a 
program to draw a self-similar tree in two dimensions, and that it has the following 
name: 
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simpleTree(x, y, angle, length) 

(The notation here is described in Appendix B.) This program will draw a tree 
with the base of its trunk at position (x, y), whose main branch (i.e., the trunk) 
goes at direction angle, and which has a height length. Let's also assume that the 
type of tree this program draws has a high degree of self-similarity: It looks like a 
trunk of length length and two copies of the whole tree, shrunk by a scale factor 
of !, growing out of the trunk's end, each at angle theta to the original. This 
suggests writing simpleTree as three parts: 

1. Draw the branch. 

2. Draw a copy of the whole tree coming out the top of the branch at the 
current angle plus e. 

3. Draw another copy of the whole tree coming out the top of the branch 
at the current angle minus e. 

As a computer program, this might be written as follows: 

simpleTree(x, y, angle, length) 

double x, y, angle, length; 

{ double topx, topy; 

} 

topx = x + length*cos(angle); 

topy = y + length*sin(angle); 

drawLine(x, y, topx, topy); 

simpleTree(topx, topy, angle+theta, length/2); 

simpleTree(topx, topy, angle-theta, length/2); 

A computer program of this sort is recursive, which means that the program 
is defined in terms of itself. Recursive programs are, therefore, self-similar. A very 
simple example of a recursive program is given in Appendix B. 

You may be thinking that we still haven't adequately defined simpleTree, and 
you are right, but we are very close. An important point to keep in mind about real 
trees is that they are only self-similar up to a point. Small twigs don't have even­
smaller twigs growing from them; they have leaves. We can finish our definition 
of simpleTree by specifying that if length is smaller than some predefined twig 
size, then instead of drawing the two small copies of the whole tree, we should 

draw a leaf. We can do this just by putting a dot at the position (x, y). The whole 
program now looks as follows: 

simpleTree(x, y, angle, length) 

double x, y, angle, length; 

{ double topx, topy; 
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} 

if (length < twigSize) 

drawDot(x,y); 

else{ 

} 

topx = x + length*cos(angle); 

topy = y + length*sin(angle); 

drawLine(x, y, topx, topy); 

simpleTree(topx, topy, angle + theta, length/2); 

simpleTree(topx, topy, angle-theta, length/2); 

Now we have a complete definition of simpleTree, and we can set the 
computer to work. Figure 3.1 shows some results. 

It would be silly to claim that the tree in Figure 3.1 is realistic; it is ob­
viously extremely stylized. There are several reasons for this: Real trees are 
three-dimensional and are not perfectly self-similar; the branches of real trees 
are not line segments but have some amount of thickness, which decreases as one 
gets closer to the leaf; and the approximate self-similarity of real trees appears to 
require more than the three parameters used here (angle, relative length of each 
child branch). 

Making the program only slightly more complicated allows us to draw a 
variety of much more realistic trees. The complication mostly involves specifying 
the angles of the branches in three-dimensional space. In addition, the branches 
are drawn with a thickness that depends on their length. Figure 3.2 depicts three­
dimensional drawings of trees. 

Figure 3.1 The simple two-dimensional tree shown here is self-similar. Each of 
the branches of the whole tree is a small copy of the whole tree. 
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Figure 3.2 Left: Self-similar trees drawn in three dimensions. At each generation, 
four copies of the entire tree are drawn. One is vertical and the other three are 
tipped toward the base of the parent branch. Right: At each generation, two copies 
of the entire tree are drawn. The larger copy continues almost straight from the 
parent branch, while the smaller copy is tipped more towards the base of the parent 
branch. 

This type of self-similar description of a tree is in many ways superior to 
a description based on cylinders, cones, or spheres. It is capable of represent­
ing realistic details of the structure of trees but at the same time requires only a 
few numbers, enabling ready comparisons between different trees. There is also 
an appealing possibility that the self-similar description is close to the biolog­
ical mechanisms that generate the shape of a tree, since presumably the global 

structure of trees (e.g., spheres, cones) is a result of a purely local branching 

mechanism. 

3.2 FRACTALS 

Although the simpleTree program was recursive, it was not completely self­
similar. At each step, in addition to drawing two smaller copies of the tree, we 

also drew a trunk. 
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Figure 3.3 The Cantor set. 

There are objects that are completely self-similar: They consist exclusively 
of smaller copies of themselves. One of the simplest of these self-similar shapes 
is called the Cantor set. The Cantor set consists of two copies of itself, and the 
length of each copy is one third the length of the whole set, separated by an empty 
region whose length is also one third that of the whole set (see Figure 3.3). We 
can write this as a recursive computer program. 

We will introduce a new variable, t, that keeps track of how many times we 
allow the computer to make the recursive copies of the set. In an ideal mathemat­
ical sense, the true Cantor set puts no limit on t. For our computer representation 
of the set, because we have a limited amount of time and memory, we use t to 
limit the depth of the recursion. 

We will start with t = n, and at each generation where we make recursive 
copies of the set, we will decrease the value of t by 1. When t == 0 we will stop 
the recursion and draw a line from x to x + length. The computer program for 
this follows: 

drawCantorSet(x, length, t) 

doub~e ~,~ength,t; 

{ 

if (t == 0) 

drawCantorSet[O] 

drawCantorSet[1] 

drawCantorSet[2] 

drawCantorSet[3] 

drawCantorSet[ 4] 

o 
I> 

x 

Figure 3.4 Computer approximations to the Cantor set, showing the sets produced 
by a recursive generation of the Cantor set with recursion depth set as indicated in 
brackets. Note that drawCantorSet [1] consists of two copies of drawCantorSet [0], 

and that drawCantorSet [2] consists of two copies of drawCantorSet [1] and so on. 
The true Cantor set is limn-->oo drawCantorSet [n] . 



drawLine(x, 0, x+length, 0); 

else { 

drawCantorSet(x 
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, length/3, t-l); 

drawCantorSet(x + 2*length/3, length/3, t-l); 

} 

} 

The output produced by this program for various values oft is shown in Figure 3.4. 
It's easy to imagine how to construct self-similar shapes where more than 

two copies are made at each generation. 
Interesting self-similar shapes can be drawn in two dimensions. The "Ser­

pinski gasket" is a shape that consists of three copies of itself, each of which is 
half the size of the whole set. Each of the three copies is placed at the vertex of an 
equilateral triangle. The program to generate this is: 

drawGasket(x, y, length, t) 

doubLe x, y, Length, t; 

{ doubLe newx, newy; 

if (t == 0) 

drawTriangle(x, y, length); 

else { 

drawGasket(x, y, 

drawGasket(x+length/2, y, 

length/2, t-1); 

length/2, t-l); 

drawGasket(x+length/4, y + 0.433012*length, length/2, t-l); 

} 

} 

The only complicated part of this program is the calculation of where to put the 
various copies of the set. The variables x and y hold the position. The particular 
values used (e.g., 0.433012) can be found by trigonometry. To limit the depth of 
the recursion, we will draw a triangle of the appropriate size when t reaches O. 
See Figure 3.5 for sample output. 

As another example, the "Koch snowflake" is a self-similar shape that con­

sists of four copies of itself, each of which is one third the size of the whole set. 
Figure 3.6 shows an emerging approximation to the ideal set. 

3.3 DIMENSION 

In Euclidean geometry, a point is zero-dimensional, a line is one­
dimensional, a plane is two-dimensional, and so on. What is the dimension of the 

various self-similar sets shown in Section 3.2? The traditional view of the mean­
ing of "the dimension of an object" is that it gives the number of values needed 
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drawGasket[O) drawGasket[1) drawGasket[2) 

drawGasket[3) drawGasket[4) drawGasket[5) 

Figure 3.S Computer approximations to the Serpinski gasket set. drawGasket [1] 
consists of three copies of drawGasket [0] and so on. Although in this figure draw­
Gasket [0] is drawn as a triangle, any shape of the appropriate size could be 
used. 

koch[O) 

koch[1) /\ ---- '----

Figure 3.6 
Computer approximations to the 
Koch snowflake. koch[t] gives a 
recursive generation of the set to 
recursion depth t. Note that koch [1] 
is made of four smaller copies of 
koch [0], koch [2] is four smaller 
copies ofkoch [1], and so on. 
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to specify the position of a point on the object. For instance, one value needs to 
be given to specify the position of a point on a line, two values (the "x" and "y" 

coordinates) need to be given to specify the position of a point on a plane, and 
soon. 

Here, we will explore another meaning of "dimension;' which is based on 
the idea of self-similarity, but which reduces to the traditional meaning when 
applied to familiar Euclidean objects such as lines and planes. To make a connec­
tion between self-similarity and the concept of dimension, consider how to give 
a self-similar description of a one-dimensional object: a line segment. One way 
to do this is to say that a line segment of length I consists of two copies of itself, 

each oflength ~: 

lineSegment(x, length, t) 

double x, length, t; 

{ 

lineSegment(x, length/2, t-l); 

lineSegment(x + length/2, length/2, t-l); 

} 

The progression ofline segments drawn this way all look the same. 
Now, imagine how to draw a familiar two-dimensional object: a filled-in 

square. We can give a self-similar description as four copies of itself, each oflength 
1.. 
2 • 

filledSquare(x, y, length, t) 

double x, y, length, t; 

{ 

filledSquare(x, y, length/2, t-1) ; 

filledSquare(x+length/2, y, length/2, t-1) ; 

filledSquare (x, y+length/2, length/2, t-l); 

filledSquare(x+length/2, y+length/2, length/2, t-1) ; 

} 

Two quantities characterize each of the self-similar shapes we have studied: 

• the number of self-similar copies: N 

• the edge length of the original relative to each copy: E. 

The following formula can be used to define a dimension D for an object: 

log N 
D=--. 

log E 
(3.1) 
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Applying this definition to the various self-similar objects we have studied 
here, we can make the following table of values for N, E, and D: 

Object N e D 

Line segment 2 2 1 

Filled square 4 2 2 

Cantor set 2 3 0.631 

Gasket 3 2 1.585 

Snowflake 4 3 1.262 

For the line segment and the filled square, the definition of dimension in Eq. 
3.1 gives the same value as the familiar concept of dimension. For the Cantor 
set, the gasket, and the snowflake, the dimension is a fraction. For this reason, 
these objects are called fractals. Obviously, it's hard to interpret a fraction as "the 
number of variables needed to specify a position on the object:' The definition of 
dimension in Eq. 3.1 provides an extension of the concept of dimension from the 
familar Euclidean objects of lines and planes to the world of self-similar objects. 

Where does the definition of dimension in Eq. 3.1 come from? Recall that 
the area of a square of edge-length [ is [2, and that the volume of a cube of edge­
length [ is [3, and that the length of a line oflength [ is, obviously, just [. Let's use 
the word bulk to refer to an abstract concept of which length, area, and volume 
are examples. For Euclidean objects of dimension D, the bulk of an object with 
an edge-length [ is proportional to [D: 

"bulk" is proportional to [D. 

(The constant of proportionality depends on the particular shape of the object. 
For example, the area of a circle of diameter [ is ~ [2 and the volume of a sphere 
of diameter [ is ~ [3.) For self-similar objects, one way to measure the "bulk" 

is to count the number of self-similar copies. If there are N copies each with a 
characteristic edge length E, then we expect that the total bulk is related to the 
dimension of the object: 

N is proportional to ED. 

Taking the log of both sides leads to Eq. 3.1, which concludes the explanation of 

how that equation was derived. 
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DYNAMICS IN ACTION 

5 THE BOX-COUNTING DIMENSION 

Equation 3.1 gives a formula for calculating the dimension of a fractal object if we 
know the number of self-similar copies, N and the size of the original relative to 
each copy, E. But suppose we have only an object, such as a lung with its treelike 
branches, or a river, or a snowflake. How do we estimate the dimension of an 
object? 

One simple technique for calculating the dimension of an object is directly mo­
tivated by the definition of dimension given in Eq. 3.1. The procedure is as 
follows: 

1. "Cover" all the points in the object with boxes of edge-length EO. If the object is 
a photograph or a map, then the boxes will be squares. If the object lives in the 
three-dimensional world, then the boxes will be cubes. Count how many such 
boxes there are, calling the result N(EO)' 

2. Repeat step (1), using boxes that have edge-length E1 = ~. Then repeat again 

using E2 = ~, and again with E3 = ~, and so on. By doing this, we construct 
a function N(E) sampled at the values E = EO, E1, .... 

3. In theory, the dimension D is the number such that 

lim N(E) = ,A,E-D, __ 0 

where A is a constant. In practice, D can be estimated as 

D = log N(E;+1)IN(E;) . 

log E;/E;+1 
(3.2) 

The difficult part is selecting an appropriate value for i. In general, one chooses 
i to be as large as possible in order to approximate the limit E ~ O. But keep in 
mind that for physical objects, it may not make sense to make the boxes infinitely 
small. For example, in studying the fractal shapes produced in growth (see the 
Dynamics in Action 8 box, later in this chapter), it is inappropriate to make the 
boxes smaller than a single cell or particle. 

The example in the figures shows a calculation of the box-counting dimension for 
a fractal object, the chaotic attractor of the Ikeda map. The Ikeda Map is described 
in Chapter 6. For now, it simply serves as a convenient way of generating a fractal 
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object whose self-similarity is not obvious to the eye. 

Xi+1 = 1 + 0.7(Xi cos ti - Yi sin ti) 

Yi+1 = 0.7(Xi sin ti + Yi cos ti) 

(3.3) 

(3.4) 

where ti = 0.4 - ~(1 6 ). Using numerical iteration, the program generated 1000 +x.+y. 
points and plotted them 'out as pairs (Xi+ 1, Xi ). 

0.4 0.6 0 .8 

Left: The attractor of the Ikeda map, covered with boxes of edge-length "0 = 
0.08. Forty-three boxes are needed. Middle: One hundred ten boxes of edge­
length "1 = 0.04 are needed. Right: Two hundred fifty boxes of edge-length 
"2 = 0 .02 are needed. 

By covering the Ikeda attractor as shown in the figures, we find that for "1 = 0.04 
there are 110 boxes used to cover the object, and that for "2 = 0.02 there are 250 
boxes used. Substituting these values into Eq. 3.2, we find that the dimension is 
D ~ 1.2. Note that in this case, it does not make sense to set the dimension of 
the boxes much smaller than "2 = 0.02, because at some point only one of the 
1000 points will be in each box, and making the boxes smaller will not increase the 

number of boxes needed to cover the points. 

3.4 STATISTICAL SELF-SIMILARITY 

In geometry the word "similar" means "not differing in shape but only 
in size or position." The fractals we have studied in the previous section are 
self-similar in this geometric sense. 

In everyday language, "similar" means "alike" and does not have as narrow a 
meaning as in geometry-two things can be alike even if they are slightly different. 
The self-similarity of real trees makes use of this common meaning of "similar." 
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We do not expect that all branches of a tree will look the same, just that they will 
look somewhat like the tree as a whole. 

It is often worthwhile to consider self-similarity in a statistical sense, and 
say that an object is self-similar if its parts, on average, are similar to the whole. 
For example, the coastline of a continent contains gulfs and bays, and the gulfs 
and bays themselves contain smaller bays and inlets, which themselves contain 
coves and other small structures. 

DYNAMICS IN ACTION 

6 SELF-SIMILARITY IN TIME 

Imagine a whale, a human, and a bat listening to the same sound. Will all three hear 
the same thing? The auditory systems of all three mammals are roughly the same, but 
owing partly to the extreme differences in size, they hear different frequency ranges. 
Whales are tuned to very low frequencies that propagate well for long distances 
through the ocean; bats are highly developed to hearthe very high frequency sounds 
that are used in echolocation; and humans hear best in the fami liar 20-20,000 cycles­
per-second (hertz) frequency range that we call the "audio range." So, if the whale, 
human, and bat were listening to, say, Mozart's "Clarinet Concerto in A," the human 
would hearthe music, while the whale and the bat might hear something that sounds 
very different. Since there are other frequencies in music besides the audio ranges, 
whales and bats would also hear sound but it would probably not sound much I ike 
Mozart as we know it. 

Let us think about the music in a more general way. The music is a signal, that is, 
a quantity that varies in time. There are lots of different frequencies in the music. 
It is common to analyze signals by considering how "loud" different frequency 
bands are. A more precise meaning for "loud" is the energy of a signal in a given 

frequency range. For example, in many concerts and recording studios the energy 
in specific frequency ranges can be amplified separately (this is what goes on in 

those complex sound equalizers that you see people fiddling with in concerts). Of 
course, the amount of energy in each frequency band is a very crude measure of 
the signal generated. Therefore, from this perspective the music of Mozart would 
likely be very similar to that of Guns 'n' Roses. 
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We have already seen how spatial structures, such as the Cantor set, can be self­
similar in space. It is also possible for temporal signals to be self-similar in time in a 

statistical sense, but here the meaning is a bit different. We say that a temporal signal 

is self-similar when it has, for example, the same energy in the 20-200 Hz range as 

it has in the 200-2000 Hz range, and in the 2-20 Hz range and any other range from 
kHz to 10 kHz. This self-similarity is often termed 11f noise. 

Mozart and Guns 'n' Roses are not self-similar when the audio range is considered. 

However, very low frequency fluctuations in their loudness are indeed self-similar. 
Voss and Clarke (1975) looked at the loudness of different types of music in the 

frequency range from 0.001 Hz to 0.1 Hz and found that it was 1ft. 

Signals that display 1ft noise are surprisingly common and are observed in all sorts 
of different situations such as the arrival times of telephone calls, the intrinsic noise 

in semiconductors, the density of urban automobile traffic, the level of the Nile river, 
and the rate of the human heartbeat. In all these cases the mechanisms responsible 
for 1ft noise are still being investigated. 

Xt+l 1 
0.8 

0.6 

0.4 

0.2 0.4 0.6 0.8 1 
Xt Xt+l = Xt + xf (mod 1) 

The name ·1/f noise" suggests that the signal is generated by a random process. 

Indeed, it is impossible to imagine that clustering characteristics of telephone calls 

made by independent individuals arise from a deterministic process. It seems 

unlikely that only one mechanism will be universally applicable to such diverse 

situations. Indeed, a number of different deterministic and random processes have 

been shown to produce 1/f noise. To give some idea about the various ways of 

producing 1/f noise, we illustrate one deterministic model and one random model 

that generate 1/f noise. 

A simple, deterministic, one-dimensional finite-difference equation, proposed by 

I. Procaccia and H. G. Schuster (1983), generates 1 If noise. Procaccia and Schuster 
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2 3 

~ (C) 

(0) 

0.00 001 0.02 0.03 
Time (sec) 

(A) A signal generated by Eq. 3.5. (8) The signal in (A) filtered to include only 
the range 1.5-15 Hz. (C) The signal In (A) filtered to include only the range 15-
150 Hz. Note that the time scale Is 10 times larger than in (8). (0) The signal in 
(A) filtered to include only the range 150-1500 Hz. Note that the time scale is 
100 times larger than in (8). 

considered the equation 

Xt+l = Xt + X'/ mod 1, (3.5) 

the graph of which is shown on the previous page. If Xo is near zero, then Xt grows 
very slowly at first, then faster, and then shows a kind of "bursting" behavior where 
Xt oscillates very rapidly until it is "reinjected" back near zero. Then, the phase of 

slow growth starts again, and the cycle repeats. However, the duration of the slow­
growth phase depends sensitively on how close to zero the reinjected value of x 
is. This results in slow-growth phases of varying lengths, as seen in Figure A above. 

We can take the signal shown in Figure A and filter it to include only those compo­
nents in a given frequency range. If we take the range from 1.5 to 15 Hz (where we 
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have assumed that one iteration of Eq. 3.5 takes 0.0001 sec), then the signal shown 

in Figure B results. Figures C and D show the results of filtering using higher frequency 

ranges. Note that all three filtered signals look similar, even though they are plotted 

on very different time scales. 

Self-similar signals can also be generated by random processes. A simple example 

involves computer random-number generators. We take a set of random-number 

generators and arrange the first so that it makes a new random number every time 
step, arrange the second so it makes a new random number every second time 

step, the third so that it changes every fourth step, the next so it changes every 

eighth step, and so on. At each time step, the output of all of the random numbers 

is totaled. 

a 500 
Time 

A self-similar signal generated using random numbers. 

1000 

Let us now consider a physiological signal-the heartbeat. Since the heartbeat can 
easily be recorded by placing electrodes on the surface of the body, it is possible 
to record heartbeats continuously over one or more days. Of course, although it is 
easy to record the heartbeats, it is not so easy to interpret the signals. Since heart 

disease is a deadly problem, computer calculations are cheap, and doctors' fees 

are high, there is a great deal of interest in determining computer algorithms that 

can aid diagnosis based on the timing of heartbeats. The figure on the next page 

shows a recording of one of the authors' heart rates. 

There is a practical limit to the ranges over which signals can be self-similar. For 

instance, the human heart rate is self-similar for frequency ranges as low as one 

cycle per day (and maybe lower-the long measurements needed to find out are 

rare) and as high as one cycle every sixty seconds. For the frequency ranges where 

self-similarity appears, it may offer an important clue to the dynamics of the systems 

that generate the signal. 
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HRV Plot Heart rate recorded from one of the authors. Top-the low frequency 
components plotted over three hours. Bottom-the first fifteen minutes of the 
heart rate signal. 

3.5 FRACTALS AND DYNAMICS 

As we have seen, the term fractal refers to the geometry of objects that are 

self-similar. The term dynamics refers to how things change in time. Fractals and 

nonlinear dynamical systems are related in quite subtle and fascinating ways. In 

this section, we will give some examples of the relationship. 

THE "FRACTAL GAME" 

Consider a simple game introduced by M. F. Bamsley: Draw an equilateral 

triangle on a piece of paper and label the vertices A, B, and c. Make a mark anywhere 
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inside the triangle. Now toss a die. If it comes up 1 or 2, place a new mark halfway 
between the old mark and A; if the die comes up 3 or 4, place the new mark halfway 

between the old one and B; if the die comes up 5 or 6, place the new mark halfway 

between the old one and c. Repeat this many times, always using the latest mark 

as the reference point for placing the next mark. After many tosses of the die, the 

resulting picture will look like the Serpinski gasket in Figure 3.5. Figures 3.7 and 
3.8 depict the results after 3, 100, 1000, and 5000 rolls of the die, respectively. 

How can this simple game produce a structure with as much detail as the 

Serpinski gasket? Since a random die is involved, why is the result of the game 

always almost exactly the same whenever it is played? 
The "Fractal game" is a discrete-time dynamical system similar in many 

respects to the finite-difference equations studied in Chapter 1.* As shown in 

Figure 3.9, the initial position is somewhere in the ABC triangle. If the first toss 
of the die gives A, then regardless of where the initial position was in ABC, the 

new mark must be made in the top triangle. If the first toss of the die gives B, the 
new mark must be in the lower left triangle, and if the toss gives c, the new mark 

must be in the lower right triangle. Thus we know for certain that independent 
of the outcome of the first die toss, the new mark will be somewhere in the set 

drawGasket [1]. 

The same logic applies to the second toss of the die-but this time we 

already know that the previous mark was drawGasket [1]. Exactly where the mark 
will be placed depends both on the initial position and on whether the first two 
tosses of the die were AA, AB, AC, BA, BB, BC, CA, CB, or cc. But after the second toss, 
the mark will be somewhere in drawGasket [2]. Similarly, after three tosses of the 
die, the mark will be somewhere in drawGasket [3], and so on. This means that 

A 

B 

Figure 3.7 
The initial condition and first three 
moves of the "Fractal Game." 

• The game is also different in many respects from the systems studied in Chapter 1. 
Those systems were deterministic, meaning that given the state at time t, the state at time 
t + 1 could be calculated. In the Fractal Game, there is a random or stochastic element, 
and so the dynamics are not deterministic. 
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After 5000 moves 

A 
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After 1000 moves 
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drawGasket [n] is an attractor that we are guaranteed to reach after n steps of the 
game. 

So we know that after n steps the mark (and all future marks) will be 
somewhere on drawGasket [n]. Why aren't the points that we draw concentrated in 
some small region of drawGasket [n]? This is where the random nature of the die 
comes in. After each die toss, the new mark is placed in the part of drawGasket [1] 

identified with the letter that came from that toss. As long as the die tosses include 
at least one A, B, or c, then at least one mark will be made in each of the three 
triangles. After each pair of die tosses, the new mark is placed in the one of the 

nine triangles of drawG.asket [2] that corresponds to the appropriate pair ofletters 
(see Figure 3.9). As long as the series of die tosses includes at least one of each of 
the nine possible pairs AA, AS, AC, BA, BB, BC, CA, CB, and CC, then each of the nine 
triangles in drawGasket [2] will have a mark placed in it. If we have many more than 
nine die tosses, then we're virtually certain to represent all the triangles. Similarly, 
triplets of die tosses correspond to the twenty-seven triangles of drawGasket [3], 

and so on. 
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Single moves: 

.I~~ill A 
Possible Possible 
initial 
positions 

positions after 

Pairs of moves: one move 

nn AL1 a 
BA 1\ BB /\ Be /\ Possible 
~ ~ ~ positions after 

two moves 

~iin 
Figure 3.9 The initial position in the fractal game can be anywhere in the triangle. 
After the first toss of the die, the new mark must be in one of the three smaller 
triangles. After two tosses, the new mark must be in one of the nine very small 
triangles. 

CELLULAR AUTOMATA 

The three-input BOQlean cellular automaton with rule 90 (see Section 2.5) 
generates self-similar patterns. The process starts with a single ON-site, and then 
two ON-sites appear after the first iteration. Already we see the seeds of self­
similarity: One parent has led to two children. These two children go on produce 

two children, but with sufficient space between them that their offspring can have 
the same configuration as the original ON -site. The two children produced by the 
fourth iteration are spaced exactly the right distance apart to reproduce the whole 
configuration, eventually producing two points that again reproduce the whole 
configuration, and so on (see Figures 3.10 and 3.11). 
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• • • 
After 1 iteration. 

• • • • • • • • • 
After iteration 3. 

• • • • • • • • • • • 
After iteration 4. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
After iteration 16. 

... ... :: .. :: .. . ... :: ...... : .. . 

Figure 3.10 
Dynamics of the three-input 
Boolean cellular automaton with 
rule 90, with a single oN-site as 
an initial condition . 

Figure 3.11 The cellular automaton generates an approximation to the Serpinski 
gasket that improves as the number of iterations increases. 
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DYNAMICS IN ACTION 

7 RANDOM WALKS AND LEVY WALKS 

If we put a crystal of colored soluble salt in a clear liquid solution, ions spread out 
in the liquid, leading to a slow coloration of the liquid. This process is an example 
of diffusion. Diffusion plays an important role in many processes in biology, for 
example the exchange of oxygen and carbon dioxide in the lungs, the absorption 
of some liquids and nutrients in the gut, and the transport of drugs from the blood 
to target organs. Diffusion occurs on a molecular scale. This is different from other 
processes such as bulk fluid flow in which there is motion of macroscopic volumes 
of fluid associated with an expenditure of energy. Diffusion requires no expenditure 
of energy and will continue until all differences in concentration are eliminated. 

Although we now understand that the physical mechanism underlying diffusion 
is random displacements due to collisions occurring on a molecular scale, the 
original observations of the random motions that underly diffusion were not at all 
understood and make for a fascinating story in the history of science. In his botanical 
studies in 1827, Robert Brown used a microscope to observe pollen grains in water. 
He saw them moving about in an erratic fashion. Since the pollen grains were 
derived from a plant, the first guess was that the movement of the pollen reflected 
a ·vital force" and that the pollen grains were "alive". To test this hypothesis, Brown 
first looked at particles derived from organic sources. In recounting his findings he 
wrote, "Reflecting on all the facts with which I had now become acquainted, I was 
disposed to believe that the minute spherical particles or Molecules of apparently 
uniform size, ... were in reality the supposed constituent or elementary molecules 
of organic bodies, first so considered by Buffon and Needham ... " However, a 
control experiment was needed. Brown continues, "Rocks of all ages, including 
those in which organic remain have never been found, yielded the molecul~ in 

abundance. Their existence was ascertained in each of the constitituent minerals 
of granite, a fragment of the Sphinx being one of the specimens observed." The 
open-minded Brown rejected his original hypothesis. 

Brown was a botanist and did not realize that the motions he saw were associated 
with collisions between the particles and liquid. It took another 75 years before Al­
bert Einstein recognized the connections between the random motions observed 
by Brown and the physical process of diffusion. Nevertheless, Brown's careful ob­
servations immortalized his name. We now call random motions similar to those 
observed by Brown Brownian motion or a random walk. 
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The mathematics of Brownian motion is often studied using simple models. The 
simplest is called the drunk random walker. The drunk random walker takes steps of 
equal size in any direction. Before each step he chooses a new random direction 

and takes a step. Imagine a large number of drunk random walkers all starting out 
from the same place at the same time (with deference to Einstein, we might call 

this a sedrunken experiment.) As time proceeds the initial high concentration of 
random walkers spreads out, invading regions of lower concentration. There are 

two important questions conceming this process: What is the distribution of random 

walkers as a function of time? and What is the average distance that a single walker 
is expected to go in a given time? 

The spatial distribution of random walkers is well described by a bell-shaped, 

Gaussian distribution. This type of distribution arises in many fields and we will 
discuss it in more detail in Chapter 6 and Appendix A. For the moment we only 

consider the walkers' displacement from the start to the end of theirwalks. Although 
the walkers are assumed to be moving at a constant velocity, their path takes so many 

twists and tums that the total displacement is, on average, proportional to ../t. 
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Left: A random walker starts from (0,0) and takes steps in a random direction. 
The steps tend to cancel each other out, and the walker does not get very far. 
On average, if the walk lasts for t time units, the distance between the start and 
the end is proportional to Jr. 500 steps are shown. Right: A purposeful walker 
starts from (0,0) and takes steps in a single direction. The distance between 
start and end is proportional to t. 500 steps are shown. 

For purposeful movement, the start-to-end displacement increases at a rate pro­
portional to t. The drunk random walker therefore does not get very far compared 

to his sober friends walking at a constant velocity. 
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The result found for a drunk random walker-that when walking for duration ( the 
average start-to-end displacement is proportional to .Jt-does not depend on all 
steps being the same size. For example/ suppose that the step size itself varies 

randomly from step to step/ with each step size being drawn from a Gaussian 

distribution. In this case/ we obtain the same results as above (but the constant of 

proportionality different is different). 

Since the total walk has a gaussian probability distribution/ and each step has a 
gaussian probability distribution/ the whole is similar to each of the parts. In this 

sense/ a gaussian random walk is self-similar. Likewise/ a purposeful walk is self­

similar-each step looks like a miniature copy of the whole walk. 

There are other situations in which a random walk is self-similar. For example/ sup­
pose that the distribution of step sizes/ p(/{)/ is proportional to (R3-U)/ where p(/{) 

is the probability that the step size will be between Rand R + dR. This is a power 

law distribution of steps/ and for 2 < ex < 3/ the start-to-end displacement is pro­
portional to t ~ . The random walk with a power-law distribution of steps is in 
between the purposeful walking case (corresponding to ex = 2) and the drunken 

random walker (corresponding to ex = 3). 

150r-----~----------~ 

100 

50 

o 

-50 

-100 End 

-150"---------=-...------" 
-150-100 -50 0 50 100 150 

25 30 35 

Left: A walker takes steps in random directions/ with the length of each step 
chosen from a self-similar power-law distribution P(R) = R3- a • Here/ ex = 2.03. 
500 steps are shown. Right: A magnification of a small part of the random walk 
shown in Figure . 

The above figure shows a power-law random walk with ex = 2.03. There are 500 
steps shown in the walk/ although it appears that there are many fewer steps. Most 

of the steps are very small/ and the dots appear to overlap. If we zoom in on a 
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small section of the walk, we can see the smaller steps in more detail, and that even 
on short segments of the walk there is additional detail that is similar to the walk as 
a whole. These self-similar walks were originally discussed by the mathematician 
Paul Levy. Random walks with self-similar dynamics and power-law scaling are now 
called Levy walks. 

One difficulty in studying power-law walks is that there is no typical step size­
steps of all sizes occur. For instance, the mean step size for a power-law walk is 
infinite. This can make it difficult to compare power-law walks with other types of 
walks. In the figures shown here, it has been assumed that the walker's velocity is 
constant on each step, so that large steps take longer than short steps. Thus, if the 
path traced out by each of the walkers were straightened out, each path would be 
the same length. 

The recognition that some physical processes are best described by Levy walks 
has important implications in the observation of time series. Very large jumps are 
possible. Even though very large jumps may be very rare, they nevertheless in­
evitably occur and contribute quite substantially to the start-to-end displacement. 
As a consequence of the large steps, the estimate of the average displacement 
found for small times can be considerably different from the estimate of the average 
displacement found for large times. 

ESCAPE! 

In Chapter I, we studied the finite-difference equation 

Xt+l = RXt(1 - Xt). 

Because we interpreted Xt to be the population density of flies at time t, we 
imposed the restriction 0 < R :::: 4. As long as 0 < R :::: 4, any value of Xt in the 
range 0 :::: Xt :::: 1 would produce a value of Xt+ I in that same range. By iteration, 
we can see that if Xt is in that range, all future values will also be in that range. 

Consider the case where R > 4. This makes it possible for Xt+2 to become 
negative even when 0 :::: Xt :::: 1. (Of course, this doesn't make physical sense if we 
interpret x as the population density of flies, but there are other situations where 

it might make physical sense.) For example, examine the case where Xo = !. 
This produces Xl = Rf4, which is greater than 1 if R > 4. Iterating once again, 
we see that X2 = R2-;/3 < O. Since X2 < 0, all future values will be less than 
zero and will asymptotically approach -00. 
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Figure 3.12 
The tent map with b = 3. Initial 
conditions in the darkened interval 
will escape to -00. 

The quadratic map is not the only map that has escapes to -00. Consider 
the tent map (see Figure 3.12): 

IbXI 

XI+l = 
-bxl + b if XI > 1/2. 

if XI .::: 1/2 
(3.6) 

The iterates of the tent map can escape to -00 for b > 2. For this example, we 

will set b = 3. 
We can use the cobweb method of iteration to demonstrate that if the initial 

condition is anywhere in the darkened interval [ ~ , ~ 1, the iterates will escape to 

survive[O] 

survive[l] 

survive[2] 

survive[3] 

survive[4] 

Figure 3.13 Initial conditions that do not escape from [0, 1) after the indicated 
number of iterations. 
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-00. Are there any other points in the interval from 0 to 1 that will also escape? The 
answer is yes. Any initial condition that gets mapped into the darkened interval 
will eventually escape to -00. 

Are the points that escape to -00 rare or common? To answer this question, 
consider all the points that do not escape the interval [0, 1] after one iteration. 
Call these points survive [1], because they survive for at least one iteration in the 
interval [0, 1]. It's easy to see that survive [1] consists of all points in [0, 1] that 
are not in [t, ~]. (survive [0] is the whole interval [0,1].) 

What does the set survive [2] look like? Look at Figure 3.14, which shows 
that it is the set of points that get mapped into survive [1] by a single iteration. 
The points in survive [2] are called the preimages of the points in survive [1] . If 
we draw survive [1] on the vertical axis, then we can see what points get mapped 
into survive [1] by tracing backward to the map and then down. Because the tent 
map consists of two segments (one sloping up, and the other sloping down), 
survive [2] consists of two copies of survive [1]. 

A similar argument allows us to derive survive [3] from survive [2], and, 
generally, survive [n] from survive [n-1], see Figure 3.13 for the results. The process 
is exactly like drawing the Cantor set. The set of points that survive forever is 
limn ..... 00 survive [n], which is the ideal Cantor set. 

We know that the Cantor set has a dimension D = ~llo 23 ~ 0.631. You 
. ~ 

might think this means that the probability of a randomly chosen initial condi-
tion having iterates that never escape is 63.1 percent. This is wrong. In fact, the 
probability that a randomly selected initial condition will survive for n iterations 
is given by the total length of the line segments that comprise survive [n]. There 
are 2n segments, each of which has a length ( t )n, giving a total length of ( ~ )n. 

As n ~ 00, this total length approaches zero. For example, the probability that 
a randomly selected initial condition in [0, 1] will survive for 20 iterations is 
( ~ )20 = 0.0003. Points that survive the dynamics of the tent map for many iter­
ations are very rare. The fact that the dimension of limn ..... 00 survive[n] is 0.631 
means that between any two points of limn ..... 00 survi va [n] there is an interval of 
points that do escape. 

o ExAMPLE 3.1 

For b = 3, calculate the dimension of the set of points that do escape to 00 

in the tent map, as well as the dimension of the set of points that do not escape. 

Solution: To find the dimension of the set of points that escape, start 
by noticing that you need one segment of length t to cover the set of points 
that escape [0, 1] in one iteration, and five segments oflength ~ to cover the 
set of points that escape in two or fewer iterations. At any iteration t, let Nt be 
the number of segments needed to cover the set of points that escape, and let 
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Figure 3.14 The tent map transforms the points in survive [2] (shown in gray) 
into the points in survive [1] (shown in black). By drawing survive [1] on the 
vertical axis and using the cobweb method in reverse, we can derive the intervals 
that are in survive [2]. survive [2] consists of two smaller copies of survive [1]; 

one arises from the left side of the map and the other arises from the right side of 
the map. 

each segment be smaller by a factor of E = 3 than the segments in the previous 
iteration. By inspecting Figure 3.13 carefully, we can conclude that Nt+ 1 = 3 Nt + 
2t. This situation is different from the cases we have studied so far, where N;'~l is a 
constant. Here, there is no single fractal dimension for finite t, but if we consider 
limHoo, we find that the dimension is 

1 (1' !!.w. ) og Imt .... oo Nt 

log 3 

loge3 + limHOO 2t / Nt) 

log 3 
= log 3 = 1. 

log 3 

To see that the term limt .... oo 2t / Nt = 0, we note that since Nt > 3t- 1, then 

2t 2t (2 )t-l 
0>-<--= 2-

- Nt 3t- 1 3 

The rightmost term .... 0 as t .... 00, therefore 0:::: ~t < 0 as t .... 00. 

We have already seen that the points that do not escape are a Cantor set, 

which has dimension 0.631. It may seem paradoxical that the line segment be­
tween 0 and 1, a one-dimensional object, can be divided into two sets, one with 
dimension 1 and the other with dimension 0.631, but keep in mind that the set 
of points that do not escape form a "disconnected dust." 

D 

FRACTAL BASIN BOUNDARIES 

Many of the dynamical systems we have studied can have more than one 
eventual outcome, depending on the starting condition. Sometimes the initial 
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conditions that lead to different asymptotic states are neatly distinct; sometimes, 
as in the dynamics of escape in the quadratic map, the different basins of attraction 
are interleaved in a complicated way. In the case of the logistic map, there is only 
a "dust" of initial conditions that eventually leads exactly to the unstable fixed 
point at the origin or at (R - 1)/ R. Similarly, a "dust" of points lies on unstable 
periodic cycles (see Figures 1.26 to 1.29) or leads exactly to such points. All other 
initial conditions result in escape to -00. For other maps, though, two or more 
basins of attraction may be interleaved in a fractal way, without one of the basins 
being a "dust." 

As an example we consider a one-dimensional, nonlinear, finite-difference 
equation such as we studied in Chapter 1. The equation 

Xt+l = Xt + a + b sin 2rrxt (mod 1) (3.7) 

is often used as a theoretical model for the interaction of two oscillators. Here, a 
and b are real constants, and (mod 1) means that we consider only the fractional 
part of the expression. (For example, 1.27 mod 1 is 0.27.) Therefore, starting 
from any initial condition xo, we generate a sequence of numbers that lie between 

0.4 0.6 

0.2 0.4 0.6 0.8 

Figure 3.15 
Dynamics ofEq. 3.7 for two nearby 
initial conditions: Top-xo = 0.06 
leads to a cycle of period 2. 
Bottom-xo = 0.07 leads to a cycle 
of period 4. Any initial condition 
o ~ xo ~ 1 will lead to one of these 
two cycles. 
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o and 1. The study of the dynamics of this equation as a function of a and b 
is a difficult problem that is still not completely understood. Here we look at a 
small aspect of this problem by considering the dynamics starting from different 
initial conditions and seeing what happens asymptotically in the limit t -+ 00. 

Consider the case for which a = 0.53 and b = 0.62. The graph of the equation is 
shown in Figure 3.15. There are two different stable periodic cycles in this map: a 
cycle of period 2 (Xt :::::: 0.667,xt+l :::::: 0.651) and a cycle of period 4 (xt :::::: 0.399, 
Xt+! :::::: 0.298, Xt+2 :::::: 0.420, Xt+3 :::::: 0.248). Starting from any initial condition 
such that 0 ::s Xo ::s 1, the dynamics will approach one of the two different stable 
behaviors: There is multistability. For example, when Xo = 0.06 we approach the 
cycle of period 2, and when Xo = 0.07 we approach the cycle of period 4. 

Now we consider what happens when starting from all initial conditions. 
Figure 3.16 shows which initial conditions lead to the cycles of period 2 and to 
those of period 4; initial conditions that approach the period-2 cycle are shaded 
black, and all initial conditions that approach the period-4 cycle are shaded white. 
Clearly there are large regions where it appears that two nearby initial conditions 
lead to the same eventual result. If we zoom in on a small region of the set of 
initial conditions, we can see that there are often gaps in the regions that appear 
continuous. As we try to define more precisely the boundary between black and 
white, we see an increasingly fractured boundary. One cannot draw a single line 

111I II II III 
o 

11 11111 
o 

.06 

Figure 3.16 The initial conditions 0 ~ Xo ~ 1 ofEq. 3.7 that eventually lead to the 
cycle of period 2 are marked in black, while conditions that lead to the cycle of period 
4 are white. Zooming in on a small section (for example, 0 ~ Xo ~ 0.1) reveals 
additional structure and shows that the seemingly continuous black zones are in 
fact broken into smaller zones interrupted by white. A further zooming-in to initial 
conditions shows still further structure. This example is based on Martinez-Mekler 
et al. (1986). 
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as the boundary, no matter how finely we search. The basins of attraction for both 
the period-4 and period-2 cycles are fractal-and are a type of Cantor set. 

THE MANDELBROT SET 

The dynamics of Eq. 3.7 produce a complicated interweaving of attractor 
basins in one dimension. Even more complicated and beautiful patterns can be 
produced in two dimensions. Consider the map 

2 
Zt+l = Zt + c. (3.8) 

Since we haven't specified the value of c, we actually have a family of maps, 
parameterized by c. 

Using the tools we developed in Chapter 1, we can easily find the fixed 
points of this family of maps and their stability. We find the fixed points, z* by 

solving Zt+l = z~ + c to get 

* 1 ± J1 - 4c 
Z = . 

2 
(3.9) 

The stability is given by the value of 

at the fixed points. Any fixed point that has a value Iz* I < ! will be stable because 
I dzt+ddztlz·1 < 1. With a little algebra, we can show that a fixed pointofEq. 3.8 
isstablefor-~ < c < ~.Forvaluesofc < -20rc > ~,theiteratesofEq.3.8 
escape to 00. 

Notice that there are some values of c for which the values of the fixed 
points in Eq. 3.9 are complex. For example, for c = 0.26, the fixed points are at 
z* = 0.5 ± O.li, where i == J=T. Ifwe take Zo to be purely real, then there is 
no way to reach these complex fixed points, because all future values of Zt will be 
real. However, if we allow Zo to be complex, then future values of Zt can also be 
complex. Alternatively, if we allow c to be complex, then the complex fixed points 
ofEq. 3.8 are relevant to the dynamics. 

One way to explore the dynamics of Eq. 3.8 for complex numbers is to 
iterate Eq. 3.8 starting at the initial condition Zo = 0 for many different values of 

c, and look to see whether the iterates escape to 00. Since each value of c is a point 
in the complex plane, we can draw a picture, placing a black dot at that point if 
the iterates escape to 00 and a white dot if the iterates do not escape. The pictures 
drawn in this way show a complicated structure, with increasing detail becoming 
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evident when looking at smaller and smaller regions of c. The set of values of 
c for which the iterates of Eq. 3.8 do not escape to 00 is called the Mandelbrot 
set. (For a precise description of the manner in which the Mandelbrot set can be 
drawn, see the Computer Project 3.) 

Benoit Mandelbrot is the mathematician who coined the word "fractal." He 
has had a tremendous influence on the development of the mathematics offractals 
and the realization of the importance of fractals in describing the geometry of 
natural objects. His brilliant manifesto, The Fractal Geometry of Nature (1982), 
has become a classic and can be read with enjoyment and interest by both the 
mathematically naive and the mathematically sophisticated. 

The Mandelbrot set has quite a subtle relationship to the finite-difference 
equation, Eq. 1.6. For any purely real value of c, Eq. 3.8 is equivalent to Eq. 1.6. 

(A ) (C) 

(8) ( D) 

Figure3.17 (A) Valuesofc inEq. 3.8 for which Xo = 0 eventually escapes to 00 are 
marked in black. (Well, almost. See Computer Project 3.) Cornerisc = -1.8 - 1.3i 
and the upper right corner is c = 0.8 + 1.3i. (B) Zooming in to the rectangle 
c = 0 -1.5i to c = 1-0.5i shows further detail. (C) Zooming in to c = 0.25 - l.3i 
to c = .4 - 1.15i shows more detail still. (D) Zooming in to c = 0.345 - 1.29i to 
c = 0.36 - l.275i shows further detail. 
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For any single map (corresponding to a specified value of the parameter c), one 
can ask which initial conditions eventually escape to 00. It may be, as in Section 
3.5, that the set of initial conditions that do not escape is a disconnected dust. 
For anyone map, either this set of points is a dust or it is not. The Mandelbrot 
set describes for what values of c (Le., which specific maps in the family of maps 
given by Eq. 3.8) the set of initial conditions that do not escape is a disconnected 

dust. 

DYNAMICS IN ACTION 

8 FRACTAL GROWTH 

The next time you take a hike in the mountains, look carefully at the lichens, the trees, 
the rocks, the clouds, the rivers. The shapes of these objects are much more com­
plicated than the shapes you studied in elementary Euclidean geometry courses. 
In the natural world fractal geometries abound. Yet, it is not clear how the objects 
have grown and evolved to the fantastic shapes you will observe. As a step to­
ward understanding the generation of fractal geometries, we consider two simple 
schemes for growing objects. Although each scheme is easy to state and readily im­
plemented on a computer, mathematical analysis of the geometries of each scheme 
are difficult problems treated only using advanced mathematical techniques. 

t= 0 • 

t= 1 •• 

t=2 •• 
• 

• t= 3 •• 
• 

• t=4 •• •• 

• • • t= 5 •• • 
• t= 6 • • ••• • 
•• • • t= 7 ••• • 
•• •• t=8 • •• • • 
•• •• t= 9 • ••• ••• The first steps in an Eden growth model. 
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The Eden model for growth assumes that one starts with a single cell and that 

this divides into two cells, the daughter cells divide, and so forth (Eden, 1961). 

To simulate the process, Murray Eden programmed 1960s-vintage computers. He 
assumed that there is a square lattice. Initially, at t = 0, there is one cell in the lattice. 

At t = 1, a single cell is added randomly to one of the four positions adjacent to 

the initial filled square, giving rise to a configuration in which two cells are filled. At 

t = 2, a third cell is randomly added to one of the six squares that are adjacent to 

the two cells filled at t = 1. The process continues in similar fashion, always adding 
a cell in a randomly chosen location adjacent to cells already filled, as shown in the 

figure on the previous page. Although this process is extremely simple, the resulting 

geometries have fractal boundaries! Is this simple model atall relevant to any growth 
process observed in nature? 

Eden growth after 500 steps. 

Vicsek et al. (1990) believe that it is. They carried out experiments with the bacteria 
E. coli. They started out with a line of cells inoculated in a nutrient-rich agar solution. 
After four days the E. coli colony displayed the geometry outlined in the figure 

on page 140. This can be contrasted with the geometry obtained from numerical 

simulation of the Eden model, which also starts from a line of initial cells. Statistical 

analysis of the two geometries reveals that there are some differences, reflecting 

differences in the growth processes between the model system and the bacterial 

colony. Forexample, in the bacterial colony growth can occur in the vertical direction 

(Le., out of the two-dimensional grid), so that the samples consist of many layers 

leading to a smoother surface in the two-dimensional projection. 

In the above situation, the medium is nutrient-rich. However, in similar experiments, 

dramatic changes were noticed depending on the growth occurring in nutrient-rich 

or nutrient-poor solutions. Matsuura and Miyazima (1993) carried out experiments 

in which the fungus Aspergillus oryzae was grown under a variety of conditions 
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Growth in an A. oryzae colony in a nutrient-poor medium. From Matsuura and 
Miyazima (1993). 

of nutrient, temperature, and medium stiffness. When the nutrient was rich, top 

panel, they observed similar geometries to those found earlier for the growth of 
bacteria. However, when the nutrient was poor, the geometry displayed elaborate 
branching pattems. It is easy to understand one reason why there should be differ­
ences. In a nutrient-rich case, all points on the boundary have adequate nutrition 
and an equal probability of growing-this gives rise to "Eden" growth. In a nutrient­

poor medium, points on the boundary that grow out will have a growth advantage 

over neighboring points, because they will deplete their immediate surrounding 
region of nutrient. New nutrientwill diffuse in and will not be available elsewhere. 
Consequently, once the initial outgrowths get started, they will thrive in comparison 
to neighboring regions, giving rise to exotic efflorescence. Of course, this does not 
provide a complete picture since the resulting geometry depends in subtle ways 
on rates of growth as a function of nutrient, medium stiffness, and temperature. 

A detailed theoretical model for growth in fungi has not yet been developed. 

However, a simple theoretical model for growth closely related to the Eden model 

reproduces geometries similar to the fungal growth. As before, we assume that 

there is initially a single seed. Particles are added and randomly diffuse until they 

are adjacent to the seed. If they are adjacent to the seed, then they will stick. This 

process, called diffusion limited aggregation (DLA) (Witten and Sander, 1981), 

differs from the Eden model because the new growth wi II preferentially occur on the 

outgrowths since the probability that a diffusing particle will reach a point adjacent 

to an outgrowth is higher than the probability that a diffusing particle will reach a 

point shielded by the outgrowth (see the figure on the next page). With a bit of 
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imagination, we can see why the geometries generated by DLA might be found in 
a wide range of different structures from riverbeds, to blood vessels, to nerve cells. 

Growth in an E. coli colony. From VlSCek et 01. (1990). 

DlA · 2d 
M a 10,000 

350 DIAMETERS 

The result of a computer simulation 
of diffusion limited aggregation. 
From Witten and Sander (1981). 

These simple models show that fractal structures of extraordinarily rich geometry 
can be generated by very simple growth rules. Since fractal growth seems to be a 

general outcome of these simple rules, simply noticing fractals does not pin down 
the exact mechanism of growth. In pursuing applications, people are carrying out 
detailed studies to try to determine the growth rules more precisely, and to correlate 
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the growth rules with the actual geometries that are observed in the physical and 
biological systems. 

SOURCES AND NOTES 

The coining of the word "fractal" by Benoit Mandelbrot in the 1970s, helped 
to focus a large body of mathematical work that had been developing over the 
preceding century, and to draw attention of natural scientists to the possibility 
for a mathematics of the often bizarre and complex shapes that are found in such 

diverse areas as the geometry of river beds, neurons, or snow flakes. Mandelbrot's 
original presentation ( 1977) has been updated and expanded (Mandelbrot, 1982). 
Both books are written in Mandelbrot's inimitable style and contain many im­
portant insights as well as fascinating historical references. Anyone wishing to 
study the original precursors to the modern era, will benefit from consulting the 
collection (Edgar, 1993). The artistic possiblities of fractals has been developed 
by many. An art exhibit that circulated widely during the 1980s brought fractals 
to the attention of many in the general public; several pictures from that exhibit 
along with a description of the underlying mathematics are contained in Peitgen 

and Richter (1986). 
Because of profound mathematics that underlie fractal geometry, the far­

reaching scientific implications of fractals, and the beautiful graphics that can 
be generated, the number of books on this topic is increasing rapidly. Peitgen, 
JUrgens and Saupe (1992) provide a good elementary introduction. Bamsley's 
text (1992) is more advanced, but provides a rigorous and brilliant foundation to 
the mathematics of fractal sets. Applications of fractals to biology and medicine 
can be found in Bassingthwaighte, Liebovitch, and West (1994). 

Simulations of growth models that yield fractals date back to Eden (1961). 
More recently, this work has been developed in a variety of directions, with par­

ticular success in the study of diffusion limited aggregation (Witten and Sander, 
1981). Useful collections of related papers are Family and Vicsek (1991), and 
Stanley and Ostrowsky (1988). 

The analysis of 1// noise has been a topic of interest for a century. Mandel­
brot (1977,1982) offers many insights into the history of this concept and recalls 
early studies. Voss and Clarke (1975) demonstrate 1// noise in music. A deter­
ministic model that gives 1// noise is in Procaccia and Schuster (1983), while a 
summary of mechanisms in physical systems is in Wolf (1978). 
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Our recounting of the observations of Robert Brown is based on (Nelson, 
1967), which should be consulted for further historical discussion of our under­
standing of the physics and mathematics of random walks. For a recent review of 
Levy walks with references to the original papers see Shlesinger, Zaslavsky, and 
Klafter (1993). An experimental observation of Levy walks in a hydrodynamic 
experiment is in Solomon, Weeks, and Swinney (1993). 

1f? EXERCISES 

1f? 3.1 A fractal game that will sketch out a Cantor set is this: Mark two points, 
A and B. From an initial condition on the line between the two points, move two­
thirds of the way towards A or B, depending on whether a coin comes up heads 
or tails, and place a mark there. Iterate, using the previously drawn mark as the 
initial condition. 

You can use Figure 3.18 to play this game. Put a mark on the gray line, and 
move two-thirds of the way towards the A-end or the B-end of the line. Above 
the gray line is drawn a fattened approximation to a Cantor set, so you can see 
how close you are to the set. 

1. If you take your initial condition at point x, then the initial condition 
is not on the Cantor set. How many iterations do you need to play the 
game before you are on the set? How much closer do you move to the 
set after each iteration? How long does it take before you are closer to 
the set than the size of the dots you mark? 

2. Take your initial condition at point y, which we will assume is on the 
Cantor set. Will you move off of the set in future iterations? 

3. Suppose you picked an initial condition at random. What is the prob­
ability that this initial condition would be exactly on the ideal Cantor 
set? 

1f? 3.2 On a piece of paper, draw some fractal objects of dimension 1. 

Can you draw fractal objects of dimension 2 on a piece of paper? 

1111 IIII 1111 IIII 1111 1111 IIII 1111 

A B 

x y 

Figure 3.18 
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~ 3.3 Calculate the dimension of the objects shown in Figure 3.19. 

Design a fractal game to draw these objects. 

~. COMPUTER PROJECTS 

Project 1 Write a computer program to play the fractal game. The program 

should read in a list of the x and y coordinates of target points, e.g., (Ax. Ay), 

(Bx • By), (Cx • Cy), . ... The program should also read in a fraction E between 

zero and one. 
Start at an initial position, whose coordinates are given by (xo. Yo), and draw 

a dot on the computer screen at this position. Iterate the following procedure: 

1. Randomly pick one of the target points. 

(A) (B) (C) 

(D) (E) ( F) 

(G) 

Figure 3.19 
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2. Calculate the next position (xt+ 1, Yt+ 1) by moving towards the selected 
target point by the fraction E. Forinstance, if the target point is (A x, Ay), 
then 

Yt+l = Yt + dAy - Yt). 

3. Draw a dot on the computer screen at (Xt+l, Yt+l). 

Experiment with different sets of target points and different values for E. 

You may also want to make E different for the different target points. If you have 
a color display, you might make the color of each dot depend on the value of the 
previous target point. 

Project 2 Write a computer program that draws fractals deterministically. 
As in Computer Project 1, the program can read in a set of target points. Let's 
assume that you have N target points. Start with an initial position (xo, Yo). Now, 
make N new points, which are found by moving the initial position towards each 
of the target points. Repeat this process, for all N new points. This will produce 
N 2 points. Iterating again will produce N 3 points, and so on. 

When you have a satisfactory number of points, draw a dot at each of them, 

using only the points in the last iteration. 
More attractive results can be had if, instead of drawing a dot at each point, 

you draw a small shape that reflects the overall shape of the fractal (for example, 
a triangle for the Serpinski gasket). One way to do this is to make a list of the 
outer corners of the polygon described by the target points, and at each iteration, 
replicate this polygon by moving each of the points towards each target point in 
turn. 

Project 3 Write a computer program to draw a picture of the Mandelbrot 
set. It is useful to remember the following facts about arithmetic with complex 

numbers: 

addition a + ib added to x + iy gives (a + x) + i (b + y). 

multiplication a +ib multiplied by x +iy gives (ax - by) +i(bx +ay). 
(Remember, i . i = -1.) 

real part The real part of a + ib is a. 

imaginary part The imaginary part of a + ib is b. 

absolute value la + ibl = ,Ja2 + b2 • 

To draw the set, you will want to loop over possible values of the complex 
variable c. Most computer languages do not have complex arithmetic built-in, so 
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you will have to keep track of the real and imaginary parts separately. Thus, if we 

write Zj as Xj + iYj and c as a + ib, we have the set of equations 

2 2 
Xj+\ = Xj - Yj + a 

Yj+1 = 2XjYj + b 

which can easily be programmed on a computer. 

(3.10) 

(3.11) 

Obviously, it is impractical to follow the iterates of Zo = 0 until they 
actually reach 00. Instead, you should iterate the map corresponding to each c a 
certain number of times, n and look to see whether at the end of the iterations the 

value of Zn suggests that future iterates will tend to 00. As it happens, if IZn I > 2 
then it is certainly the case that future iterates will escape to 00. 

Each value of c corresponds to a pair of numbers (a, b), so the "position" 
of each value of c corresponds to a point in a plane, called the "complex plane." 
If the value of c is such that the iterates are escaping to 00, then color the point 
at c = (a, b) black. Otherwise, color this point white. 

Computer displays can display only a fixed number of points (typically, 
roughly 500 pixels by 500 pixels) and so it is only possible to display a fixed 
number of values of c at one time (500 x 500 = 25000). If you want look at the 
set in greater detail, you will have to zoom in on a small section of it. Note that 
as you zoom in, you will have to increase the value of n that you use to decide 
whether the map is causing Zo = 0 to escape to 00. 

You can refine the pictures of the Mandelbrot set in the following way. 

Rather than iterating each map a fixed number of times n, stop at the first iteration 
for which I Z j I > 2 (but don't go further than n iterations, since some maps will 
never have IZj I > 2). Then, you can color each point according to the number j 
at which it first reached IZj I > 2. 



CHAPTER 4 



One-
Dimensional 
Differential 
Equations 

A molecular biology student is conducting experiments using radioactive adeno­
sine triphosphate (ATP). The radioactive isotope is p32 , which has a half-life of 
fourteen days. He has been told to complete his experiments within four weeks, 
before the isotope decays away. Ordinarily, the ATP is stored in a freezer at - 200 C. 
The student believes-incorrectly-that the radioisotope will last longer if the 
ATP is frozen at -700 C. To test this hypothesis, he takes 1 JLI of the ATP, con­
taining about 10 JLcuries of the p32, and puts it in the -700 freezer. He keeps 

the remaining 24 JLI of the lab's supply (containing roughly 240 JLcuries) in the 
- 200 C freezer. He takes daily readings of the radioactivity by counting the num­
ber of radioactive decays from each sample for one minute. After four weeks, his 

measurements clearly show that the -200 sample has many more counts than the 
-700 sample (see Figure 4.1). Since each count represents the decay of one atom 

of p32 , the - 200 sample is decaying faster than the -700 sample. 
The student approaches his advisor with this evidence that storage in 

colder temperatures slows radioactive decay. The advisor looks at the graphs 
with interest for a minute, then says that the graphs show that the half-life of the 
radioisotope does not depend on the temperature. "Remember;' the advisor says, 
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Figure 4.1 
Daily measurements of the .... .. number of radioactive 

0 5 10 15 20 25 counts (x 105) in one 
Days minute. 

"the radioactive decay rate is proportional to the amount of p32 in the samples." 
The reason there is a greater decay rate in the warmer sample is because that 
sample is bigger. 

Mathematically, this statement can be written as an equation: 

dx 
- = -bx, 
dt 

(4.1) 

where x is the amount ofP32 at any instant. Since this amount changes with time 
t, we will sometimes explicitly write x as a function of time, x(t). The rate of 
change in the amount of x(t) is the derivative ~;; since this is positive when x 

is increasing, the "decay rate" is - ~; . Equation 4.1 says that the decay rate is 
proportional to x. The constant of proportionality is b. 

4.1 BASIC DEFINITIONS 

Equation 4.1 is an example of a differential equation. A differential equa­
tion is an equation in which the derivative of a variable appears. There are many 
types of differential equations. The type we shall study in this chapter are "first­
order, ordinary differential equations of a single variable." The term first-order 
means that the derivative that appears in the equation is a first-order deriva­
tive, like ~;, and not a higher-order derivative like ~. (In Chapter 5 we will 
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study some second-order differential equations and equations that involve mul­
tiple variables.) The term ordinary refers to the type of derivative involved in the 
equation. In partial differential equations, there are partial derivatives included. 
Partial differential equations are used to describe phenomena such as diffusion, 
fluid flow, and wave propagation. 

In this chapter, we will take two complementary approaches to studying 
first-order, ordinary differential equations. The first is to find the algebraic solu­
tion to an equation-this means finding a function x (t) that satisfies the equation. 
This approach is straightforWard for equations such as Eq. 4.1. The second ap­
proach is a geometrical one where the information one seeks is not the detailed 
solutions x(t) but rather information about what fixed points there are, and 
whether they are stable. 

4.2 GROWTH AND DECAY 

Differential equations of the form of Eq. 4.1 are often used as models of 
growth or decay. Consider some quantity x(t), which might be, for example, 
the number of bacteria in a test tube at time t, the amount of money in a bank 
account, or the amount of a radioactive isotope. If ~; > 0, then x is growing. 
If ~; < 0, then x is decaying. If ~; = 0, then x remains constant: Such a 
value for x is called a fixed point. Recall that in Chapter 1, a fixed point of the 
finite-difference equation Xt+l = f(xt) was a point that satisfied Xt = f(xt). 
For both finite-difference and differential equations, a fixed point is where the 
state variable x remains constant and corresponds to steady-state behavior. 

CONSTANT GROWTH OR DECAY 

Suppose there is a swimming pool that is being emptied by a pump that 
removes w liters of water per minute. If x(t) is the amount of water in the pool, 
then an appropriate differential equation is 

dx 

dt 
=-w, 

where x is measured in liters and t is measured in minutes. 

(4.2) 

The solution to Eq. 4.2 can be easily found using the tools of calculus. 
Write Eq. 4.2 as dx = -wdt and integrate both sides of the equation using the 
limits 0 to t: 

It dx = It -wdt ==> x(t) - x(O) = -wt, 
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giving 

x(t) = x(O) - wt. 

This equation says simply that starting from an initial condition x(O) at time t, 
the volume of water decreases proportional to the elapsed time (see Fig­
ure 4.2). Obviously, Eq. 4.2 can be right only as long as there is water in the 
pool, that is, as long as x > 0, although in other situations it might make sense 
physically to allow x to become negative. 

The equation for linear growth is very similar: 

which gives a solution of 

dx 

dt 
=w, 

x(t) = x(O) + wt. 

Figure 4.3 shows a graph of linear growth. 
It is important to appreciate that the basic method to solve differential 

equations is to integrate them, just as integrating a function is the inverse of 
differentiation. 

EXPONENTIAL GROWTH AND DECAY 

In the description of radioactive decay in Eq. 4.1, the number of radioactive 
counts per unit time is proportional to the amount of the radioactive sub­
stance. So, rather than having a constant rate of decay, the rate of decay changes, 
decreasing as the surviving amount of the radioactive substance decreases . 

5 • • x • 
4 • • • 
3 • • • 
2 • • • • • • 

0.5 1.5 2 2.5 3 

Figure 4.2 Linear decay ¥, = -1. 7. 
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Figure 4.3 Linear growth ¥, = 1.7. 

Similarly, in many models of growth, the rate of growth is proportional 
to the amount of the substance. For example, the increase of funds in a bank 
account is proportional to the amount of money in the account-the constant 
of proportionality a is related to the interest rate. Another example is given by 
bacterial reproduction. Bacteria divide at a constant rate, and the change in the 
number of bacteria is proportional to the number of bacteria-the constant of 
proportionality a is related to the rate of cell division. 

The differential equation 

dx 

dt 
= ax (4.3) 

describes a situation in which the rate of growth of x is proportional to the amount 
of x. This is a linear equation. 

Both Eqs. 4.3 and 4.1 can be solved algebraically in the same manner. In 
order to solve Eq. 4.3 analytically, we multiply both sides of this equation by ~ 
to obtain 

dx 
- = adt. 
x 

Integrating this equation, using as the limits of integration 0 and t, we have 

it dx it - = a dt. 
o x 0 

Since, J d: = 10 x, the "natural logarithm" of x, we can find 

lnx(t) -lox(O) = at. (4.4) 
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Raising both sides of the above expression to the power e, we obtain the solution 
of the equation for exponential growth and decay: 

x(t) = x (O)eat , (4.5) 

where x(O) represents the value of x at the initial time, t = 0, and a is a constant, 
which is positive if there is exponential growth and negative if there is exponential 
decay. 

FiniNG DATA TO EXPONENTIAL GROWTH AND DECAY 

In practical situations one may be presented with data and asked to fit the 
data to an appropriate mathematical expression. For the case of the exponential 
function, this entails finding an appropriate value of the constant a that gives 
good agreement with the data. An example is the pharmacokinetics of how a 
drug is eliminated from the body. One would often wish to determine the value 
of a that best describes the kinetics of a given drug. This information would be 
important in order to decide how frequently a drug should be administered. 

The constant of proportionality a in Eq. 4.3 describes the rate of growth or 

decay. ~ is called the time constant. Another description of this rate is called the 
half-life in the case of decay, and the doubling time in the case of growth. The 
half-life gives the length of time needed for x to decay from its initial value to one 
half its initial value. A remarkable feature of exponential decay is that the half-life 
is independent of the initial value. Call tIthe half-life. Since x(t 1) = 0.5x(0), 

2 2 

we obtain 

0.5x (0) = x (0)eat1 /2 , 

or 

-ln2 

a 

Similarly, the doubling time is the time required for x to increase to twice 
its initial value. The doubling time is also independent of the initial value of x. 

There are two ways that are most commonly used to determine a. The first 
involves fitting the data to a straight line. Let us assume that we have measured 
the values of x as a function of time. From Eq. 4.4 we know that the graph of 
In x(t) versus time is a straight line with slope a and x-intercept In x(O). To find 
the values of a and In x(O), we choose the straight line that represents the "best" 
fit of the straight line to the data (see Figures 4.4 and 4.5). Here "best" has a 

definite meaning and refers to the straight line for which the sum of the squares 
of the deviations of the individual values is minimized. When we carry out this 
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O~~L-~------~--~ 
0.5 1.5 2 t 2.5 

Figure 4.4 Data generated from the system ¥, = 1.3x. To simulate a real mea­
surement process, a small random number has been added to each measurement. 
The solid line shows the best fit to the measured data, ¥, = 1.39x. The dashed line 
shows the theoretical solution to ¥, = 1.3x and almost coincides with the fitted 
curve. 

• 
OL-----------------~------

0.5 1.5 2 t ~5 

Figure 4.5 The above data plotted as In x versus t. The line shows the best linear 
fit to the data and has slope 1.39. 

computation, small discrepancies of individual points from the theoretical curve 
do not lead to large errors in the determination of a, since all experimentally 
measured points contribute to the final determination. 

o ExAMPLE 4.1 

The amount of a radioactive isotope that survives to time t is described by 
the function 

x(t) = x(O)e-at , 
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where a is a positive constant. The half-life for U235 is 7.04 X 108 years. What is 

the value of a? 

Solution:Sincet! = In2,wehavea = ~n2 = 9.85 x 10-10 years-I. D 
2 a ~ 

o ExAMPLE 4.2 

If the doubling time t DT of a tumor is 60 days, how long does it take for a 

tumor's volume to increase to 2.5 times its initial volume? 

Solution: Using the same argument for the half-life used in Example 4.1, 
we find that a = Itn2 . Therefore, a = 1.15 x 10-2 days-I. For this problem we 

DT 

have 

2.5x(0) = x(O)eat , 

where t is the time needed for the volume to multiply by 2.5 times its initial value. 

Therefore, we find that t = In;.5 = 79.8 days. 
D 

o ExAMPLE 4.3 

k, 
Chemists use the notation A ~ B to indicate that compound A is trans-

L, 

formed into compound B, and vice versa. kl is called the rate constant in the 
"forward" direction, and k_1 is the rate constant in the "reverse" direction.[A] 

denotes the concentration of compound A in the reaction vessel, and similarly 

[B] denotes the concentration of B. The total concentration of A and B together 

is constant, [A] + [B] = M. In this situation, we can write a differential equation 

for [A]: 

d[A] 
- = -kdA] + LdB]. 

dt 

Substituting [B] = M - [AJ, we have 

If we define two new variables a = kl + LI and f3 = LIM, and rename [A] 
as x, the equation takes on a quite simple form, 

dx 
- = f3 - ax. 
dt 

(4.6) 
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o 5 10 
Time 

Figure 4.6 Solutions to ~ = 3 - 2x for two initial conditions, x (0) = 0 (heavy 
line) and x (0) = 2 (thin line). The dashed line is drawn atx = ~ == ~. 

Assume that at the beginning of an experiment, the reaction vessel contains 
onlycompoundB. Thismeansthatx(O) = [A(O)] = O.Startingfromthisinitial 
condition that x(O) = 0 at time t = 0, determine the dynamics for all future 
times. 

Solution: Equation 4.6 is an important equation, and there are a few differ­
ent methods that can be used to solve it. One simple method involves transforming 
the equation by defining a new variable, 

{J 
y(t) = x(t) - -. 

a 

Since ¥, = ~~, we derive the differential equation 

dy = -ay. 
dt 

We already know that the solution of this equation is y(t) = y(O)e-at • Now 
substituting back to express the solution in terms of x(t), we find 

Note that this solution is the same sort of exponential decay that we saw as the 
solution to Eq. 4.5, but here the decay is not to zero but to ~. See Figure 4.6. 

For another interpretation of the equation ~~ = {J - ax, see Sec­
tion 4.7. o 
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DYNAMICS IN ACTION 

9 TRAFFIC ON THE INTERNET 
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The number of message packets transmitted on the Internet. Adapted from The 
Montreal Gazette.) 

An example of exponential growth is provided by the Intemet, a very large network 
of computers. The amount of traffic on the network is measured in "packets, n each 
of which contains a message or part of a message. The figure here shows that the 
number of packets is increasing rapidly. Although the source of the data did not 
give the important information about whether the units are in billions of packets 
per day, month, year, or second, from the shape of the graph it can be seen that 
the doubling time is roughly one year. If this rate were continued until the year 
2000, the amount of traffic on the network would be roughly 6000 billion packets. 
However, if we assume that future growth will be linear rather than exponential, a 

reasonable estimate for the traffic on the network in the year 2000 would be 125 

billion packets. Obviously, the form of growth that is assumed has a tremendous 

impact on the projected traffic. 

The half-life or doubling time of data provides a quick-and-dirty method 
of estimating the rate of decay or growth. It is usually easy to "eyeball" a value 

of t! or tDT from a graph of data. Although this is very useful for "back-of-the-
2 

envelope calculations;' the problem with this method for determining the rate of 
decay or growth is that it does not make maximal use of our knowledge of the 
data. For example, an error in the measurement of the initial value x (0) would be 
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Figure 4.7 Data from a system with exponential growth fitted to an exponential 
curve (dashed line) and a parabola (solid line). Although both curves fit the data 
well, outside of the range of measured data the parabolic fit deviates substantially 
from exponential growth. 

reflected directly in the determination of t! or t DT. The method of estimating a 
2 

by fitting a line to the logarithm of the measurements makes use of all the data, 
and so is not unduly influenced by an error in any of them. 

Fitting experimental data to exponential curves is a ubiquitous practice in 
diverse fields such as neurophysiology, microbiology, pharmacology, and phys­
iology. Sometimes, even advanced students and researchers do not have a clear 
conception of why one chooses to fit functions to an exponential curve rather 
than some other curve that might have a similar geometrical form (such as the 

parabola for growth or the hyperbola for decay); see Figure 4.7. One reason is 
that exponential functions represent the solution of a linear one-dimensional 
differential equation and as such arise in a variety of circumstances in which the 
rate of change of a variable is proportional to the value of the variable. Even though 
a hyperbola or a parabola may fit the measured data as well as an exponential 
curve, if the physical mechanism that generates the data is not related to the type 
of curve used, then extrapolation of the curve is likely to be in error. 

The equation for exponential growth and decay is probably the most im­
portant dynamical model in biology. Even though it is mathematically simple, it 
is relevant in a wide range of circumstances. Yet, careful examination of the data 

shows that exponential functions frequently are only approximations to the data. 
Specification sheets for drugs usually give the half-life of the drugs but will rarely 
mention how well the kinetics are described by an exponential curve. Since many 

drugs may be eliminated by a variety of pathways, exponential functions provide 
only an approximation for the kinetics of drug elimination. 
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DYNAMICS IN ACTION 

10 OPEN TIME HISTOGRAMS 
IN PATCH CLAMP EXPERIMENTS 
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Potassium ion currents flowing through a single membrane channel. The three 
small insets show the channel current recorded during three events; the current 
is zero most of the time, but changes to -2.4 picoamps (the dotted line) when 
the channel opens. The open-time histogram is constructed from many such 
events and shows how likely the channel is to stay open for the given duration. 
It is well described by exponential decay. Adapted from Sakmann et al. (1983). 
Reprinted with permission from Nature. Copyright 1983 by Macmillan Magazines, 
Limited. 

The equations for exponential growth find application even in the study of single 

molecules, where there is no reproduction or decay. In nerves, muscles, and other 

excitable tissues, the cell membrane is perforated by proteins that serve as channels 

for ionic currents. These channels open and shut, regulating the amount of ionic 

current that flows through the membrane. By placing a micro-electrode directly on 

the cell surface and applying gentle suction, it is possible to obtain a high-resistance 
electrical seal. This method is called the patch clamp technique; it allows the 

current flowing through a single channel to be measured, as shown in the figure. 

The sharp changes in current show the opening and closing of a single channel in 

the membrane. By measuring the time that the channel stays open during each such 
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event, one can construct a histogram that shows the probability that the channel 
will open for a given amount of time. In the figure it can be seen that the majority 
of open times are short, under 2 msec. In the example shown in the figure, the 
histogram can be well fit by an exponential function, 

• is called the time constant. 

There are many possible mechanisms that could give rise to an exponential his­
togram. The simplest assumption is that once a channel opens, the probability that 
it will close during any time interval is a constant (Le., the probability does not 
depend on how long the channel had been open). This is directly analogous to 
the decay of radioactive molecules-the probability that any given molecule will 
decay in a unit of time is always constant. The difference is that in radioactive decay 
the radioactivity is eventually depleted, while membrane channels can open and 
close repeatedly. To characterize the dynamics of membrane channels more com­
pletely, one would study the distribution of closed times, which are also often well 
described by exponential functions. 

o ExAMPLE 4.4 

Estimate the time constant for the open time histogram of the potassium 
channels shown in the figure in Dynamics in Action 10. 

Solution: The length of time for N(t) to decrease by 50 percent is 
approximately 1.2 msec. Therefore we have 

1 _ = e-1.2/r 
2 

Taking the logarithm of both sides, we find that. = - ~; msec, or. = 1.73 
msec. 

D 

LIMITS TO EXPONENTIAL GROWTH 

Although one can imagine physical and biological processes in which ex­
ponential decay can occur for long times, exponential growth must always be 
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of limited duration. The reason for this is simple: The doubling of population 
sizes in fixed times eventually leads to astronomically large numbers. A good 
rule of thumb is that in 10 generations (i.e., 10 times the doubling time) a 
population will multiply by 1000; in 20 generations by 1,000,000; and in 30 gen­
erations by 1,000,000,000. (The precise values are 210 = 1024; 220 = 1,048,576; 

230 = 1,073,741,824, but this precision is warranted only when the doubling 
time is known with great precision.) 

Thus, assuming a doubling time of a cancer tumor of 60 days, it takes 60 

months, or 5 years, for a tumor to increase its volume by one billion times its 
original volume. Even starting with a single cell, this represents a significant mass 
after 5 years. If the tumor kept growing in the same way for another 5 years, it 
would be significantly larger than the person carrying it-obviously this is not 
possible. 

o ExAMPLE 4.5 

The bacterium E. coli divides approximately every 20 minutes under opti­
mal conditions. Starting with one bacterium, how many bacteria would there be 
after 48 hours? 

Solution: The doubling time for E. coli is tDT = 20 minutes, so that in 48 

hours there are 3 x 48, or 144, doublings. Therefore, 

N(48) = 2144 = 2.23 X 1043 . 

To give some appreciation for the magnitude of this number, consider that 
the diameter of E. coli is roughly 10-6 m, so that 2.23 x 1043 E. coli would take up 
a volume of 1.17 x 1025 m3. The volume of the earth is roughly 1 x 1021 m3. 0 

It is not surprising that natural growth processes do not show exponential 
growth for extended periods of time. Rather, though many growth processes are 
initially exponential, after a time duration that may be relatively small, they slow 
down and may sometimes reach a steady state, or even decrease. In this section 
we discuss two simple theoretical models that account for this slowing of growth. 

Verhulst growth or logistic growth is described by 

dx - = kx -ax2, 
dt 

(4.7) 

where k and a are positive constants. This equation captures the same idea 
that we encountered in Chapter 1 when describing crowding effects in finite-



4.2 GROWTH AND DECAY 161 

difference equations modeling population dynamics. For high population levels, 
the growth rate must slow down due to such factors as crowding or limited re­
sources. However, in the current case we have a differential equation, rather than 
a finite-difference equation, and surprisingly the dynamics in Eq. 4.7 are much 
simpler than the dynamics in Eq. 1.6. 

The solution ofEq. 4.7 is as follows: 

x(t) = kx(O) . 
(k - ax(O))e-kt + ax(O) 

(4.8) 

This solution can be obtained by direct integration ofEq. 4.7. 
Figure 4.8 is a classic graph from early in this century in which the growth 

of a bacterial culture was fit to the logistic curve. Note that for short times this 
curve is similar to the exponential function (this is often called the log phase of 
the growth), whereas for long times the value of the population reaches a fixed 
level, which from Eq. 4.8 is ~. Note that if x (0) > ~,Eq. 4.7 will lead to decay 
to ~ rather than growth. 

You should appreciate the differences between the dynamics in the Verhulst 
differential equation here and its cousin, the logistic finite-difference in Eq. 1.6 
which we encountered in Chapter 1. In the differential equation, values of the 
variables change continuously in time. If the initial value is less than ~ there will 
be a monotonic increase up to the value ~,and if the initial value is greater than 
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Figure4.8 Bacterial growth. Adapted from Lotka (1956). 
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~ the population will decay to the value ~. There is no way that this equation 
can show oscillation or chaotic dynamics, in striking contrast to Eq. 1.6. This 
subject is discussed in more detail in Section 4.6. 

o ExAMPLE 4.6 

Figure 4.8 gives experimental data concerning the area of growth of a 
bacterial colony. The data points have been fit to the logistic function, 

a 
y(t) = b + e-yt ' 

where a, b, and yare positive constants. 

a. In terms of a, b,and y,what is the value ofy(t) when t = Oandt = oo? 

b. Show that the expression for y(t) given above is a solution of the one­
dimensional, nonlinear, ordinary differential equation 

where kl = y and kz = b: 
c. In Figure 4.8 a = 0.25 cmz, b = 0.005, and y = 2.1 day-I. Find the 

numerical values of kl and k2 • 

d. According to the differential equation in part b, what would be the area 
of growth as t ~ 00 starting from an initial area of 100 cm2? 

Solution: 

a. By direct substitution, we compute the limiting values of y(t): y(O) = 

b~I' and y(oo) = ~. 

b. Direct substitution of y(t) into the differential equation yields 

-a(-y)e- yt 

(b + e-yt )2 

Simplifying terms, we find that 

b + e-yt 

In order for the left-hand side to equal the right-hand side, the co­
efficients of the exponential terms in the numerators must be equal. 
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This will only be the case if ay = kia or ki = y. Further, in order 
for the right-hand side to equal the left-hand side, it is necessary that 
klab - k2a2 = O. This is only the case if k2 = ~. 

c. Substituting for the values above, we find ki = 2.1 day-I and k2 = 
4.2 X 10-2 cm-2 day-I. 

d. Starting from any initial condition, the size in the limit t ~ 00 is 50 
cm2• o 

The Gompertz equation is another theoretical model for self-limiting 
growth, but it uses a different mathematical idea. Gompertz growth can be sum­
marized as follows: The growth rate is proportional to the current value, but the 
proportionality factor decreases exponentially in time so that 

dx k -at - = e x, 
dt 

(4.9) 

where k and ex are positive constants. The Gompertz equation can be solved to 
yield 

k 
x(t) = x(O) exp[ - (1 - e-at )]. 

ex 
(4.10) 

For Gompertz growth, x approaches x(O)e ~ as t ~ 00. Thus, the asymptotic 
value depends on, and is always greater than, the initial value. (In contrast, the 
asymptotic value for Verhulst growth is always ~, independent of the initial 
condition.) 

DYNAMICS IN ACTION 

11 GOMPERTZ GROWTH OF TUMORS 

Gompertz growth has been used as a theoretical model for the growth of animals 
and the growth of tumors (A. laird (1964)). The figure shown here gives experimental 
data on the growth of an Ehrlich ascites tumor in tissue culture. The logarithm of 
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the number of cells is plotted as a function of time. If the tumor were growing 
exponentially, the graph would be a straight line and the slope of the line would 

give the rate of growth (see Figure 4.5). This is clearly not the case. Rather, there 

appears to be a steady decrease in the growth rate-the graph gets flatter as time 
proceeds. The experimental points are well fitted by the theoretical expression for 

Gompertz growth . 
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4.3 MULTIPLE FIXED POINTS 

Growth of Ehrlich ascites tumor. 
Log of the number of tumor cells 
plotted against time. Adapted 
from Laird (1964) based on 
Klein and Revesz (1953). 

In a 1977 article on the applications of nonlinear ordinary differential equa­

tions to ecology, Robert May asks, "Is the human story largely a deterministic tale 
of civilisations marching to Toynbee's tune, three and a halfbeats to disintegration, 
or did the hinge of history turn on the length of Cleopatra's nose?" 

May thus introduced the notion that in dynamical systems, the dynamics 
as t ~ 00 may depend on the initial condition. For example, imagine a single 

cow in a field of modest size. If the cow were introduced to the field after the field 
had lain fallow for a time, there would be ample vegetation. The cow could eat a 
bit here and a bit there, but there would be adequate vegetation so that the cow 
would be well nourished and the vegetation would continue to grow. Suppose, 
however, that the same cow was placed in the same field after a herd of cows 
had grazed for several weeks. There would be little vegetation when the cow was 
introduced to the field, and the grazing cow might eat new grass blades as they 

appeared. Neither the cow nor the field would flourish. This shows how the initial 



4.3 MULTIPLE FIXED POINTS 165 

condition, in this case the state of the field when the cow is introduced, might 
affect the final outcome. 

May developed a theoretical model for the dynamics in this system. He 
assumed that the growth of the vegetation is a result of the balance between two 
terms: A growth term for the vegetation that is modeled by the Verhulst equation, 
and a grazing term in which the vegetation that is consumed is described by an 
increasing sigmoidal function (see AppendixA). Thus, May was led to an equation 
to describe the dynamics of the amount of vegetation V: 

dV dt = G(V) - Hc(V), (4.11) 

where G(V) describes the growth of vegetation, c(V) is the consumption of 
vegetation per cow, and H is the number of cows in the herd. The vegetation 
growth function is 

V 
G(V) = rV(l - K)' 

where r and K are positive constants, and the consumption function has a 
sigmoidal shape 

where f3 and Vo are constants. Even though the resulting equation is quite com­
plicated, a theoretical analysis of the qualitative properties of the equation can be 
easily carried out. 

The system will be at a steady state whenever the amount of vegetation V is 
such that consumption H c( V) equals the production G (V), so that the derivative 
in Eq. 4.11 is zero. In Figure 4.9 we show the functions G(V) and Hc(V) 

3 

2 

Hc( V) for H = 30 
-------------,.-

5 10 15 20 25 
V 

Figure 4.9 
Growth G(V) (heavy line) and 
consumption H c(V) (broken 
lines) for different herd sizes for 
the parameters r = ~, K = 25, 
f3 = 0.1, and Vo = 3. 
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superimposed for low, moderate, and high values of H. A careful examination 
of the graph shows that when H = 10, there are two possible steady states, one 
at V = 0 (no vegetation, starving cows) and one near V = 22 (well-fed cows 
who wouldn't eat much more even if it were available-we know this because the 

consumption curve is almost flat). When H = 30, the steady states are at V = 0 
and V = 1. (You have to look very closely to see this on the graph, but you can 
verify it algebraically.) At the V = 1 fixed point, the cows are hungry: The fact 
that the sigmoidal consumption curve has a positive slope at V = 1 means that 
the cows would eat more if it were available. When H = 20, there are four fixed 
points, at V = 0, V ~ 2, V ~ 7.5, and V ~ 16. At V ~ 7.5 or V ~ 16 the 
cows are well fed. At V ~ 2 they are hungry. 

It is perhaps surprising that the same cows in the same field might be 
starving or well fed depending on which steady state they happen to reach-the 
two outcomes are both possible. For a land resources manager (or a cow), it 
would be important to know what the outcome will be. The cow's fate can easily 
be found using geometric analysis, as shown in the next section. We will see that 
the outcome depends entirely on the amount of vegetation present when the cows 
are first placed in the field. 

4.4 GEOMETRICAL ANALYSIS 
OF ONE-DIMENSIONAL NONLINEAR 
ORDINARY DIFFERENTIAL EQUATIONS 

We now consider the geometrical analysis of one-dimensional nonlinear 
ordinary differential equations. The style of analysis parallels exactly the analysis 
of the fixed points and stability in the one-dimensional finite-difference equations 
in Chapter 1. However, although the approach is similar, the dynamics in the 
nonlinear differential equations are so simple that we can give a complete analysis 

of all possible behaviors. 
We consider the equation 

dx 
dt = f(x), (4.12) 

where f (x) is a single-valued continuous function of x. ("Single-valued" means 
that, for any given x, the function f (x) has a single, unique value. This value 
can be different for different x.) For example, f(x) may appear as the complex 

landscape in Figure 4.10. Notice that if f(a) > 0, then starting at point x = a,x 
will increase. (This follows immediately from the differential equation; a positive 
derivative indicates that x is increasing.) On the other hand, if f(a) < 0, then 
starting at x = a, x will decrease. The increase or decrease will continue until 
a fixed point is reached. A fixed point Xo is any value for which f (xo) = O. In 
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Figure 4.10 Geometrical picture of the nonlinear differential equation ~ = 
f(x). If f(x) > 0 then x increases and if f(x) < 0, then x decreases. Thus, from 
the graph of f(x), we can determine all the fixed points and their stability. Open 
symbols represent unstable fixed points and closed symbols represent stable fixed 
points. 

Figure 4.10 we label the fixed points as xo, Xb X2, • • '. Since more than one fixed 
point can be stable, we can have multistability. 

Returning to the cows, Figure 4.11 shows the graph of the right-hand side 
of Eq. 4.11 for three different herd sizes. From the graph of ~; as a function 
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Figure 4.11 
~~ = G(V) - Hc(V) 

for different herd sizes. 
The stable fixed points are 
marked with S, and the 
unstable fixed point with U. 



168 ONE-DIMENSIONAL DIFFERENTIAL EQUATIONS 

of V, it is straightforward to figure out what the dynamics will be. If ~~ > 0, 
V will increase; if ~~ < 0, V will decrease; and if ~~ = 0, V will remain 
unchanged (i.e. it is a fixed point). When the herd size H is high, there will always 
be a movement to very low values of V. Conversely, when H is low, the stable 
steady state for V is high. For intermediate values of H there are two possible 
stable behaviors. When the initial condition of V is above the unstable fixed point 
(marked with a U), V will approach a moderate value. Other initial conditions 
will lead to an evolution to very low values of V. Thus, in this case, the dynamics 
depend on the initial state, and very different outcomes result from the different 
initial conditions. 

The beauty of this geometrical approach is that we can determine many 
important features of the nonlinear differential equation, Eq. 4.11, without 
actually integrating the equation (numerically or analytically). Just as in the 
cobweb method for one-dimensional finite-difference equations, the geometry 
underlying the dynamics is easy to grasp. 

4.5 ALGEBRAIC ANALYSIS OF FIXED POINTS 

The position and stability of fixed points of one-dimensional ordinary 
differential equations can also be found using algebraic techniques. The method 
is completely analogous to that used in Section 1.5 to study the existence and 
stability of fixed points in one-dimensional finite-difference equations. 

In a differential equation, a fixed point occurs when 

dx = O. 
dt 

So, given a differential equation ~; = f(x), one can find the fixed points by 
solving f(x) = 0 for x. We will denote such values of x by x*. There may be 
more than one value of x* that satisfies f(x*) = O. 

For each fixed point x * we can carry out a Taylor series expansion of f (x ) 

in the neighborhood of the fixed point x *: 

df I 1 d2 f I * 2 
f(x) = f(x*) + dx x=x' (x - x*) + 2" dx2 x=x' (x - x) + .... 

At a fixed point, f (x*) = O. Very close to x*, the term (x - x*)2 and all of the 
higher-order terms are much smaller than (x - x*), so f (x) can be approximated 

as 

f(x) = m(x - x*), 



4.5 ALGEBRAIC ANALYSIS OF FIXED POINTS 169 

where m = * Ix=x*. Defining a new variable y = x - x* makes the differential 
equation become 

dy 
dt = my. (4.l3) 

Equation 4.l3 should be familiar since it is the linear equation for exponential 
growth or decay. Therefore, we already know the behavior of this equation. If 
m > 0, there is a monotonic exponential departure from the fixed point Xo; if m < 
0, there is a monotonic exponential approach to the fixed point. Consequently, 
the fixed point is stable if m < 0 and is unstable if m > o. 

o ExAMPLE 4.7 

Consider the differential equation 

dx . 
dt = exp (-ax) sm (2Jrx), o :::: x, 0 < a. 

a. Sketch the function on the right-hand side of this equation. 

b. Based on this sketch, determine the fixed points. 

c. What is the stability of these fixed points? 

d. Start at an initial condition of x (0) = l.l. In the limitt ~ 00, what is 
the value of x(t)? 

Solution: 

a. The right-hand side is the product of an exponential function that is 
greater than 0 for x finite, and a sinusoidal function that oscillates, 
with zeroes at x = 0, !, 1, ~, .... Therefore, the graph is a decaying 
oscillatory function as shown in Figure 4.12. 

b. The fixed points occur where the function is 0, or at x = 0, !, 1, ~, .... 

dx 

Figure 4.12 
f(x) = exp(-ax) sin(2nx). 
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c. The graph shows that the slope of the right-hand side is positive when 
x is an integer, so that all the fixed points where x is an integer are 
unstable. In contrast, when x = I' where n is an integer, the slope of 
the right-hand side is negative so that these fixed points are stable. 

d. Starting at x = 1.1, x will increase and asymptotically approach the 
value x = 1.5. 

D 

Q ExAMPLE 4.8 

In a mathematical model for the control of ovulation, Lacker (1981) 
proposes the equation 

dx 
dt = f(x) = x + ax3 • 

In this equation x represents the amount of hormone and a is a constant that can 
be either positive or negative. 

a. Sketch ~: as a function of x . 

b. Analytically compute the location of all fixed points. 

c. Algebraically determine the stability of these fixed points. 

d. From an initial condition of x = 1, describe the dynamics as t -+ 00. 

Solution: 

a. For a > 0, f' (x) > 0 for all x, so there are no extremal points and the 
function always has a positive slope (see figure 4.13). 

For a < 0, we can set f' (x) = 0, and we find that there are 

extremal points at x = ±fl for a < O. To decide if these extrema are 
maxima, minima, or inflection points, we look at the second derivative, 

f(x) 
1 

0.5 
x 

-1 0.5 1 

Figure 4.13 
-1 f(x) = x + O.5x3• 
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x 
----~----~----~----o 

Figure 4.14 
f(x) = x - 3x3 • 

fl! (x) = 6ax. It is negative for x = fl, so this point is a maximum. 

Similarly, the second derivative is positive at x = - fl, so this point 
is a minimum. The second derivative is zero at the origin, which is an 
inflection point. A graph is shown in Figure 4.14. 

b. The fixed points are found by setting f (x) = O. This yields the cubic 
equation 

x + ax3 = O. 

Therearethreesolutions:x = O,andx = ±H' Therefore, fora 2: ° 
there is only one fixed point at the origin, and for a < ° there are three 
fixed points. 

c. The stability is determined by 

df = f'(x) = 1 + 3ax2 

dx 

evaluated at the fixed points. At x = 0, f' (x) = 1, so the fixed point at 
the origin is unstable. For a < ° the slope at the other two fixed points 
is 

f'(x) = 1 + 3a ( ~1 ) = -2, 

and so the other two fixed points are stable fixed points. 

d. For any positive initial condition, x(t) ~ 00 for a > 0, and x(t) ~ 

H fora < 0. D 
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4.6 DIFFERENTIAL EQUATIONS VERSUS 
FINITE-DIFFERENCE EQUATIONS 

In Chapter 1 we saw that the finite-difference equations 

Xt+l = !(Xt) = RXt - bx; 

can generate many sorts of behavior: fixed points and unlimited growth to ±oo, 
periodic cycles, and chaos. Yet, in differential equations of the form 

dx 
dt = !(x) (4.14) 

we see only fixed points and growth to ±oo. One-dimensional, ordinary dif­
ferential equations of this form cannot generate periodic cycles or chaos. 
Why not? 

A differential equation can be approximated by a finite-difference equation. 
This fact allows us to compare the dynamics of differential equations and finite­
difference equations. The key step is to define a discrete-time variable Xt == x(t) 

for t = 0, 11, 211, ... , and write 

dx 1. Xt+l - Xt - = 1m 
dt 6-+0 !1 

Although the mathematical definition involves a limit 11 -+ 0, as an approxima­
tion we can take 11 as small but finite. We have not yet said what "small" means, 
but this will turn out to be the crux of the matter. 

The differential equation in Eq. 4.14 can be approximated as 

= !(Xt), 

giving 

(4.15) 

If 11 is small enough, the dynamics of Eq. 4.15 will be just like the dynamics 
ofEq.4.14.Here, "small enough" means that 11 -+ O.Notethatwriting"l1 -+ 0" 
is different from writing "11 = 0:' If 11 = 0, then Eq. 4.15 becomes Xt+l = Xt, 

which is not a good approximation to Eq. 4.14. Figure 4.15 shows the dif­
ferential equation for Verhulst growth. Figure 4.16 shows a finite-difference 
approximation. 

Analyzing Eq. 4.15 using the techniques studied in Section 1.5 reveals the 
following: 
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Figure 4.15 The graph of the differential equation ~ = 1.2(x - x 2). 

• Fixed points in the finite-difference equation occur when f (Xt) = O. 
This is the same criterion as for fixed points in the original differential 
equation. Let the location of the fixed points be denoted by x * . 

• The stability of a fixed point at x* depends on 

-- -u- +1 dXt+l I A df I 
dXt x. - dx x. . 

Whatever the value of ~ Ix.' by making t::. small enough, we can make 
ddXt+l very close to 1. This means that for t::. small, Eq. 4.15 shows a 

Xt 

monotonic approach to or departure from the fixed point, and never 
the alternating approach or departure as seen in Figures 1.21 or 1.22 for 

cases where ddXt+1 I • < o. (When t::. is not small, the finite-difference 
Xt x 

equation may not represent the dynamics well. See Exercise 4.27.) 

o 0.2 0.4 0.6 0.8 1 
Xt 

Figure 4.16 
The finite-difference 
approximation to the 
differential equation 
sketched in Figure 4.16 for 
t::. = 0.5. 
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• A fixed point at x* is stable when * Ix. < 0, and unstable when * Ix' > 0, reflecting whether d;~:l Ix. is greater than or less than zero. 
This criterion for the stability of fixed points in the finite-difference ap­

proximation is the same as in the original differential equation. See the 

graph in Figure 4.16. 

• Cycles of period 2 are found by looking for cases were Xt+2 = Xt and 

Xt+l #- Xt. But, 

Again, as Il --+ 0 the only points that satisfy Xt+2 = Xt also satisfy 
Xt+ 1 = Xt. So, there are no cycles of period 2 in the dynamics, only fixed 
points. The same is true for any cycle of period n > 1. 

We see that the somewhat limited types of dynamical behavior of single­

variable ordinary differential equations arise from the restriction that Il --+ O. 
One way to understand this is with the concept of state. The state of the system 

~: = f(x) at time t is simply x(t). A differential equation like Eq. 4.15 says that 
the change of state ~ is a function of the state. One can imagine the state as a 
bead on a wire. The wire represents all the possible states (the real numbers) and 

~: tells the speed and direction of the state's movement. The position of the bead 

indicates the current state. Since ~: is a function of position on the wire, at any 
point on the wire ~: has a single, fixed value. The requirement that Il --+ 0 says 
that the bead has to move continuously on the wire; it cannot jump from one spot 

to another, faraway spot. On the other hand, since ~: has a single, fixed value at 
any point on the wire, the bead can never back up; if the bead could back up, then 
~: would have one value the first time the bead passed and another value of the 
opposite sign when the bead passes in the other direction. So, the only possible 
motion for the bead is to move steadily in one direction, either heading to ±oo 

or ending up at a fixed point. 

4.7 DIFFERENTIAL EQUATIONS WITH INPUTS 

Most of the differential equations we have studied so far have the form 

~ = f (x). The derivative ~: is a function only of x. In particular, the function 
f (x) does not change in time-although obviously x itself may change in time 

and with it the value of the function at any instant. The only equation we have 

seen where the function itself changes in time is Eq. 4.9, where the function 

f (x) = ke-at x. Differential equations where the function changes in time are 

very common in science and technology. Of particular importance are cases where 

the function contains some factor that can be interpreted as an "input." As a simple 

example, consider a patient who has been told to take a pill "once every four 
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hours." Assume that after the drug is taken, it is eliminated from the bloodstream 
at a rate proportional to its concentration. A differential equation describing this 
situation is 

dx 
dt = ax + /(t), (4.16) 

where / (t) is the input and a < 0 is the elimination rate for the drug once it 
enters the bloodstream (see Figure 4.17). In this case, the input is zero most of 
the time but has a spike every four hours. The area under this spike corresponds 
to the amount of drug in a single pill, and the width of the spike corresponds to 
the time it takes for the drug to enter the bloodstream after the pill is ingested 

(see Exercise 4.19). 

LINEAR SYSTEMS AND SUPERPOSITION OF INPUTS 

A general form for a one-dimensional, ordinary differential equation with 
an input is 

dx 
dt = f(x, /(t)). 

If f is nonlinear, this type of equation can often be solved only using numerical 
methods on a computer. 

However, when f is linear, there are elegant mathematical techniques that 
not only provide a solution, but also give powerful insight into how the solution 
is related to the input. For a one-dimensional system, there is only one form for 
f that is linear, as given in Eq. 4.16. This produces exponential growth (a > 0) 
or decay (a < 0). 

The principle used to solve Eq. 4.16 is linear superposition of solutions. 
The idea is this: Write the input / (t) as a summation of N different input 

l(t)1[1 1 1 1 

o 0 4 8 12 time(hr) 

Figure 4.17 The input function I (t) for drug concentration for a patient taking 
a pill every four hours. 
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functions, 

N 

/(t) = L /j(t). 
j=1 

For example, the input function for the preceding drug example might be written 
as a sum of four inputs each consisting of a single spike (see Figure 4.18). 

Suppose that we know how to solve the differential equation for each of 
the /j(t) individually. This means that we have a function Xj(t) that satisfies the 
equation ~ = aXj + /j(t). Making use of the fact that 

dLXj '" dXj 
dt =~dt' 

we can see that the sum of the individual solutions L Xj is also a solution. That 
is, 

dLXj '" '" dt = a ~Xj + ~ /j(t). 

So, if we can find a way to break down / (t) into a sum of simple functions, and if 
we can solve Eq. 4.16 for each of these simple functions, then we can easily find 
the solution for the sum of the inputs. 

1[1 I, (t) 

00 4 8 12 
+ 

1[ I ~(t) 

00 4 8 12 
+ 

1[ I Mt) 

00 4 8 12 
+ 

1[ I 
Figure 4.18 

'4(t) The input function in Figure 4.17 
written as the sum of four 

00 4 8 12 time (hr) simpler input functions. 
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TRANSIE .... T RESPO .... SE 

No matter how we choose to decompose the input I (t) into simple func­
tions, there is always one simple function that must always be included. This 
is 

Io(t) = O. 

Although this function does not add anything to the input, it is very important for 
bookkeeping purposes because it covers the transient response of the differential 

equation from its initial condition in the absence of any input. As we have already 
seen, the solution to Eq. 4.16 in the absence of input is 

x(t) = x (0) eat , (4.17) 

where x(O) is the initial condition. By including this transient response in the 
summation that leads to the solution of the Eq. 4.16, we account for the complete 
role that the initial condition x (0) plays in the solution. 

THE IMPULSE RESPO .... SE FU .... CTIO .... 

One of the most powerful ways of decomposing an input function I(t) is 
to use components that have the form of a spike or impulse. The easiest case is 
when the impulse occurs at time t = O. In this case the solution can be written 
in two parts: 

x(t) = 10 for t < 0 

Aimp(O)eat for t 2: O. 
(4.18) 

As we will show, Aimp(O) is the area under the impulse I (0). The graph of this 
solution is shown in Figure 4.19. 

If you differentiate each part of this solution, you will see that each part 

separately satisfies the equation ~; = ax when t # O. But what is the derivative 

at time t = O? We can write the derivative as 

dx I lim x(t + hj2) - x(t - hj2) I 
dt t=O = h->O h t=O 

(4.19) 

1· Aimp(O)eah/2 l' Aimp(O) 
=lffi =lm. 

h->O h h->O h 
(4.20) 

Since limh->o k is infinite, Eq. 4.19 implies that ~; It=o ~ 00. This is consistent 
with the very rapid rise shown in Fig. 4.19, but it can be a little hard to interpret 
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1 
>(,t) 

0.8 

0.6 

0.4 

0.2 

o 5 10 15 time (hr) 

Figure 4.19 The reponse to a spike input as given by Eq. 4.18. The area of the 
input impulse is 1, and the half-life of the dynamics is six hours. 

physically. As long as h is finite (corresponding, in the above example, to the fact 
that it takes a finite amount of time for the drug from the ingested pill to enter 
the bloodstream) there is no problem mathematically. What is the relationship 
between Aamp(O} and the spike input I (O)? Ifthe spike has a rectangular shape 
and lasts for duration h, then the area under the spike is hI (O). Ifwe set Aimp(O} 
to be hI (O}-the area under the spike-then 

A (O) 
lim Imp = lim I (O) = I (O). 
h-+O h h-+O 

Using Eq. 4.19, and Aimp = hI (O), we see ~; It=o = I (O). This is consistent with 
the original differential equation (Eq. 4.16) given that our solution at time t = 0 
isx(O} = O. 

To find the solution to Eq. 4.16 when the input is an impulse of area Aimp (s) 

at time t = s, we simply translate the solution that we obtained for the impulse 
at time t = 0, getting 

10 
x(t} = 

Aimp (s }ea(t-s) 

ift :::: s; 

otherwise. 
(4.21) 

CONVOLUTION 

When the input I (t) can be decomposed into a finite number of impulses, 
the solution to Eq. 4.16 is easy-simply add together the solutions for each of the 
individual impulses as given by Eq. 4.21. For example, if impulses occur at times 
Si with areas Ai for i = 1, ... , N (N impulses altogether), then the solution of 
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Eq. 4.16 is 

x(t) = x(O)e"t + L Aje,,(t-s;). (4.22) 
Sj~t 

When we write Ls; 9 we mean that the sum should be performed only for 
those impulses that occurred at or before time t. The impulses that occur later 
than time t do not contribute to the summation. The term x (O)e"t is the transient 
response to the initial condition at time t = O. 

In the example of the patient taking a pill every four hours, the exponential 
decay of the drug from each pill ingested goes on independently of the other pills. 
However, the response from each pill is added to the decaying response from the 
pills consumed earlier (see Figure 4.20). 

Surprisingly, perhaps, any form of input I (t), even one that is smooth, can 
be written as a sum of impulses, although there may be an infinite number of 
them. In this case, the finite sum in Eq. 4.22 is replaced with an integral, giving 

x(t) = x(O)e"t + 1t I(s)e,,(t-s)ds. (4.23) 

This integral is called a convolution integral. Note that the variable s is a "dummy 
variable;' and that the time t appears in the upper limit of integration. The term 
e,,(t-s) is called the convolution kernel or impulseresponse--note that the kernel 

is the same as the response to an impulse at time s. This particular form for the 

term is only valid for the differential equation in Eq. 4.16. A general technique in 
solving linear differential equations with inputs is to find the impulse response, 
and then find the complete solution using the convolution integral. 

RESPONSE TO SINE WAVE INPUT 

It is often convenient to regard an experimental or field system as a black 
box, whose inner dynamics are unknown but which provides an output for any 

2 
x(t) t\. l\. ~ 

~N~ 
o 4 8 12 time (hr) 

Figure 4.20 
Buildup of a drug administered at 
times 0, 4, 8, and 12. The dark line 
shows the total concentration, which 
is a linear summation of the decaying 
exponentials (dashed lines) from 
each of the drug administrations. 
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Input "'" , Black 
Box 

Output .. 

Figure 4.21 

given input. One way to understand such black box systems is to provide a variety 
of functions as inputs and to study the output provided by each type of input. 

An important special case is when the input is a sinusoidal function of time, 

/(s) = Asinws, 

where A and ware positive constants (see the graph in Figure 4.20). When the 
sinusoidal input is substituted in Eq. 4.23, the right-hand side can be integrated 
to obtain 

Aeat 
x(t) = x(O)eat + 2 2 [e-as (-a sin ws - w cos ws)] I~ , 

a +w 

which can be rewritten as 

x(t) = (X(O) + 2 wA 2) eat + 2 A 2 (-a sin WI - w cos wt). (4.24) 
a +w a +w 

This solution is often rewritten in a slightly different format using the 
trigonometric identity 

sin(WI - ¢) = sin WI cos ¢ - cos wt sin ¢. 

Let us now try to find ¢ such that 

a 
cos¢ = C' 

The above expression is solved to give 

-1 w ¢=tan -, 
a 

w 
sin¢ = c. 

Using the above substitutions, Eq. 4.24 can be evaluated to yield 

( WA) A x(t) = x(O) + 2 2 eat + sin(wt - ¢). 
a + w ,Ja2 + w2 

(4.25) 
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A 

Va2 +w2 
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Figure 4.22 
The amplitude and phase of 
the sine wave solution to 
~ = -lOx + sin wt. 

The above result says that when the input for a linear differential equation 
system such as Eq. 4.16, is a sine wave, the output will also be a sine wave of the 
same frequency, but perhaps of a different amplitude and phase. (Also, a transient 
response will be in the output, but for a < 0 it approaches zero for sufficiently 

large t.) Further, both the amplitude of the solution, a 21w2 ' and the phase shift 
<p depend on the driving frequency (i). Figure 4.22 shows these functions. 

The preceding discussion suggests general methods to characterize linear 
systems. These methods are referred to under the general name of system identi­
fication. The idea is to provide a sinusoidal input to the system and measure the 
output. If the output is a sine wave with the same frequency as the input, then the 
system can be characterized by linear differential equations. In the current case, 
there is only one parameter a, and a measurement of the response as a function 

of frequency can be used to determine a. In doing this procedure, you should 
realize that to carry out this type of experiment you need not have any detailed 
understanding of the system being studied. You are treating it as a black box. 
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DYNAMICS IN ACTION 

12 HEART RATE RESPONSE TO SINUSOID INPUTS 

An interesting example of the application of system identification techniques is 
the control of the heart rate by the vagus nerve. Activity in the vagus nerve leads to 
release of the neurotransmitter acetylcholine and slows the heart rate. To study vagal 
control of heart rate in cats, GJ. Chess and ER. Caleresu (1971) cut the vagus nerve 
and stimulated the part of the nerve still connected to the heart. They measured the 
heart rate in response to sinusoidally modulated stimulation at different frequencies 
(see the figure on the next page). In response to the stimulus, the heart rate is 
also sinusoidally modulated with the same period as the stimulus input, but the 
amplitude and phase angle of the heart rate output depend on the frequency of the 
input. The amplitude and phase angle of the output can be plotted as a function of 
the input frequency. 

,.... 
f8 0 
'-J 

~ Ci -10 
E 
10 

.. :r. 
r I . --~ ~ 

r ~ 
.9' -20 

~ -50 
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o 
, I • -r-.t 'i ... 

"-\l. 
r ~ 

~ 

.001.002.004 .01 .02 .04 .1 .2 .4 1. 
Modulation frequency (Hz) 

Phase angle of the heart rate response to sinusoidally modulated stimulation of 
the vagus nerve. Adapted from Chess and Caleresu (1971). 

The solid line in the figure on this page shows the best fit to the data based 
on Eq. 4.25. Further analysis shows that this data corresponds to an exponen­
tially decaying impulse response, with a time constant of 3.15 sec. The response is 
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sumably reflect the nerve synapse processes involved in the release, transmission, 
and destruction of acetylcholine. 

Modulation frequency 
0.01 Hz 0.1 Hz 

Stimulus 4 r ~ ~ 
frequency(Hz) ~[~ ~ ,,~ 
Heart 0.5 [ ~ ______ 
period (sec) 0.3 -- ------ -...--

1---1 
60 sec 

1---1 
10 sec 

Stimulus (input) and heart rate (output) at two different stimulus frequencies. 
Adapted from Chess and Caleresu (1971 ). 

4.8 ADVANCED TOPIC: TIME DELAYS AND CHAOS 

In the one-dimensional ordinary differential equations we have been study­
ing, the rate of change of a quantity depends on its present value. However, in 
some circumstances it is reasonable to assume that the rate of change of a quantity 
depends not only on its value at the present time, but also on its value at some 
time in the past. For example, let us assume there is a variable x that decays at 
a rate proportional to its own concentration (just as in exponential decay) but 
is produced at a rate that is a function of its value r time units in the past. This 
gives a delay differential equation 

dx 
dt = P(x(t - r» - ax(t), (4.26) 

where P is the function that controls the production of x and a is a decay constant. 
This equation was used by M. C. Mackey and L. Glass in 1977 as a theoretical 

model for physiological control. 
As an example, let x (t) be the number of mature blood cells in circulation 

at time t. Blood cells have a certain half-life, but new replacements are always 

being made. Since it takes roughly four days for a new blood cell to mature, there 
is a delay in the dynamics governing the number of mature blood cells. 

The goal of many control systems is to maintain a quantity at a constant 
level. Assume that the goal of the system described by Eq. 4.26 is to produce blood 
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P(x) 

0.5 1.5 2 
x 

Figure 4.23 
A monotonically decreasing 
sigmoidal function. 

cells so that the total level x maintains a constant value (). If x(t - 'l') < (), the 
control system might be designed to produce large quantities of new blood cells 
in order to bring x up to the value (). Thus, P would be at a high value. On the 
other hand, if x (t - 'l') > (), we would want P to be at a low value. 

To think about this, imagine a furnace heating a house in winter. When 
the furnace is on, the house is getting warmer. When the furnace is off, the 
house cools down. Furnaces are controlled by thermostats that set the desired 
temperature-the thermostat turns on the furnace when the inside temperature 
is too low, and turns off the furnace when the temperature is too high. Real 
furnaces (especially old ones) take a significant amount oftirne to turn on and 
to turn off. This correponds to the delay 'l'. By the time the furnace actually 
turns on, the temperature has fallen below the value set by the thermostat. When 
the furnace is on, the temperature will have risen above the set value before the 
furnace actually turns off. The result is an oscillation around the set value. 

A furnace is either on or off, but biological systems can have intermediate 
values. It is reasonable to suppose that P is a monotonically decreasing sigmoidal 
function (see Figure 4.23). When a monotonically decreasing function is sub­
stituted in Eq. 4.26, one of two different behaviors has been observed: either an 

P(x) 

0.5 1.5 2 
x 

Figure 4.24 
A single-humped function. 
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300 

Time (days) 

400 500 600 

Figure 4.25 Top: Count of circulating white blood cells versus time in a 12-year­
old girl with diagnosed chronic granulocytic leukemia. Bottom: Numerical solutions 
of ~ = l~!~;~~~~lo - O.lx(t). Adapted from Mackey and Glass (1977). Original 
figure copyright 1977 by the AAAS. 

approach to a fixed point or a stable periodic oscillation. One obtains the oscilla­
tory solution if a product of the time delay and the slope of the control function 
exceeds a critical value. The mathematical analysis of the stability is in the same 
style that we carried out for the ordinary differential equation, by considering 
stability of a linear equation, but the analysis is more difficult as a consequence 
of the time delay. 

In some cases, a monotonic decrease of the control function P might not 
be realistic. Then if x is too low, the individual might be very sick and conse­

quently unable to produce new cells at a high rate. At intermediate values of x, 
the individual is healthy enough to produce new blood cells, and at large values 
of x there is no need to produce blood cells. Therefore, an appropriate form for 

the function P is a single-hump (see Figure 4.24). Mackey and Glass found that 
when a single-humped production function was substituted in Eq. 4.26, the dy­
namics could be much more complex, potentially including fixed points, cycles, 

period-doubling bifurcations, and chaotic dynamics (see Figure 4.25). In fact, 



186 ONE-DIMENSIONAL DIFFERENTIAL EQUATIONS 

there are striking similarities between the dynamics in this system and those in 
the finite-difference equation that we studied in Chapter 1. 

This range of behaviors is possible in delay-differential equations, but not in 
one-dimensional differential equations without delays, as discussed in Section 4.6. 
The reason for this involves the state of a delay-differential equation. Whereas the 
state at time to of a nondelay, one-dimensional differential equation is a single 

number x(to), the state of a delay-differential equation at time to is given by a 
function x (to - s) for s in the range 0 to 't'. Thus, the state of a delay-differential 
equation is infinite-dimensional. 

DYNAMICS IN ACTION 

13 NICHOLSON'S BLOWFLIES 

The Australian scientist A. J. Nicholson carried out a set of experiments in the 
1950s to study the dynamics of fly populations. Nicholson grew cultures of the 
sheep blowfly Lucilia cuprina, carefully feeding them regularly and counting the 
number of adults and larvae over extended periods of time. Despite the fact that 
the environment was maintained constant, Nicholson observed large fluctuations in 
the numbers of blowflies, as shown in the figure. This type of laboratory experiment, 
in which population levels can be accurately measured and experimental conditions 
can be carefully controlled and manipulated, can offer great insight into population 
dynamics, although it lacks the romance of field studies in exotic locales. 

50 100 200 

Time (days) 

250 300 

Observed number of flies in one of Nicholson'S experiments. Adapted from Gur­
ney et al. (1980). Based on Nicholson (1954). Reprinted with permission from 
Nature. Copyright 1980 by Macmillan Magazines, Umited. 
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In order to interpret Nicholson's experimental observations, Gumey et al. (1980) 
assumed that: 

1. Adults die off at a rate proportional to the current adult population; 

2. The number of eggs laid depends only on the current size of the adult population; 

3. All eggs that develop into sexually mature adults take exactly the same length of 
time 'C to do SO; 

4. The probability of a given egg maturing into a viable adult depends on the 
number of competitors of the same age: The larger the number of eggs, the 
smaller is the probability that a given egg will mature to adulthood. 

40~------------------------~ 

1\ 
c 30 :2 
ctJ V 'S 
Q. 
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Size of the model fly population. Adapted from Gumey et al. (1980). 

Very few adults means there will be few eggs laid, and even though a large fraction 
of the eggs will mature, there will be only a small number of new adults 'C time units 
in the future. Very many adults means there will be many eggs, but few future adults 
will be produced because each egg has only a small probability of maturing. For 
an intermediate number of adults, the largest number of eggs mature to adulthood. 
Thus, the number of adults produced at any time is a single-humped function of the 

number of adults 'C time units previously. We will write this function as p(x(t - 'C)). 

Adding together the change in adult population due to maturing eggs (P(x(t - 'C))) 

and due to death (-ax(t)), we arrive at 

dx(t) Cit = p(x(t - 'C)) - ax(t), 
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which is the same as Eq.4.26. Gumeyandcolleagueswereabletosolvetheequa tion 
to demonstrate that dynamics in the theoretical model were qualitatively similar to 
the dynamics in the laboratory experiments. Thus, it can be seen that plausible 
assumptions about reproduction, maturation, and death can lead to population 
fluctuations even when environmental conditions are constant. 

Experiments such as Nicholson's, where a population is maintained in a laboratory 
environment, are rare. More commonly, scientists try to study populations in their 
native environment. However, difficulties in measuring populations accurately, as 
well as uncontrollable environmental fluctuations, make understanding ecological 
dynamics extremely difficult. 

SOURCES AND NOTES 

Mathematical models of growth have been studied throughout this cen­
tury. Lotka's 1924 book contains many basic notions about limited growth, and 
contains references to studies by Lotka's contemporaries (Lotka, 1956). One area 
in which this type of analysis has practical significance is in the analysis of tumor 
growth. Early studies of the dynamics of tumor growth were carried out by Laird 
( 1964). For a clinical perspective on the utility of mathematical models of growth 
to lung cancer see Chahinian and Israel (1976). 

The qualitatitive theory of one-dimensional ordinary differential equations 
is very elementary and hence is often not discussed at length in mathematics 
books. However, the analysis of this problem provides the conceptual foundation 
for the more difficult problem of qualitative theory of differential equations in 
higher dimensions, and as such is an important topic. One application of the 

theory to analyze multistability in ecological systems was given by May (1977). 
Systems analysis techniques are often used in physics and engineering. In 

the 1960s there was significant development of applications of systems analysis 
to the biological sciences (Grodins, 1963; Milhorn, 1966). Textbook introduc­

tions to systems analysis from an engineering perspective are contained in Chen 
(1984) and Franklin, Powell, and Emami-Naeni (1994). Classical systems analy­
sis methods are suitable for many applications, for example see the applications 
to the analysis of control of heart rate in Chess and Caleresu (1971) and Berger, 
Saul, and Cohen (l989). However, since complex systems usually have nonlinear­

ities, methods of nonlinear dynamics are frequently essential for understanding 

complex rhythms. 
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~ EXERCISES 

~ 4.1 Show algebraically that linear differential equations can have only one 
fixed point. 

~ 4.2 Are the following data better described by linear growth or exponential 
growth? Write down the differential equation, complete with numerical values 
for the parameters, that describes this data. 

t x t x. 

0.5 1.27 1.6 18.45 

0.6 6.58 1.7 19.85 

0.7 7.00 1.8 25.03 

0.8 8.83 1.9 28.14 

0.9 8.66 2.0 28.31 

1.0 5.53 2.1 33.41 

1.1 9.33 2.2 41.43 

1.2 14.57 2.3 40.87 

1.3 8.51 2.4 56.71 

1.4 17.61 2.5 59.32 

1.5 12.94 

~ 4.3 Bacteria are inoculated in a petri dish at a density of! O/ml. The bacterial 
density doubles in twenty hours. Assume that this situation is described by the 
differential equation 

dx = Cx, 
dt 

where x is the bacterial density and C is a constant. 

a. Integrate this equation giving x as a function of time. 

b. Find the value of C. 

c. How long does it take for the density to increase to eight times its original 
value? To ten times? 
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(/? 4.4 This question deals with radiocarbon dating, which archeologists use 
for estimating the age of once-living artifacts such as wood or bone. The ra­
dioisotope CI4 decays to CI2 with a half-life of 5720 years. Assume that in the 
atmosphere the ratio of g~ is 1.6 X 10-12 and that this ratio has remained con­
stant. As long as an organism is living, the g; ratio in the organism is the same as 
in the atmosphere. Once the organism dies, no new CJ4 is incorporated into the 
body and the existing CI4 decays exponentially to C12 , which is not radioactive. 
Thus, the g:~ ratio can be used to estimate when the organism died. 

A preserved sample of organic material is obtained in which the ratio g; 
is 0.4 X 10-12 • 

a. Give the equation for the radioactive decay of C14 • Determine the value 
of all constants in this equation. 

b. How long ago was the material in the sample formed from the 
atmospheric carbon. 

(/? 4.5 This question is based on the closing of single ion channels (Cooper 
and Shrier, 1985). Suppose N channels are open at time t = 0 and that all of 
the channels will eventually close. The number that will close in a time interval 
between t and t + 8t is N p8t, where p is the solution of the differential equation, 

dp -p 
= dt 'f 

where t' is a constant to be determined. 

a. Integrate this equation to find p(t) . 

b. Find p(O) in terms of t'. HINT: Jooo p(t)dt = 1 since all channels will 
close by t = 00. 

c. The histogram in Figure 4.26 shows the number of events recorded 
having open time durations given on the abscissa and the graph in Fig­
ure 4.27 shows the percentage of channels that open at t = 0 and that 

Figure 4.26 
Adapted from Cooper and Shrier 
(1985). 



EXERCISES 191 

close by the time shown on the abscissa. Using the expression found in 
part a, derive a theoretical expression for the percentage shown in the 
graph. 

d. Using any technique you wish, estimate '[' in this data. 

tf? 4.6 This question deals with a mathematical model for ionic currents found 
during action potentials in cardiac muscle; it was developed by Noble and Tsien 
(1969). They hypothesized that the membrane current during the plateau phase 
of the action potential can be separated into two components Xl (t) and X2(t) 

described by the differential equations 

(1) 

(2) 

and where aX, • aX2 • fJXl' and fJX2 are constants set from experimental data. 

a. Show by direct substitution into Eq. (1), that solution of its (1) can be 
written as 

where Aoo and '['1 are constants that depend on aXl and fJxl • Express Aoo 
and '['1 as a function ofax, and fJXl (see Figure 4.27). 

b. Consider the graph that gives In( AooA~l(t) ) as a function of t. Write the 
equation for, and sketch, this graph. 

c. Call t! the time that is necessary for Xl (t) to increase from its initial 
2 

value to a value halfway between the initial value and the final value. 
Find t! in terms of Aoo. '['1. 

2 

10 

50 100 
(msec) 

150 

Figure 4.27 
Adapted from Cooper and Shrier 
(1985). 
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d. The solution to Eq. (2) is 

where Boo and'l'2 are constants. Figure 4.28 is reproduced from the Noble 

and Tsien article. The filled circles represent experimental measurements 

of Xl (t) + X2(t); the solid line that overlaps the solid circles at the end of 
the record is a theoretical estimate of Aoo + X2 (t); and the filled triangles 

represent an estimate of Boo + Xl (t). Estimate 'fl and 'f2 (a very rough 
estimate within 20 percent of their value is fine). HINT: There are many 

ways to do this, but it is easiest to use the result in part c of this problem. 

~ 4.7 The Hodgkin-Huxley equations (Hodgkin and Huxley, 1952) describe 

the electrical potential across the cell membrane in a nerve cell axon. They repre­

sent an outstanding example of the application of nonlinear ordinary differential 

equations to biology. 
The axon membrane-as are all excitable cells-is perforated by proteins 

that conduct specific ions. The ability of the proteins to conduct the ions depends 

on the voltage across the membrane. The voltage, in turn, depends on the levels 
of the various conductances applicable to each species of ion. In this problem, we 
will deal with only part of the Hodgkin-Huxley system of equations relating to the 
conductance of potassium ions through the membrane. The units for measuring 
conductance are mho. In order to account for the size of the axon, it is convenient 

to present conductance in m.mho/cm2 • 

The potassium conductance, gk> is given by 

-f--~-----------------------------

Boo 

1 e .---, 
Aoo e 
jr--_e 

r I , 

o 5 10 sec 

Figure4.28 Adapted from Noble and Tsien (1969). 

(4.27) 
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where 

(4.28) 

Here g k is a constant and an and fJn are constants that depend on voltage. 

a. Assume that fJn is a function of the form 

Find C 1 and C2 from the following table reproduced from the original 
article. The original article reported C1 = 0.125 mseC l and C2 = 
80 mv. If you do this correctly, your results will differ somewhat from 
the reported values. You might enjoy checking the original article and 
tracking down the origin of the discrepancy. 

v fJn 
(mV) (msec-1) 

A -109 0.037 

B -100 0.043 

C -88 0.052 

D -76 0.057 

E -63 0.064 

F -51 0.069 

G -38 0.075 

H -32 0.071 

I -26 0.072 

J -19 0.072 

K -10 0.096 

L -6 0.105 

b. Solve Eq. 4.28 and express the result as a function of the initial value no. 
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c. Using the solution of Equations 4.27 and 4.26, show that gk can be given 
by 

(4.29) 

Give the values of gkoo ' gko' and Tn in terms ofgk , Oln, f3n, and no. 

d. Plot Eq. 4.29 for gko = 0.09 m.mho/cm2, gkoo = 7.06 m.mho/cm2, and 

Tn = 0.75 msec. 

~ 4.8 The diffusion equation can be written as 

ac a2c 
- =D--, at ax2 

where D is a diffusion coefficient and C is the concentration of a chemical com­
pound. For a particular initial condition, a solution of this equation for a tube of 
length L, 0 :::; x :::; L, is 

[ 2 (JT X) _,,2Dt ] 
C(x, t) = Co 1 - -; cos L e L2 . 

a. Show that C (x, t) above is a solution of the diffusion equation. 

b. What is the concentration at t = O? At t ---+ oo? 

c. Show that the flux across the boundary (equal to D ~; ) is zero at x = 0 
andx = L. 

d. At all points in the tube (except x = if) the evolution from the initial 
concentration to the asymptotic concentration as t ---+ 00 follows an 
exponential curve. Determine the time needed to go one-half way from 
the initial to the final concentration at each point (except x = if) for 
D = 10-5 cm2/sec for a tube with L = 10 cm. 

~ 4.9 The graph in Figure 4.29 gives experimental data concerning the growth 
of the yeast Schizosaccharomyces kephir. The data points have been fit to the logistic 

function 

a 
N(t) = 

1 + be-yt ' 

where a, b, and yare positive constants. 

a. Determine the values of kl and k2, in terms of a, b, and y, such that the 
above expression is a solution of the nonlinear differential equation 

dN 2 
- = kl N - k2N . 
dt 
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Figure4.29 Adapted from Gause (1932). (Company of Biologists, Limited) 

b. Define t! as the value of t for which 
2 

N(t) = N(O) + O.5(N(oo) - N(O». 

Analytically calculate the value of t! in terms of a, b, and y. 2 
c. Estimate numerical values for a, b, and y. 

~ 4.10 The following equation has been proposed to describe growth of a 
bacterial population in culture: 

dx 22 = Ktxe-a t , 
dt 

where x is the density of bacteria, K and a are positive constants chosen to agree 
with experimental data, and t is the time. The solution of this equation is 

[ K 22] x(t) = x(O) exp 2a2 (1 - e-a t) , 

where x(O) is the density at t = O. 

a. Show by direct substitution of the solution into the left- and right-hand 
sides of the differential equation that this is a solution of the original 
equation. 

b. Suppose that a graph is constructed in which In x(t) is plotted as a 
function of time, 0 ::: t. Sketch this graph. Be sure to show the values at 
t = 0, t = 00, and at the inflection point. 
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Figure 4.30 Adapted from Folkman and Hochberg (1973). Reproduced from 
The Journal of Experimental Medicine by copyright permission of The Rockefeller 
University Press. 

~ 4.11 Figure 4.30, from Folkman and Hochberg (1973), shows data on the 
growth of spherical tumor nodules grown in tissue culture. 

a. Try to find a set of parameters for Gompertz growth which can be used 
to fit the data. Plot the theoretical Gompertz curve in the same fashion 
as the experimental data. 

b. Carry out the same steps as in part a but with Verhulst growth. 

~ 4.12 A spherical tumor grows at a rate proportional to its volume. 

a. Write down and solve the differential equation for the tumor growth. 

b. Assume that the doubling time for the tumor volume is 138 days. Derive 

the equation that gives the radius as a function of time. 

c. For the parameters above, when the natural logarithm of the radius of 
the tumor is plotted against time (in days), the result is a straight line. 
What are the slope and y-intercept of this line? 

~ 4.13 The yeady total of new cases of AIDS reported per year from 1979 to 
1988 is shown in Figure 4.31. Assume that the total number of new cases of AIDS 
is growing exponentially. 

a. Using the data provided derive a theoretical expression for the total 
number of new AIDS cases that will be reported yeady starting from 
1989 onward. 
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Figure 4.31 Adapted from Mann et al. (1988). Copyright 1988 by Scientific 
American, Incorporated. All rights reserved. 

b. Estimate the year when the number of new AIDS cases will equal 
1,000,000. 

c. (Optional) Do library research to find out the actual increase in AIDS 
since 1989. Compare with the theoretical predictions based on exponen­
tial growth. Discuss any discrepancies between the actual data and the 
exponential growth model. Propose a more realistic theoretical model 
for the growth in the AIDS epidemic, if this is needed. 

,tfY 4.14 You can make yogurt by placing one tablespoon (~ ounce) of starter 
culture in 8 ounces of boiled skimmed milk and letting the culture stand for 12 

hours at 27° C. At the end of 12 hours the concentration of yogurt cells is the 
same as in the starter culture. There are 106 cells in the initial one tablespoon of 

starter culture. 

a. Assume there is exponential growth, ~; = kx. What value of k fits the 
data? 

b. For the value of k found in part a, how long does it take for the population 
to double? 
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Parts c and d deal with fitting the yogurt growth kinetics to the Verhulst and Gom­
pertz growth equations. To do this assume that the value of k in these equations 
is known, and that it is 20 percent larger than the value computed in part a. 

c. Assume there is Gompertzian growth, ~~ = kxe-at • What value of a 
best fits the data? How many cells per tablespoon would be present when 
growth ceases? 

d. Assume there is Verhulstian growth, ~~ = kx - fJx 2• What value of fJ 
best fits the data? For this value of fJ, after how many hours is the growth 
rate a maximum? 

e. Graph the three growth curves for the parameters found in this question. 
Extend the time axis sufficiently far so that the asymptotic behavior in 
time is shown. 

iff? 4.15 Consider the differential equation 

where 

dx 
= I(x), 

dt 

I(x) = -9x + 3x3 , -00 < x < 00. 

a. Sketch I (x). Be sure to show all maxima, minima, and inflection points. 

b. Find all the steady states in the differential equation, and algebraically 
determine if they are stable or unstable. Starting from an initial condition 
of x = 0.1, what happens as t ~ oo? 

iff? 4.16 For this exercise, only use geometric arguments. No algebra is 
required. The equation 

dx 

dt = x ::: 0, 

where A, (), and yare positive constants, is a model of a negative feedback system. 
How many steady states are there in this system, and what is the stability of these 
states? Starting from an initial condition of x = 100, what happens in the limit 
t ~ oo? 

iff? 4.17 Assume that the population density x of a species is determined by 
the equation 

dx 

dt = -x, 0:::: x. 
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a. Determine the fixed points for x ~ o. 
b. Determine the stability of each fixed point. (HINT: Algebraically compute 

the stability of the fixed points at x = 0 and x = 1. If there are additional 
fixed points, try to estimate their location and stability using geometric 
arguments.) 

c. Discuss the behavior in the limit t ~ 00 for x (0) = 0.001, x(O) = 0.8, 
and x(O) = 10.0. 

tf? 4.18 A theoretical ecologist is examining mathematical models for popu­
lation dynamics. She considers the equation 

dx 2xm 
- = f(x) = -- - x 
dt 1 + X4 ' 

x ~ 0, 

where x is the population density and m is a positive integer. Note that x = 0 
and x = 1 are fixed points of the differential equation. This problem deals with 
analyzing the differences in the qualitative dynamics in this problem when m = 1 
andm = 2. 

a. For m = 1, determine the number and stability of all fixed points. Sketch 
f(x). 

b. For m = 2, determine the number and stability of all fixed points. Sketch 
f(x). 

c. Describe the dynamics as t ~ 00 for initial conditions of very small 
positive densities for the two cases described above. 

d. Describe the dynamics as t ~ <Xl for initial conditions of very large 
positive densities for the two cases described above. 

tf? 4.19 Explain why the area under the spike, and not the spike's amplitude, 
describes the amount of the drug in a pill. (HINT: Seta = 0 in Eq. 4.16 and solve 
for x to find the amount by which a single pill increases x .) 

tf? 4.20 A patient in a hospital is being administered a drug in bolus intra­
venous doses every four hours. The size of each bolus is 100 mg. The drug has 
a half-life of four hours and decays exponentially. You can assume the system is 

linear. 

a. After the patient has been on this regimen for ten days, drug adminis­
tration is stopped. Give the equation for the decay of the drug following 
cessation of drug administration in terms of Do, where Do is the amount 
of drug in the body immediately before the administration of the last 

dose. 

b. Compute Do described in part a. Use any technique you wish. One 
technique (but not the simplest) uses the fact that for the geometric 
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series 

ho = a, hI = ar, h2 = ar2, ... ,hn = arn, 

00 a Lh i =-. 
i=O 1 - r 

,if? 4.21 The differential equation for a low-pass filter with input I(t) and 
output x(t) is 

dx 
dt = -WoX + I(t), 

where Wo is a positive constant. Assume the input is 1 (t) = A sin wt. 

a. Show that the output after the initial transient has died out is 

x(t) = B sin(wt - ¢). 

b. Determine approximate expressions for B in the limits (i) 0 < w « Wo; 
and (ii) Wo « w. 

c. The graph shown in Figure 4.32 of In B as a function of In w is called 

the Bode plot. Determine CI, C2, and C3 as a function of A and WOo 

,if? 4.22 This problem concerns the economics of production and trade. 
Assume that there are two producers of widgets, A and B. Each producer has 

a certain fraction of the total market for widgets. The cost of producing widgets 
depends on how many are produced, so the cost for each company depends on 
the fraction of the market that company captures. 

Let the fractions of the market captured by company A be V. Company B 
fraction is therefore 1 - V. Denote the average cost per widget for company A as 
A ( v) and likewise the cost for company B as B (1 - v). 

It has been traditional to assume that there are increasing marginal costs 

of production. This means that it costs more to produce an additional single 
widget if many widgets are already being produced than if few widgets are being 

Figure 4.32 



produced. An example of such an average cost function is 

eV - 1 
At(u) = l.3--. 

u 
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In some industries, however, the average cost decreases as production increases. 
For example, in the software industry, the main expense is in developing the 
software, and it costs virtually nothing to produce an extra copy of the software. 
An example of a cost function where this is the case is 

Figure 4.33 shows graphs of both increasing and decreasing marginal costs. As 
a model of the free market, assume that ~~ is proportional to the difference in 

2 Increasing 
marginal 

Total 1.5 costs 
production 
costs 

0.5 

0.2 0.4 0.6 0.8 

2 

Total 1.5 
production Decreasing 
costs marginal 

costs 

0.5 

0.2 0.4 0.6 0.8 1 
At(v) 

Figure 4.33 The total production costs v A (v) for the average production function 
with increasing marginal costs, At(v), and the function with decreasing marginal 
costs, A~(v). 
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production cost per widget between company B and company A. That is, 

dv di = B(l - v) - A(v), 

so that if A(v) is less than B(l - v), company's A market share will increase. 
Obviously if company A is more efficient than company B, we expect company A 
to capture a larger share of the market. For this example, though, we will assume 
that both companies are identical in terms of their production costs, so that 
B(v) = A(v). 

a. For the case of increasing marginal costs, the differential equation 
describing company lfs market share is 

dv 
- = At(l - v) - At(v). 
dt 

Show that the stable fixed point for this system is v = 0.5, that is, both 
companies split the market evenly. 

b. For the case of decreasing marginal costs, write the differential equation 
for v in terms of A,j,. Show that there is a fixed point at v = 0.5, but that 
it is unstable. Describe where the stable fixed points are. (Remember, 
since v is a fraction of the market, it is limited to the range 0 to 1.) 

c. Discuss how initial conditions are related to the asymptotic value of v 
in the case of increasing marginal costs, and in the case of decreasing 
marginal costs. 

~ 4.23 Use geometric techniques to show that linear differential equations 
can have only one fixed point. 

Explain graphically the difference between a linear differential equation 
(which gives exponential growth or decay) and an equation that produces linear 
growth or decay. 

~ 4.24 The spruce budworm is a caterpillar that infests the spruce and fir 
forests of eastern Canada and the northeastern US. The budworm will stay at 
a low population level for many years and then will dramatically increase in 
population when the trees in the forest have reached a certain maturity. This 
explosion of the caterpillar population can be devastating to the forest. 

A simple differential equation describing the growth of the budworm is 
given by 

dx x 
dt =R(I-x/Q)- I-x2 (4.30) 
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where x (t) is the number of bud worms at anytime, and Q is a parameter that stays 
fixed. R is a parameter that changes in time, and represents the food resources 
available to the budworm. As the forest grows and more food becomes available, 
R increases. 

One way to think of Eq. 4.30 is as a balance between growth and death. We 
re-write Eq. 4.30 as 

The term 

dx - = f(x) - g(x). 
dt 

f(x) = R(l - x/Q) 

(4.31) 

is positive for small x, and reflects the birth of new budworms. As the forest grows, 

R increases and f (x) changes accordingly. The term 

x 
g(x) = -­

I -x2 

reflects death, and does not change with R. 
The figure shows f(x) and g(x) for R = 0.3 and Q = 8. 

a. Using Figure 4.34, find any steady states of x and say whether they are 
stable or unstable. (You can give an approximate numerical value for x 

at the steady state.) 

b. Find the x- and y-intercepts of f(x) in terms of Rand Q. In the parts c 
and d, keep in mind that f (x) is a line drawn between these two points. 

c. Graphically, find a value of R at which there are 3 steady states. Give 
approximate numerical values for the positions of these steady states, 
and say which ones are stable and which ones are unstable. 

dxldt 
0.8 

0.6 

4 6 8 
x Figure 4.34 
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d. Graphically, find the smallest value for R at which there is only one 
steady state with value of x > 3. Is this steady state stable or not? 

e. Imagine that the forest is immature, so that R = 0.3. The forest grows 
with time, so that R increases steadily. After 10 years, R reaches the value 
you found in part d. 

Make a rough sketch of the budworm population versus time 
in years. (You can assume that the budworm reproduces with a short 
generation time, so that the population never takes more than a few 
weeks to reach its steady state value for and R.) 

Continue your graph, using the fact that if the budworm reaches 
x = 3, then the forest is wiped out, and R returns to 0.3 within a few 
months. Mark when the population explosion begins, and explain why 
it occurs in terms of the stability of steady states . 

.?7 4.25 Money in your bank account makes 5% interest per year, compounded 
daily. Write the finite-difference equation for this situation. What exponential 
equation gives the same growth rate? 

.?7 4.26 Suppose that a herd of ten cows is introduced to a field with almost 
no vegetation, V = 0.1. Using the graphs in Figure 4.11, show that the vegetation 
grows faster than it is eaten, so that V increases. Seeing the growth of vegetation, 
a land manager decides to add ten more cows to the field. What is the smallest 
value of V at which this can be done in a way that will keep all the cows well fed? 
What happens if the new cows are introduced too early? 

In the real world, it is difficult to make precise measurements of V. Growth 
and consumption curves are only approximations to real growth and consump­
tion, which are affected by factors outside of the equations, such as the weather. 
Comment on how attempts to maximize the production of beef can lead to 
disaster . 

.?7 4.27 What happens if D. is too large in the Euler method? Use the original 
example of !~ = 1.2(x - x 2 ) with D. = 1 and D. = 0.5 . 

.?7 4.28 Find the doubling time tOT in terms of the constant of proportionality 
a in Eq. 4.5. In exponential growth, the doubling time is independent of the initial 
condition x(O). Is this true for linear growth? 

.?7 4.29 This problem deals with an alternative technique to solve Eq. 4.16 
using an integrating factor. Let us rewrite Eq. 4.16 as 

dx 
- - ax = J(s). 
ds 

HINT: to carry out the two parts of this problem multiply this equation by the 
integrating factor e-as • 



COMPUTER PROJECTS 205 

a. Integrate this equation for / (s) = k between the limits s = 0 to s = t. 
This provides an alternative method to solve the equation in Example 4.3. 

b. Integrate this equation for any /(s). This provides an alternative 
derivation ofEq. 4.23 . 

.a. COMPUTER PROJECTS 

Project 1 A basic technique in the study of dynamical systems is to solve 
differential equations using numerical methods. Many different techniques are 
possible. The simplest is called the Euler method. 

As we discussed in Section 4.6, the nonlinear differential equation Eq. 4.14, 

dx 
dt = !(x) 

can be approximated by the finite-difference equation Eq. 4.15 

Xt+l = !(Xt)d + Xt. 

The Euler method for the numerical integration of differential equations exploits 
this relationship to numerically integrate nonlinear ordinary equations. The ac­
curacy of the approximation depends on d. As d decreases, the accuracy of the 
integration improves. 

This project deals with numerical integration of Eq. 4.7. The analytical 
solution of this equation is given by Eq. 4.8. Use a computer to plot out the values 
of x(t) in Eq. 4.8 for the case ex = 1, k = 1. Now integrate Eq. 4.7 using the 
Euler method. To do this you simply apply Eq. 4.15 with the appropriate form 
for !(x). It is necessary to specify d. Carry out the integration using different 
values for d. Try to assess the accuracy of the approximation as a function of d. 

How small does d have to be in order to obtain agreement between the analytical 

solution and the numerical solution of 1 %? At what value of d does the dynamics 
show oscillations as t -+ 00 rather than an approach to a steady state? The fact 
that this approximate method gives a qualitatively wrong answer if d is too large, 
should impress on you the necessity for testing for possible artifacts introduced by 
numerical integration. Testing routines for numerical integration by exercising 
the numerical method against an analytic solution, as you have done in this 

problem, is a practice that will help eliminate numerical errors when developing 
programs to carry out numerical integration. 
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Project 2 Write a computer program to use the Euler method to integrate 
one-variable delay-differential equations such as 

dx 
dt = P(x(t - 'l'» - ax(t). 

You will have to keep track of past values of x-this is easier if you select !J.. to 
divide 'l' evenly, for instance !J.. = 'l' / I 00. In specifying the initial condition, you 
will need to give not just x(O), but also the previous values of x going as far back 
asx(-'l'). 

A very simple delay-differental equation is 

where the function h 0 is 

dx 
- = h(x(t - 'l'», 
dt 

ifx(t - 'l') > 0; 
{
-I 

h(x(t - 'l'» = I 
otherwise. 

Integrate this equation numerically, to see if it produces regular or irregular 
oscillations, and how these oscillations depend on 'l' . 

Another simple delay-differential equation is 

dx - = -ax(t - 'l') 
dt 

which will produce oscillations that either increase or decrease in amplitude 
depending on the value of a relative to 'l'. Experiment with different values of a, 
and show that when a is such that the oscillations neither increase nor decrease 
in amplitude, the period of the oscillation is 4'l' . 

Project 3 This project deals with the numerical integration of the delay 
differential equation Eq. 4.26 proposed as a theoretical model for the production 
of red blood cells. 

This equation can also be integrated using the Euler method. However, in 
specifying the initial condition it is necessary to specify the in the value of x (t) over 

an initial time interval, rather than just at a single time. The reason for this is that 
the derivative at the current time t, depends on the value of x at time (t - 'l') where 

'l' is the time delay in the equation. This type of delay differential equation is not 
very well understood mathematically and there are many questions of research 
calibre that can easily be addressed. 
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One of the issues involves trying to analyze the bifurcations of this equation. 

Consider the following equation 

dx 

dt 

2x(t - T) 
-x. 

1 + xCt - T)n 

Assume that T = 2 and study the effect of varying n. Use the Euler method to 

integrate the equations. In using the Euler method, you have to pick a value for 
T and the time delay, L\ such that T is a multiple of L\. 

One research -level question involves studying the bifurcations in this prob­

lem and comparing them with bifurcations in one-dimensional finite-difference 

equations with a single hump. (See the Computer exercises following Chapter 1.) 

Mackey and Glass observed (1977), that the delay equation for blood cell control 

shows period-doubling bifurcations as well as chaotic dynamics, but it is not yet 

known if the same sequence of periodic orbits is observed in the delay differen­

tial equations and the one-dimensional finite-difference equations. One of the 
problems in studying the bifurcation sequence here is to compute the period of 

periodic orbits numerically. You will have to figure out a way to do this. Here is 

a hint for how to get started. Embed the trajectory in a two-dimensional plane 
in which the value xCt - T) is plotted as a function of x(t). Such a time-delay 

embedding (see Section 6.6) can be used to help identify periodic and chaotic 

orbits; see Glass and Mackey (1979). 
Another class of projects involve determining if there are different asymp­

totic behaviors starting from a different initial condition. Start with different 

initial conditions. For example, you can set the value of x between t = 0 and 
t = 2 to be a modulated sine wave that is offset so that x is positive over this 
interval. Does the asymptotic behavior depend on the initial condition? 



CHAPTER 5 



Two-
Dimensional 
Differential 
Equations 

In the previous chapter we studied differential equations in which quantities 
increased or decreased in a monotonic fashion, reaching a fixed point as time 
increased. We know that in the real world quantities can also oscillate up and down 
in a regular or irregular fashion. The one-dimensional differential equations in 
the previous chapter, which have a single variable and a first derivative, cannot 
produce oscillation. In this chapter we consider differential equations with either 
a pair of variables and their first derivatives, or a single variable and its first and 
second derivatives. These two classes of problems are equivalent and are called 
second-order or two-dimensional ordinary differential equations. 

5.1 THE HARMONIC OSCILLATOR 

This section introduces several important concepts by considering a fa­
miliar problem from elementary physics courses-a mass on a spring (see 
Figure 5.1). Although masses and springs are of interest mainly to mechanical 
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x=o 

FigureS.l 
The mass on a spring: the 
archetypical harmonic 
oscillator. 

engineers, the mathematics describing them are fundamental to understanding 
the dynamics of many other systems. Because the problem is of general interest, 
it has a general name: the harmonic oscillator. 

Consider a mass, m, that is attached to a spring resting on a very smooth 
table so that there is no friction between the mass and the table. If the spring is 
neither stretched nor compressed, the mass will rest at a steady-state position. 
Call this position x = o. If the spring is compressed, that is, if x < 0, there will 
be a force tending to increase x, if the spring is stretched, x > 0, there will be a 
force tending to decrease x. According to Hooke's law, familiar from elementary 
physics, the force, F, is proportional to the position 

F = -kx, 

where the constant k is called the spring constant. Note that Hooke's law says 
that there is a linear relationship between force and position. Newton's second 
law of motion says that the acceleration a of a particle of mass m is related to the 
force on the particle by the famous expression 

F = rna. 

In differential calculus, acceleration is simply the second derivative of the position 
with respect to time. This is because velocity is the rate of change of x with respect 

to time, v = ~~, and acceleration is the rate of change of velocity with respect to 

time, a = ~~ = ~:;. Using this fact along with Newton's second law of motion 
and Hooke's law, we find 

(5.1) 

This is a linear, second-order, ordinary differential equation. In general, we want 

to solve this equation given some initial values of the position and the velocity. 
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5.2 SOLUTIONS, TRAJECTORIES, AND FLOWS 

Let us assume that at t = 0 the mass in Figure 5.1 is displaced to a position 
x(O) and released from rest so that the initial velocity is v(O) = O. We propose 
the following function as a solution to Eq. 5.1: 

x(t) = x(O)coswt where w = if. (5.2) 

Demonstrating that this is indeed a solution is straightforward: If we substitute 
this proposed solution into Eq. 5.1 and carry out the second derivative, we find 
that both sides of the equation are the same. A graph of this solution is shown in 
Figure 5.2. The solution oscillates without approaching a steady state. The time 
it takes to complete one cycle of the oscillation is ~ . 

What is the initial condition for this solution? By analogy to Chapter 4, we 
might say that it is x(O). But this is only half the story. If we placed the mass at 
position x(O), it might be moving either to the right, to the left, or not at all; to 

provide a complete description of the initial condition, we also need to specify 
v(O). In the solution given in Eq. 5.2, we happened to set v(O) = 0, but we might 
ask what are the solutions for other values of v(O). 

One way to gain insight into the dynamics of the harmonic oscillator is to 
consider all the possible initial conditions. Each possible initial condition can be 
represented as a point on a plane-the (x, v)-plane. The state of the harmonic 
oscillator at time t is the pair of values (x(t), v(t» . We can plot out the state as 
time proceeds simply by plotting (x(t), v(t» in the (x, v)-plane. The path traced 
out is called the trajectory. The (x, v)-plane is called the phase plane. 

Note that given a solution x(t), we can easily find the velocity v(t) by 
differentiation: 

v(t) = -wx(O)sinwt. (5.3) 

From Equations 5.2 and 5.3, and using the trigonometric identity sin2 wt + 

2lf/w 

Figure 5.2 
A solution x(t) to Eq. 5.1. 
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cos2 wt = 1, we find 

(5.4) 

This is the equation for an ellipse in the (x, v) -plane (see Section A.8). An example 
of the trajectory for two different initial conditions is shown in Figure 5.3. Both 
initial conditions have v(O) = 0, but one has x(O) = 0.5 while the other has 
x(O) = 1.0. You can see that the two trajectories plotted in Figure 5.3 are both 
ellipses with the same shape but different sizes; the size is governed by the initial 
conditions x(O) and v(O). 

Recall from physics that the potential energy of a mass on a spring is ! kx2 

and the kinetic energy is ! m v2 • It follows from Equation 5.4 and w = II that 

The sum of the potential and kinetic energies is the total energy, and we can 
see from the above equation that "energy is conserved;' that is, the total energy 
does not change. In this case the conservation of energy holds because there is 
no friction and because nothing is putting energy into the system. The energy 
always stays at the same value it had originally. In many other systems, energy is 
not conserved. Later, we will study some such systems. 

x(O) = 0.5 
vct) 

x(O) = 1.0 

-1_L..-1-------'0~---...J 

x(t) 

Figure 5.3 The trajectory of two solutions to Eq. 5.1, plotted in the phase plane. 
One solution has initial condition x(O) = 0.5, v(O) = 0; the other has initial 
condition x(O) = 1.0, v(O) = o. 



5 . 3 Two - DIM ENS ION A L 0 D E 213 

One of the consequences of the conservation of energy in the harmonic 
oscillator concerns the stability of the trajectories. We have already seen that all 
the trajectories are closed ellipses. These closed ellipses correspond to periodic 
cycles. Are these cycles stable? Just as in finite-difference equations, a stable cycle 
is a cycle that is reestablished following a small displacement from the cycle. In the 
current case, a small displacement leads to another closed ellipsoidal trajectory­
the displaced trajectory will not find its way back to the original trajectory. Thus, 
the cycles in the harmonic oscillator are not stable. 

The initial condition is a special case of the state: It is the state at time t = O. 
So, given the trajectory from an initial condition, we also have the trajectory 
through many other possible initial conditions-any initial condition that lies on 

a given trajectory will follow that same trajectory. 
A two-dimensional differential equation can be represented as a pattern in 

the phase plane. The equation can be thought of as a rule that tells us how any 
given state changes in time. In other words, the equation tells us how a trajectory 
passes through any point in the phase plane. For any given initial condition, there 
is only one trajectory; however, the differential equation tells us about all possible 
trajectories. 

We could plot out this information by showing every possible trajectory. 
This would not be very practical, since the entire phase plane would be covered 
with ink. Instead, we will draw the trajectory through only a few points, indicating 
the direction of the trajectory by making the line thicker as time progresses. The 
entire pattern of trajectories in the phase plane is called the flow of the differential 
equation (analogous to the flow of water). A single trajectory is analogous to the 

path that would be followed by a (massless) particle if it had been placed in the 
water; the initial condition is analogous to the place the particle is first placed. 
Figure 5.4 shows the flow for the harmonic oscillator. 

5.3 THE TWO-DIMENSIONAL LINEAR ORDINARY 
DIFFERENTIAL EQUATION 

In the analysis of one-dimensional nonlinear finite-difference equations 
(Chapter 1) and differential equations (Chapter 4), the basis for the local stability 
analysis was a firm understanding of the linear system. Similarly, the analysis 
of two-dimensional nonlinear ordinary equations follows in a straightforward 

fashion once we understand the linear problem. The linear problem is also of 
interest in its own right, since many theoretical models in kinetics, mechanics, and 
electrical circuits are formulated as two-dimensional linear ordinary equations. 
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Figure 5.4 The flow of the harmonic oscillator in Eq. 5.1. 

The two-dimensional linear ordinary differential equation is written as 

d 2x dx 
a- +b- +cx =0 

dt2 dt ' 
(5.5) 

where a, b, and c are constants that we will assume are real numbers. In Chap­
ter 4 we saw that the solution to the one-dimensional linear ordinary differential 
equation is an exponential. It is an amazing fact that an exponential is also of­
ten the solution to higher-dimensional ordinary differential equations-but of 
course there is a complex twist to the story. 

In order to solve Eq. (5.5) we will substitute in a trial solution: 

(5.6) 

Here C and A represent constants-we do not yet know their value, but we are 
hoping to be able to find them from the differential equation. We will be able to 
do so only ifEq. 5.6 is an appropriate form for a solution to Eq. 5.5. Substituting 
the trial solution into Eq. 5.5 and carrying out the derivatives, we find 
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Dividing each term of this equation by C eAt, we obtain an equation that is called 
the characteristic equation, or the eigenvalue equation: 

a"A? + bA + C = 0, (5.7) 

If we can find any values for A that solve this equation, then we know that the trial 
solution is valid for those values of A. Of course, Eq. 5.7 is a quadratic equation 
in A. The solution for A as a function of the parameters a, b, and c can be found 
from the quadratic formula: 

-b + Jb2 - 4ac 
Al = , 

2a 
(5.8) 

We call A I and A2 the characteristic values, or eigenvalues, of Eq. 5.5. 
Since there are two valid values of A, we have found two solutions to the 

differential equation. Actually, there is an infinity of possible solutions, which 
have the general form 

(5.9) 

where CI and C2 are constants. Note that the characteristic equation did not put 
any constraint on C in the trial solution, so any constant value of C gives a valid 
solution. The actual values of CI and C2 for any given trajectory are set by the 
initial conditions. 

o ExAMPLE 5.1 

Verify that Eq. 5.9 is a solution to Eq. 5.5. 

Solution: Taking the first and second derivative of x(t) from Eq. 5.9 and 
substituting into Eq. 5.5, we find 

Re-arranging terms gives 

Eq. 5.9 is a solution to Eq. 5.5 only if the above equation is true. But, since 
the values of Al and A2 are chosen to satisfy the characteristic equation (Eq. 5.7), 
we know that the terms in the parentheses are zero in the above equation, and 
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so the left-hand side does indeed equal zero. This is true for any values of C I 

and C2 • o 

Here's the twist in the story: If b2 < 4ac, it follows from Eq. 5.8 that Al 
and A2 are complex numbers. They can be written as 

Al = a + f3i, A2 = a - f3i, 

where 

b 
a=--, 

2a 

J4ac - b2 

f3= 
2a 

and of course the infamous i = R. 
You may well be wondering, how can a differential equation that is supposed 

to describe the real world have a solution that involves imaginary numbers? The 
answer, in brief, is that C I and C2 are also complex numbers, and that for any real 
initial conditions, C I and C2 will cancel out the imaginary part of the solution, 
leaving only the real part. 

Many people would feel more comfortable if the solution to Eq. 5.5 could 
be presented without any mention of imaginary numbers. This real solution is 
(at least, it's real as long as b2 < 4ac) 

(5.10) 

where C3 and C4 are now bona fide real constants, which can be set from initial 
conditions. However, if b2 > 4ac, then f3 in Eq. 5.10 is itself complex, and you 
have to start worrying about what the sine and cosine of a complex number are. 
In this case, go back to Eq. 5.9, which will now look like a perfectly ordinary 
solution in terms of exponential functions of real numbers. 

For those readers who are interested in understanding the relationship 
between Eqs. 5.9 and 5.10, we offer the following information. Ifwehave a complex 
number y + 8i, then 

ey+ll; = eY (cos 8 + i sin 8) . 

(See Problem 5.3 for a derivation of this relationship.) Similarly, 

1 ( . . ) cos wt = - e,wt + e- lwr 
2 
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and 

These identities lead to one of the most magical relationships in all of mathematics, 
which involves the seemingly unrelated irrational numbers e and j{ , along with 

i =.J=T: 

ei1f + 1 = o. 

o ExAMPLE 5.2 

In the real world, a harmonic oscillator such as a spring does not swing 
forever; it eventually slows down due to friction and air resistance. This friction 
is called "damping," and the equation for a damped spring can be written as 

where IL is a number that describes how much damping there is. If IL were zero 
(i.e., no damping), then the solution to the equation would be a sinusoid with 
a period of oscillation of 2; . Determine the solution of this equation in the 
presence of damping, starting from an initial condition of x (0) = 5 deg and 
~ = 0 deglsec. 

Solution: The characteristic equation for this system is 

A 2 + ILA + {J} = o. 

The eigenvalues of this are 

If 1L2 > 4W2, both eigenvalues are negative. If 1L2 < 4w2, both eigenvalues are 
complex conjugates. These two cases are treated differently, as desribed below. 

• When IL 2 > 4w2: Call a = J IL 2 - 4w2• The solution can be written as 
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From the initial conditions (x(O) = 5 and ~~ = 0) we find that 

C1 + C2 = O. ( -f.L + a ) ( -f.L - a ) 
2 2 

Since there are two equations in the two unknowns, we can solve for C 1 

and C2: 

C1 - - --_5(a+f.L) 
2 a 

5 (a-af.L). and C2 = -
2 

Therefore, the solution of the equation is 

x(t) = - -- e 2 + - -- e 2 • 
5 (a + f.L) ::.I!::±!!. t 5 (a - f.L) -#-. t 

2 a 2 a 

Since f.L > a, both eigenvalues are negative and there is a monotonic 
approach to x = o. This is illustrated in Figure 5.5. 

• When f.L2 < 4w2: Call a = J4W2 - f.L2. Therefore, from Eq. 5.10 we 
know that the solution is 

Now applying the initial conditions at t = 0, we find 

x 

Figure 5.5 
The solution of the 
differential equation for the 
damped pendulum with 
/-L = 2,w = 0.5. 
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Figure 5.6 
The solution to the 
differential equation for the 
damped pendulum with 
IL = 0.5, w = 1. 

Consequently, we have 

a 

Therefore, the solution x(t) is 

IE. at 5f.L IE.. at 
x(t) = 5e- 2 cos - + - e- 2 sm -. 

2 a 2 

This is an oscillatory decay to x = 0, as illustrated in Figure 5.6. 
D 

5.4 COUPLED FIRST-ORDER LINEAR EQUATIONS 

In the case of the mass on a spring, there was one fundamental variable, po­
sition, from which the velocity and acceleration could be derived. In other systems 
there may be more than one fundamental variable, and the rate of change of each 
of the variables may be a function of the current values all the variables. Here, we 
will consider the case where there are two such variables. The two variables might 
represent, for example, two interacting animal species in an ecological system, 
two different conductances of ion channels in a cell membrane, two different 

chemicals in a chemical reaction, or the concentration of a drug in two different 
organs. 

Such systems can be represented by a pair of coupled ordinary differential 
equations. In a simple but important case, the derivatives are linear functions of 
the variables so that 

dx - = Ax + By, 
dt 

dy 
dt = ex + Dy, (5.11) 
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where A, B, C, and D are constants. Although Eqs. 5.5 and 5.11 and at first 
appear to be different, they are completely equivalent. Therefore, once you know 
how to solve one of them, you can solve the other. 

In order to show the equivalence of both formulations, we first compute 
the second derivative ~:; in Eq. 5.11, to obtain 

d2x = A dx + B dy . 
dt2 dt dt 

Now substituting the value for 2' from Eq. 5.11 into the above expression, we 
find 

d2x dx 
dt2 = A dt + BCx + BDy. 

Finally, since from Eq. 5.11 we know that By = ~; - Ax, we can substitute this 
value to obtain finally the expression 

d2x dx 
- - (A + D) - + (AD - BC)x = O. 
dt2 dt 

Thus, Eq. 5.11 is equivalent to Eq. 5.5 as long as 

b c 
-(A + D) = - and AD - BC = 

a a 

For any a, b, and c, values of A, B, C, and D that satisfy this relationship can 
always be found, and vice versa. 

We can find the solution to Eq. 5.11 in terms of A, B, C, and D by solving 
the characteristic equation. In the current case, following the same procedure as 
in the preceding section, the characteristic equation is 

A2 - (A + D)A + (AD - BC) = 0, (5.12) 

so that the eigenvalues are computed from the quadratic equation as 

A + D J(A - D)2 + 4BC 
Al = -2- + 2 

J(A - D)2 + 4BC A+D 
A2 = 

2 2 
(5.13) 

Thus, the solution for x(t) is given by 
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which is real if Al and AZ are real numbers. If (A - D)z + 4BC < 0, then Al and 
AZ are complex numbers. Let 

ex= 
A+D 

2 

d' J(A - D)Z +4BC 
an 1{3 = 2 . 

Then, Al = ex + i{3 and Az = ex - i{3 and the solution is 

x(t) = eat (C3 cos (3t + C4 sin (3t). 

Cl and Cz, or C3 and C4 can be found from the initial conditionx(O) and '!': (0). 
If Al and AZ are real, then 

x(O) = C l + Cz 

dx 
- (0) = AlCl + AzCz, 
dt 

which can be solved for C 1 and Cz. If Al and AZ are complex, then 

x(O) = C3 

dx 
- (0) = {3C4 • 
dt 

DYNAMICS IN ACTION 

14 METASTASIS OF MALIGNANT TUMORS 

Metastasis of cancer is a process whereby cancer cells spread in the body. In some 

cases, the cancer cells spread through the bloodstream and are arrested in the 

capillary bed of an organ. Most of the arrested cells either die or are dislodged 

from the capillary bed, but some are able to traverse the capillary wall and initiate 

metastatic foci in the tissue of the organ. Liotta and Delisi (1977) studied metastasis 

of radioactively labeled tumor cells to the lungs of laboratory mice. The cells were 

injected into the tail veins of mice and transported to the lung by the bloodstream. 

The radioactive labeling allowed the number of tumor cells in the mice's lungs to 

be measured. 
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N~ 

Tumor cells 
arrested in 
vessels of 

target organ 

Xl 

~l 
Death or 

dislodgement 

Tumor cells 
that have 

invaded target 
organ tissue 

Death 

Compartmental model for metastatic spread of cancer cells. Xl is the number 
of cancer cells arrested in the vessels of the target organ and X2 is the number 
of tumor cells that have Invade the target organ tissue. The cells pass between 
compartments following linear rate laws as described In the text. Adapted from 
Liotta and Delisi (1977). 

The figure on the facing page shows the number oftumor cells plotted on a semilog­
arithmic scale. If the data were described by an exponential decay, they would fall 
on a straight line, but this is not the case. Liotta and Delisi proposed a more com­
plicated theoretical model accounting for the idea that tumor cells are first arrested 
in the capillary bed of the lung ("compartment 1"), and then invade the lung tissue 
itself ("compartment 2"). 

By measuring the various rates from experimental data, it is possible to assess how 
effective treatments are in reducing metastasis. Based on their knowledge of the biol­
ogy of metastasis, Liotta and Delisi propose the following mathematical description 
of the kinetics of radioactively labeled cells: 

The number of arrested cells is designated Xl and the number that successfully 
invade the target tissue is designated )(2. Cells pass from compartment 1 to com part -
ment 2 at a rate fJ2Xl . Cells are lost from compartment 1 by death or dislodgement at 

a rate /31 Xl, and from compartment 2 at a rate /33)(2. These relationships are schemat­
ica��y represented in the upper figure. The initial conditions are Xl(O) = Nand 
)(2(0) = o. N is the number of cells that are initially arrested in the target organ. 
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..!!l 1.0~ 
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cg> 
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Time after I.V. injection (hrs) 

The proportion of labeled cells remaining in the lungs following intravenous 
injection in the tail veins of mice. The dots show the experimental data, and the 
line is a fitted solution to the model. Note the semilogarithmic axes. Adapted 
from Uotta and Delisi (1977) based on Proctor et al. (1976). 

Experimentally, the total number oftumor cells in the lung, x, (t) + X2(t), is measured. 
The model can be used to calculate x, (t) + X2( t), and the experi mental measurement 
of this number can then be used to estimate the rates in the model. 

Since the variable x, follows the kinetics of exponential decay, we can use the 
methods in Chapter 3 to find 

To find the solution for X2(t), we notice that the pair of differential equations looks 
just like Eq. 5.11 with X2 = x and x, = y, and 

A = -Ih B = -132, ( = 0, and D = -(f3, + 132)· 

We can sustitute these values for A, B, (, and 0 into Eq. 5.13 to find 

A = _ f3, + f32 + f33 ± J(f3, + 132 - f33)2 
2 2 

so that we find the two eigenvalues 
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Therefore, we obtain 

where C, and C2 are constants that stili need to be set from the initial conditions. 

At t = 0, from the initial conditions stated in the problem we know that X2(0) = 0 

and ~ (0) = fJ2N. Equating the expression for X2(t) equal to 0, we find 

C, + C2 = O. 

Taking the derivative of the expression for X2(t) and equating it to fJ2N, we find 

Thus, from the two initial conditions, we have been able to derive two equations 

that can be solved simultaneously to obtain values for the two unknowns, C, and 
C2 . Carrying out the algebra, we find 

C, = -</IN, 

where 

Therefore, 

Consequently, the total amount of radioactive label in the lung as a function of time 

is 

In the graph on page 227, the solid curve shows the fit to the data with fJ, = 0.32 

hr-', fJ2 = 0.072 hI', and fJ3 = 0.02 hI'. Therefore, for t sufficiently large that 

(fJ, + fJ2)t » 1, we find that the celis have disappeared from compartment 1, 

and the long time behavior is dominated by the destruction of celis remaining in 

compartment 2 at a rate fJ3. 
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DETERMINANTS AND EIGENVALUES* 

The characteristic equation for a pair of coupled first-order linear differ­
ential equations (Eq. 5.11) can also be expressed in terms of determinants. The 
basic idea is simple, but it requires some linear algebra. If you haven't studied 

linear algebra, keep in mind that you already know the solution to Eq. 5.11 as 

given by Eq. 5.9 or, equivalently, Eq. 5.10. 
Equation (5.11) can be written as a matrix equation: 

(5.14) 

Suppose we could define two variables, ~ and T/ such that for some constants a, 
fJ, y, and a, 

and such that 

x = a~ + fJT/, 

y = y~ + aT/, (5.15) 

(5.16) 

This equation is much easier to solve, because it is two uncoupled equations: 

dT/ 
dt = J... 2T/. 

From the previous chapter, we know that these two equations have the solution 
~(t) = ~(O)eAlt and T/(t) = T/(0)eA2t . Now it would be easy to findx(t) andy(t) 

simply by applying Eq. 5.15. 

The problem of finding ~ and T/ that satisfy Eq. 5.15 and Eq. 5.16 is well 

known in linear algebra as the eigenvalue problem. The solution is routine once 

one knows the technique. It involves solving the equation 

A -J... 
det 

C 

B 

D -J... 
=0, (5.17) 

*This section employs linear algebra. It gives an alternative and more elegant method 
to show that the eigenvalues of Eq. 5.11 are those given in Eq. 5.13. Using this method 
facilitates computations, but it is not essential. 
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where detl . I denotes the determinant of the matrix. The determinant of a matrix 

with two rows and two columns is defined as 

Applying the definition ofthe determinant to Eq. 5.17, we find that it is exactly 

the same as Eq. 5.12. 

5.5 THE PHASE PLANE 

Two-dimensional nonlinear ordinary differential equations are often 

written in the form 

dx 
dt = f(x, y), 

dy 
dt = g(x, y), (5.18) 

where f(x, y) and g(x, y) are nonlinear functions of x and y. Just as we saw in 
Chapter 1, the introduction of nonlinear functions can make it difficult, if not 
impossible, to find an analytic form for the solution. 

A qualitative understanding of two-dimensional nonlinear ordinary differ­
ential equations can often be gained from studying the phase plane of the system. 
This can provide information about multiple stable and unstable fixed points that 
is not given by numerical integration. In this section we will describe geometric 
methods of studying the phase plane. In the following section, we will return to 

the algebraic method for the analysis of the stability of fixed points. Later, we 

will describe a numerical method for finding approximate solutions to nonlinear 

ordinary differential equations. 

As an example of the use of geometric phase-plane techniques, consider 

the interaction of a predator and a prey species. Let x be the population of a prey 

species and y be the population of a predator species. We assume that if there 

were no predator, the prey would increase exponentially, and that if there were no 

prey, the predator would decrease exponentially. By eating the prey, the predator 
increases its own population and, obviously, decreases the population of the prey. 

The rate at which predator and prey meet (and therefore the rate at which the 

prey disappears and the predator thrives) is assumed to be proportional to the 

product of the populations of the predator and the prey. The justification for this 

is that if the population of either predator or prey is zero, the meeting rate is zero. 
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The equations are written as 

dx = ax - {3xy, 
dt 

dy 
= yxy - oy, 

dt 
(5.19) 

where x, y ::: 0 and a, {3, y, and 0 are positive constants. These are the Lotka­
Volterra equations. The equations were proposed independently by Volterra, 
who was a mathematician interested in ecology, and Lotka, a chemist interested 
in oscillatory chemical reactions. 

The first step in examining the geometry of the dynamics involves looking 
at the isoclines of the flow. The x-isocline is the locus of points in (x, y)-plane 
along which tt;; = O. The y-isocline is, similarly, the locus of points along which 

2' = O. Fixed points are values at which both ~~ = 0 and ~ = O. Fixed points 
occur at the points of intersection of the x- and y-isoclines. 

Let us now consider the Lotka-Volterra equation as an example of 
geometrical analysis of the phase plane. Figure 5.7 shows the flow, as well as the 
x- and y-isoclines. The x-isocline is defined by the expression 

I(x, y) = ax - {3xy = o. 

This will be satisfied if 

x = 0 or a - {3y = 0, 

which describes two perpendicular lines in Figure 5.7. Similarly, the y-isocline is 
found from 

g(x, y) = yxy - oy = o. 

This expression is satisfied if 

y = 0 or yx - 0 = 0, 

again, two perpendicular lines. 
There are two points of intersections of the x- and y-isoclines, and hence 

two fixed points. The fixed point at x = y = 0 has an obvious biological 
interpretation: There are no predators and no prey, and therefore nothing would 
ever change in time. The second fixed point, y = ~,x = ~,is a point where 
the populations of predator and prey are exactly balanced. Away from the x - and 

y-isoclines there will be changes in the population levels of x and y. 
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x-isocline 

y-isocline 

Figure 5.7 The isoclines and flow of the Lotka-Volterra system (Eq. 5.19 with 
f3 = y = 2 and ex = 8 = 1.) The x-isocline (thick lines) and the y-isocline (thin 
lines) intersect at the two fixed points of the dynamics. 

In order to examine the dynamics away from the isocline, one looks at the 
flow imposed by the differential equations. This can easily be done. In a short time 
interval ~ there will be a displacement in the x direction of approximately x = 
f(x, y)~. The displacement in the y direction is approximately y = g(x, y)~. 

The local trajectory through x, y can be found by taking the vector sum of the x 
and y displacements. For detailed pictures of the sort shown in Figure 5.7, it is 
convenient to use a computer to draw the picture of the flow in the phase plane. 

For understanding the dynamics of a system, a quick, "back-of-the­

envelope" picture of the dynamics is often sufficient. This can be drawn as 
follows: 

1. Draw the x- and y-isoclines. 

2. On one side of the x-isocline the flow will be to the left and on the other 
side, the flow will be to the right. Use the equations to decide which side 
is which, and draw many arrows showing the flow in the x direction. 
This is shown in Figure 5.8. 
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Figure5.S 
The x-isocline and arrows showing 
the direction of flow in the x 
direction on each side of the isocline. 

3. Similarly, on one side of the y-isocline the flow will be downwards, and 
on the other side the flow will be up. Draw many arrows showing the 
flow in the y direction (see Figure 5.9). 

4. Combine the x and yarrows to give the vector flow field. This is shown 
in Figure 5.10. 

Of course, it is possible, either by hand or using a computer, to draw a 
detailed picture of the flow. In the Lotka-Volterra system, by tracing a trajectory 
through the flow, we see that starting from any point with positive populations, 
we will cycle around the fixed point, producing oscillations of predator and prey. 
It is not possible with this geometric method to tell if the cycling will be periodic 
or will spiral in to the fixed point or away from it. However, additional analysis 
using a quantity analogous to the energy in the harmonic oscillator shows that 
in this problem the trajectories are closed paths, just as we found in the ideal 

'I JJ, lft 
J J, t f t 

~ J tr t 
Figure 5.9 
The y-isocline and arrows showing 
the direction of flow in the y 
direction. 
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y 

Figure 5.10 
Combining the x and y flow gives an 

)( idea of what the trajectories look 
like. 

harmonic oscillator. Therefore, the Lotka-Volterra system gives rise to periodic 
cycles in population. (See Problem 5.28.) 

5.6 LOCAL STABILITY ANALYSIS OF 
TWO-DIMENSIONAL, NONLINEAR 
DIFFERENTIAL EQUATIONS 

The local stability analysis of fixed points in two-dimensional nonlinear 
ordinary differential equations such as Eq. 5.18 is based on approximating the 
nonlinear equation by a linear equation in the neighborhood of fixed points of the 
equation. We can then make use of our understanding of two-dimensional linear 
equations to determine the dynamics in the neighborhood of the fixed points. 

Assume that we are given the nonlinear Eq. 5.18. Let us assume that there is 
a fixed point (x*, y*) for which I(x*, y*) = g(x*, y*) = O. The linear analysis 
involves carrying out a Taylor expansion of the nonlinear functions I (x, y) and 

g(x, y) in the neighborhood of (x*, y*). The Taylor expansion of a function 

I(x, y) is 

* * al I * al I * I(x,y) = I(x ,y)+ - (x-x)+ - (y-y )+"', (5.20) 
ax x',y' ay x',y' 

where the dots represent terms with higher-order derivatives such as ! ~:~ (x -

x*)2. If we now let 

x = x - x*, y = y - y*, (5.21) 
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We can expand Eq. 5.18 to obtain 

where 

A= 

C= 

dX 
dt = AX + BY + ... , 

dY 
- =CX+DY+··· 
dt 

:~ Ix.,y. B= :; Ix.,y. 

ag I 
ax x.,y. D= ag I 

ay x.,y .. 

(5.22) 

(5.23) 

In the neighborhood of the fixed point, the higher-order terms are neg­
ligible in comparison with the linear terms in Eq. 5.22. Consequently, in the 
neighborhood of the fixed point, the nonlinear equation can be approximated by 
a linear equation: 

dX 
- =AX+BY, 
dt 

dY 
- =CX+DY. 
dt 

(5.24) 

The process of approximating a nonlinear differential equation by equations of 
the form ofEq. 5.24 is called linearization. 

The geometry of the vector field in the neighborhood of the fixed points 
in the phase-plane representation can be classified based on the eigenvalues of 
the linear approximation given in Eq. 5.24. We have already determined the 
eigenvalues of the linear equation in Eq. 5.13. We found that the eigenvalues, Al 

and A2, are 

A + D J(A - D)2 + 4BC 
Al = -2- + 2 ' 

A + D J (A - D)2 + 4BC 
A2 = --- - -'-------

2 2 

Several different cases can be distinguished. The flows for three different 
cases are illustrated in Figures 5.11, 5.12, and 5.13. 
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Figure 5.11 A stable focus. A = -1, B = -1.9, e = 1.9, and D = -1. 

Focus (A - D)2 + 4BC < O. In this case, the eigenvalues are complex 
numbers. This means that the flow winds around the fixed point (see Fig­
ure 5.11). The size of the imaginary part tells how fast the winding occurs. 
The real part is AiD. If AiD < 0 the focus is stable, and if AiD > 0 the 
focus is unstable. The special case where AiD = 0 is called a center. 

FigureS.12 A stable node. A = -1.5,B = I,e = I,andD = -1.5. 
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Figure 5.13 A saddle point. A = I, B = I, C = I, and D = -1. 

Node (A - D)2 + 4BC > 0 and IA + DI > IJ(A - D)2 + 4BCI. 

In this case the eigenvalues are both real and the same sign. If AiD < 0 

the node is stable (see Figure 5.12), and if AiD > 0 the node is unstable. 

Saddle point 

(A - D)2 + 4BC > 0 and IA + DI < IJ(A - D)2 + 4BCI. 

In this case the eigenvalues are both real, but with different signs. The 
trajectories of the vector field in the neighborhood of the saddle point are 
similar to the way water would flow on a horse's saddle (see Figure 5.13). 

o ExAMPLE 5.3 

Characterize the dynamics of the Lotka-Volterra equations (Eq. 5.19) near 

the fixed points. 

Solution: We found in Section 5.5 that the fixed points occur at x* = 0, 

y * = 0, and at x * = 8/ y, y * = ex / f3. We will consider each of these fixed points 

in turn. 

Near a fixed point, the dynamics are well approximated by a linear system 

dz - = Az + Bw, 
dt 

dw 
dt = Cz + Dw 
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where z = x - x* and w = y - y*. The constants A, B, C, and D are found by 
evaluating the partial derivatives at (x*, y*): 

A = of I = a - fJy* 
ox (x',y') 

B = of I = -fJx* 
oy (x',y') 

og I * C = - = yy 
ox (x',y') 

og I * D = - = yx -8 
oy (x',y') 

The fixed point at the origin (x* = 0, y* = 0) is especially important, 
. because it corresponds to extinction of both predator and prey. If this fixed point 
were stable, then even ifboth populations were non-zero, the predator-prey dy­
namics might lead to extinction. At the origin, we have A = a, B = 0, C = 0, 
and D = -8. The eigenvalues are therefore 

a-8 J(a+8)2 
A = -- ± -'-----

2 2 

or, simplifying, 

Since in the Lotka-Volterra equations, a and 8 are both positive, Al is positive 
and A2 is negative. Thus, the fixed point at the origin is a saddle. 

The other fixed point occurs at x* = 8jy and y* = aj fJ, which gives 
A = 0, B = -fJ8jy, C = yaj fJ, D = o. The eigenvalues are therefore 

A = ±,J-a8. 

These eigenvalues are purely imaginary, meaning that the populations of preda­
tors and prey oscillate around the fixed point. Since (A + D)j2 = 0, the focus 
is a center, but this would be meaningful only if the linearized system were ex­
actly faithful to the full nonlinear system. Using an argument analogous to the 
conservation of energy, it is possible to show that the trajectory consists of closed 
curves around the fixed point. (See Problem 5.28.) 

Since the fixed point at x* = 0, y* = 0 is a saddle, it is unstable in the sense 
that for almost any nonzero level of predator and prey population near extinction, 
the system will eventually lead to an increase in both populations. (The "almost 
any" is intended to exclude the case where the prey population is set to exactly 
zero. In this case, the predator population will die out exponentially, whatever 
is its initial value.) This might suggest that predator-prey systems are robust 
to disturbances; that extinction is difficult. Notice, though, that the seeming 
robustness is sensitive to details in the model construction. If the model were 
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changed slightly so that the predator did not depend for sustenance solely on the 
prey, then extinction is a real possibility for the prey. o 

o ExAMPLE 5.4 

In mutual inhibition, there are two variables, each of which inhibits the 

other. For example, in the lambda bacteriophage (see Dynamics in Action 2), the 

lambda repressor and the cro protein mutually inhibit each other. Here, we shall 
see how the Boolean network model for the lambda bacteriophage translates into 

a differential equation model. 
A theoretical model for mutual inhibition is 

dx (!)n - = f(x) = ...,..-:-:-:.::-:--- - x, 
dt or + yn 

dy - = g(x) = 
dt 

or or +xn - y, 

where x and yare positive variables and n is a positive constant greater than two. 

There is a steady state at x* = y* = ~. Discuss the bifurcations and sketch the 
flows in the (x, y)-plane as n varies. 

Solution: We linearize around the fixed point at x* = ~,y* = ~ 

A = of I --1 
ox (x",y") 

B= of I =-
oy (x",y") 

or n n-ll __ ~ (0 r + yn)2 y - 2 

(!)n nxn-1 = 
(( -21 )n + xn)2 

(x",y") 

c= og I = 
ox (x",y") 

og I 
D = oy (x",y") = -1 

2 J4-H.,fo 
Using Eq. 5.13, the eigenvalues are - 2' ± 2 ' or 

n 
Al = -1 + -

2 

n 
A2 = -1 - -

2 

n 
2 
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FigureS.I4 
Phase plane for mutual inhibition 
showing a stable node. 

FigureS.IS 
Phase plane for mutual inhibition 
showing a saddle point plus two 
stable nodes. 

The steady state is therefore a stable node for n ~ 2 and a saddle point for n > 2. 
The trajectories in the (x, y)-plane can be sketched; see Figures 5.14 and 5.15. 

The sketches show that for n > 2 there are two additional stable nodes. 
This is a typical bifurcation in two-dimensional ordinary differential equations in 
which a stable node splits into a saddle point plus two stable nodes. The biological 
interpretation is as follows. The larger the value of n, the stronger the inhibitory 
interactions will be. At strong interactions, one of the variables wins out and 

reaches a high value, whereas the other variable is at a low value. Such a model 
captures the essence of mutual inhibition and as such may be important in the 
analysis of competition of manufacturing production or of ecological species. D 

The quantitative analysis of fixed points using linearization and the calcula­
tion of eigenvalues provides exact information about the stability of fixed points. 
For heuristic purposes, the isocline method can also be used to provide quali­
tative understanding of the behavior near a fixed point. The procedure is quite 
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simple. First, draw the x - and y -isoclines in the region of their intersection. If the 
isoclines are not parallel where they intersect, the two isoclines divide the plane 
into four quadrants. Now, choose one of the quadrants (it doesn't matter which 
one) and calculate ~; and ~ in that quadrant. The vector (~; , ~) indicates 
the direction of flow in that quadrant. 

Repeat this procedure for the other three quadrants. Or, you might note that 

if ( ~; , ~) points in the (+, +) direction in one quadrant, then in the quadrant 
across the y -isocline, it will point in the (+, -) direction; in the quadrant across 
the x -isocline, it will point in the ( -, +) direction; and in the remaining quadrant 
it will point in the (-, -) direction. Three cases are shown in Figures 5.16, 5.17, 
and 5.18. 

x-isocline 

x-isocline 

(-,+) 
(-,-) 

x-isocline 

Figure 5.16 
The geometry of a node. Flow near the 
intersection of the x- and y-isoclines. 
In each quadrant, the sign of ~ and 
~ is shown (for example, (-, -) in 

the upper-right quadrant) and the 
corresponding rough direction of the flow 
in that quadrant is indicated by an arrow. 

Figure 5.17 
The geometry of a focus. 

Figure 5.18 
The geometry of a saddle. 
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FLOWS AND VISUAL PERCEPTION 

The human visual system is particularly effective at perceiving flow fields. 
This allows us to experiment with some of the concepts contained in the previous 
mathematical material without doing any algebra. 

We saw in Section 5.5 how the flow field can be sketched by drawing arrows 
at many places in the phase plane. The eye is capable of seeing flow patterns even 
when the whole arrow is not sketched. Just putting dots at the positions of the 
head and tail of the arrow will suffice. 

A useful method for generating the visual appearance of a flow field is 
provided by the superimposition of dot patterns. Figure 5.19 shows three related 
dot patterns composed of random dots. On the top is a random pattern (A). 
The pattern in the center (B) is an expanded version of these same random dots 
(the x- and y-coordinates of all points in A are multiplied by 1.05). Pattern C 
is formed by multiplying the x coordinate of all points in pattern A by 1.05 and 
multiplying the y coordinate by 0.95. 

Each of the three patterns looks random and shows no sign of a flow field. 
By placing one pattern over another one, and by rotating the overlaid patterns 
slightly, it is easy to perceive the geometries of flow fields in the neighborhood of 
fixed points. By superimposing pattern A on itself, but rotating slightly, there is a 
circular image; superimposing pattern A on pattern B without rotation gives rise 
to the geometry of a node; superimposing pattern A on pattern B with rotation 
gives the geometry of a focus (see Figure 5.20); finally, superimposing pattern A on 
pattern C gives rise to a saddle point geometry (see Figure 5.21). This shows how 
simple expansions, contractions, and rotations underlie the various geometries in 
the neighborhoods of steady states in nonlinear ordinary differential equations. 
These images, originally described by one of us (Glass) and colleagues, are being 
studied by scientists who are interested in evaluating the types of computation 
the brain performs during visual perception. 

The best way to explore how contractions and rotations create different 
sorts of flow fields is to make two photocopies of the random dot patterns in 
Figure 5.19, one on ordinary paper and the other on transparent film. By aligning 
the two copies of the different dot patterns with one another (use the square 
brackets in the top right corner and along the left edge), and rotating them, you 
will see different flow patterns appear. If you make just one copy and match it up 
to the printed copies in the book, you may observe that your photocopier rescales 
the image slightly. 
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Figure 5.19 The pattern of random dots in (A) is enlarged in both directions in 
(B) and enlarged in one direction and shrunken in the other in (C). 
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5.7 

Figure 5.20 
Superimposing pattern A on 
pattern B with a rotation of 
0.1 radians creates the flow 
near a focus. 

Figure 5.21 
Superimposing pattern A on 
pattern C, with no rotation, 
creates the flow near a 
saddle. 

LIMIT CYCLES AND THE VAN DER POL 
OSCILLATOR 

So far we have considered two differential equations that display oscilla­
tions-the ideal harmonic oscillator and the Lotka-Volterra equations. In both 
of these, if some outside disturbance moves the state off of its original trajectory, 
the new trajectory after the disturbance will be different in amplitude and will 

never rejoin the original trajectory (unless another outside disturbance happens 
to do the job). Most biological oscillations show a different behavior. If there is a 
small outside disturbance, then after sufficient time (i.e., as t -+ (0) the original 
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trajectory is established. This type of behavior is called a stable limit cycle. The 
French mathematician Henri Poincare (1854-1912) was the first to realize that 
this type of behavior could arise in differential equations. You have already seen 
this type of behavior in Dynamics in Action 1. 

Figure 5.22, repeated from Dynamics in Action 1, gives an example of an 
electrical shock delivered to oscillating cardiac tissue. The reestablishment of the 
oscillation with the same period and amplitude as before the shock is an indication 
that a theoretical formulation for the oscillation should have a stable limit cycle 
oscillation. Probably the first and simplest theoretical model for cardiac oscilla­
tions was proposed by B. van der Pol, an electrical engineer, and his collaborator, 
J. van der Mark. 

The van der Pol equations are 

dx 1 
- = f(x, y) = -
dt E 

dy 
= g(x) = -EX, 

dt 
(5.25) 

where it is usual to assume that 0 < E « 1. 

Even though it is not possible to find an analytic solution of the van der Pol 
equations, the properties of this equation can be determined using the qualitative 
methods introduced in the previous two sections. We first sketch the flow in the 

(x, y)-plane, as shown in Figure 5.23. The x-isocline, found by setting ~~ = 0, 

500 msec 

o ]mv 
-50 

Figure 5.22 Recording of transmembrane voltage from spontaneously beating 
aggregates of embryonic chick heart cells. The intrinsic cycle length is To. A stimulus 
delivered at a time 8 following the start of the third action potential leads to a phase 
resetting so that the subsequent action potential occurs after time T. After this, the 
aggregate returns to its intrinsic cycle length. Adapted from Guevara et al. (1981). 



242 Two - DIM ENS ION A L D IFF ERE N T I ALE QUA T ION S 

x-isocline 

y 

y-isocline 

Figure 5.23 The flow and isoclines of the van der Pol equations (Eq. 5.25, 
E = 0.1). The limit cycle is shown as a thin line. 

is the cubic function 

x 3 
Y = - -x. 

3 

Similarly, the y-isocline, found by setting ¥r = 0, is 

x = o. 

There is only one intersection of the x- and y-isoclines, and therefore only one 
fixed point, which is at x = y = o. 

The flow vectors plotted in Figure 5.23, suggest the flow is mostly horizontal, 
toward the x-isocline. However, there is also a slight vertical component to the 
flow. Since we are assuming 0 < E « 1, any initial condition that is not on 
the x-isocline will lead to relatively rapid changes in the value of x until the 
state is in the neighborhood of the x-isocline, whereas the vertical component 
of flow, ¥r, is small. Near the x-isocline ~~ is small, so there is not much flow 
in the horizontal direction. In this region, the small vertical component to the 
flow becomes significant, causing motion along the x-isocline. This motion is 
either up or down, depending on whether the state is on the left or right limb of 
the isocline. Once the vertical flow has carried the state near the local extremum 
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of the x-isocline, the horizontal flow again dominates, producing a jump to the 
other limb of the x-isocline. Since the fixed point at the origin is unstable (see 
Example 5.5), we know that trajectories do not spiral into the origin. Instead, there 
is a stable limit cycle, which is approached no matter what the initial condition. 

Figure 5.24 shows x as a function of time. The various segments are labeled 
to correspond with the region of the phase-plane plot. Note that the oscillation, 
with its slow drifts in the value of x, interrupted by sudden changes in the value of 
x, is similar to the recording of cardiac electrical activity. Modifications to the van 
der Pol equation proposed by several researchers form the basis for theoretical 
studies of oscillations in cardiac tissue even 70 years after the equations were 
proposed. 

o ExAMPLE 5.5 

Consider the van der Pol equations with E > O. Evaluate the stability of the 

fixed point x* = y* = O. 

Solution: In order to determine the eigenvalues of Eq. 5.25 at the fixed 
point, we compute 

2 
x 

o 

8j I 1 
A= 

ax 00 E 

c= :! 100 = -E, 

Jump right 

Along 
x-isocline 

8j I 1 
B= = 

ay 0,0 E 

D= - =0. 8g I 
8y 0,0 

time 

Figure 5.24 x measured from the van der Pol system with E = 0.1. 
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~ Using Eq. 5.13, we find the eigenvalues are A = -t ± ~ - or, simplifying, 

Consequently, for 0 < E < ~ there is an unstable node, and for ~ < E 

there is an unstable focus. Notice that the stability analysis gives us a better under­
standing of the dynamics in the neighborhood of the fixed point than is possible 
with the phase-plane analysis, but the analysis does not give information about 
the dynamics in the limit t ~ 00. 

5.8 FINDING SOLUTIONS TO NONLINEAR 
DIFFERENTIAL EQUATIONS 

D 

We have seen how to use isoclines to understand qualitatively the dynamics 
of nonlinear differential equations, and how to use linearization and eigenval­

ues to calculate quantitatively the stability of fixed points. We have not yet seen 
any general method for calculating solutions to nonlinear differential equations. 
The reason is that it is generally difficult or impossible to find such solutions 
algebraically. In Chapter 1, we used the procedure of iteration to find numerical 
solutions to the nonlinear finite-difference equations we wanted to study. In this 
section, we shall present an analogous method for finding approximate numerical 
solutions to nonlinear differential equations. This method can be used to find the 
trajectory from any given initial condition. 

The method for numerical integration of differential equations, called the 
Euler method, is based on the same approximation of the derivative ~; that we 
made in Section 4.6. As there, we define a discrete-time variable Xt = x(t) for 
t = 0, d, 2d, .... Then we have 

dx = lim Xt+l - Xt 
dt ~ ..... o d 

(5.26) 

Applying this definition of the derivative in Eq. 5.18, we get the equations 

Xt+l - Xt = f(xt, Yt)d, 

Yt+l - Yt = g(Xt, Yt)d, (5.27) 

or 

Xt+l = f(xt, Yt)d + Xt, 

Yt+l = g(Xt, Yt)d + Yt· (5.28) 
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Equation 5.28 is a pair of coupled finite-difference equations, and they can be 
iterated to find the solution from any initial condition x(O), y(O). 

DYNAMICS IN ACTION 

15 ACTION POTENTIALS IN NERVE CELLS 

To illustrate numerical integration, we will consider a mathematical model of the 
nerve cell. Nerve cells have a long branch called an axon, which transmits electrical 
impulses. The axon is an example of an excitable medium (see Section 2.5). Under 
normal conditions it rests quiescently. Given a small stimulus, it will retum to rest 
almost immediately. However, a sufficiently large stimulus will cause the axon to 
"fire," after which time it is refractory and retums to rest. The sequence of firing and 
returning to rest is called an action potential. 

The first detailed and accurate description of the mechanics of the axon was given 
in a complicated set of equations by A. L. Hodgkin and A. F. Huxley in 1952. This 
work won them the Nobel prize. A caricature of the Hodgkin-Huxley equations, 
which nonetheless conveys important aspects of the dynamics, is given by the 
Fitzhugh-Nagumo equation: 

dv 
dt = I - v(v - aXv - 1) - w, 

dw 
(it = E(V - yW). (5.29) 

y, E, and a are parameters, and v and ware the dynamical variables. v is the voltage 
across the cell membrane, and w is a recovery variable. I is the stimulus current that 
is injected into the cell. 

Like the real axon, the equations have a quiescent resting state, and a small stimulus 
current does not produce an action potential. In our case, we want to see how large 
a current pulse is needed to generate an action potential when the cell is quiescent. 

As you might have anticipated, the quiescent resting state corresponds to a stable 
fixed point in the differential equations. The figure on the next page shows the 

isoclines and the flow field when I = O. There is a fixed point at v = 0, w = O. 
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w-isocline 

v-isocline 

....- ----- ..... ...... ---...". .. - ---o 0.5 v 

The isoclines and flow field for the Fitzhugh-Nagumo equations of nerve cell 
dynamics (I = 0). 

Linearizing the equations around this fixed point, we find 

The eigenvalues are 

dv 
dt 

dw 

= -av-w 

dt = EV - EyW. 

a + lOy J(EY - a)2 - 410 
A=--2-± 2 . 

For the resting state to be quiescent, we clearly want to set a, y, and 10 to give 

stable eigenvalues. Here, we will use the parameters suggested by Rinzel (1977) 

and set 10 = 0.008, a = 0.139, and y = 2.54. This gives the eigenvalues y = 

-0797 ± 0.067;. This means that the fixed point is a focus, and since the real part 

of both eigenvalues is less than 0, we know that the fixed point is stable. Physically, 

the stable fixed point means that the axon is quiescent; it will stay near the fixed 

point until a large enough disturbance moves it away. The current stimulus pulse 

provides this disturbance. What the stability analysis does not tell is us how large 

the current pulse needs to be to cause an action potential. 
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The first step in integrating these equations, after picking the parameters €, a, and 
y, is to select a value for the size of the time step, fl.. In order for Eq. 5.28 to be 
a good approximation to Eq. 5.18, we need to pick fl. to be as small as possible. 
On the other hand, in order to keep the amount of computation small, we want 
to set fl. to be as large as possible. One wcry is to set the value for fl. to be some 
starting value, scry fl. = 0.5. We carry out the iteration according toEq. 5.28. Then, 
we reduce fl. by half and repeat the iteration. If we find that the results of the two 

iterations are approximately the same, then fl. is small enough. Otherwise, reduce 
fl. by half again, and repeat. Keep in mind that setting fl. too large can have nasty 
effects; for example, fixed points that are stable in the differential equation can be 
unstable in the finite-difference approximation if fl. is too large. 

v v 
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~: 1\, J_\ t 

0.6 
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(A) (B) 

v 

0.6/\ 
0.2 j \ 

20 ~t -0.2 
(C) 

v versus time in the Fitzhugh-Nagumo model of electrical activity in the nerve 
cell. Current of amplitude I is tumed on at time t = 10 and tumed off at t = 20. 
(A) I = 0.02. No action potential occurs. (B) I = 0.03. An action potential. 
(C) I = 0.10. An action potential. 

The iteration according to Eq. 5.28 can be carried out on a computer, or with a 

calculator, or simply with paper and pencil. Hodgkin and Huxley did their numerical 
calculations from much more complicated equations using 1950s-era mechanical 
hand calculators. 

In our numerical experiment, we will start the cell at the stable fixed point v = 0, 

w = O. At time t = 10, we will inject current of amplitude I for 10 time units. Then 
we will tum off the current and allow the system to evolve autonomously. We want 
to find what amplitude I is needed to trigger an action potential. 
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We will start with a current pulse of amplitude I = 0.02. The current is turned 

on at t = 10 and turned off at t = 20. The figure on the previous page shows 
transmembrane voltage v versus time; there is a small deflection in the voltage, 

which retums to its resting value by t = 80. In contrast, when a slightly larger 

current is given, I = 0.03, the voltage deflection is much larger and lasts much 

longer. This is an action potential. Increasing the current further to I = 0.10 does 

not change the amplitude of the action potential by very much. 

Equation (5.26) is true only in the limit 11 ~ o. For 11 > 0, the equation is only an 

approximation. One way to make the approximation good is to use very small 11. 

Another way, beyond the scope of this text, is to use more accurate methods for 
numerical integration, such as the Runge-Kutta method (Press et al. 1992), instead 
of the simple Euler method. 

5.9 ADVANCED TOPIC: DYNAMICS IN THREE OR 
MORE DIMENSIONS 

In the real world, it is unusual to have only a small number of interacting ele­
ments. Rather, there are complex networks of interactions. For example, consider 
the food webs in ecological systems, the multiple synaptic connections in neural 
networks, or the competition between several businesses in economic systems. 
In all these circumstances, theoretical models formulated as linear and nonlin­
ear differential equations with more than two variables have been proposed to 
account for the complex interactions. Even though a great deal of effort has been 
expended in trying to understand such systems, there remain huge gaps in our 
mathematical understanding of the dynamics in nonlinear differential equations 
with three or more interacting variables. 

Although much is known about the dynamics in the neighborhood of 
steady states, and about the bifurcations that arise as a consequence of para­
metric changes, fundamental mathematical questions involving the classification 
and the geometry of asymptotic behaviors in the limit t -+ 00 are still 
open. In the absence of a complete mathematical theory, there has been a 
lot of attention on the analysis of particular nonlinear equations. In this sec­
tion we first give examples of some three-dimensional equations that display 
chaotic dynamics. Then we show how results concerning analysis of stability in 
first- and second-order differential equations generalize to higher-dimensional 
systems. 
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THE LORENZ AND ROSSLER EQUATIONS 

In order to see the kinds of dynamics that can be found in nonlinear differ­
ential equations in more than two dimensions, we first consider equations initially 
studied by the meterologist E. N. Lorenz in 1963. Lorenz was interested in basic 
issues of why it might be so hard to predict weather. His approach was to consider 
simplified equations representing fluid flow in thermal gradients. Such equations 
are believed to playa role in the development of weather patterns since there 
are temperature gradients acting on the atmosphere (but, as Lorenz knew, the 
real situation is much more complicated than the problems studied by Lorenz). 
After several approximations, he came down to a set of three coupled nonlinear 
differential equations: 

dx 
dt = lO(y - x), 

dy - = x(28 - z) - y, 
dt 

dz 8 
- =xy- -z. 
dt 3 

(5.30) 

These equations look innocuous enough, but the dynamics the equations 
display have been a source of wonder and intense mathematical study. Fig­
ure 5.25 shows a trajectory in three dimensions. The dynamics here do not 

Figure 5.25 The trajectory of the Lorenz equations Eq. 5.30. 
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approach a steady state, or limit cycle, but rather display deterministic chaos. 
A plot of the trajectory is shown in Figure 5.25. Just as in the other examples 
that we studied that showed chaos, the dynamics here have sensitive dependence 
to initial conditions so that two initial conditions that are arbitrarily close will 
diverge as time proceeds. Lorenz discovered this using numerical integration on 
the primitive computers in use circa 1963. Figure 5.26 shows results of computer 
calculations of the sort Lorenz carried out. Starting at two initial conditions that 
are close to each other eventually leads to different dynamics. Without carry­
ing out the numerical integration of Eq. 5.30, Lorenz would have been unable 
to make this important discovery, since mathematical methods of that time (or 
now!) cannot be used to predict dynamic behavior for most nonlinear equations 
without numerical integration. 

Lorenz coined the term butterfly effect to describe the extreme sensitivity 
of nonlinear systems to the initial conditions. Lorenz suggested that although 
the flapping of butterfly's wings is a minute perturbation, it may nevertheless be 
adequate to change the weather in distant locations several days hence. Notice 
that this is different from saying that if a butterfly flaps its wings in Beijing this 
means it will rain in Montreal in five days. We have seen this type of distortion 
in our local newspapers; Chinese butterflies do not have this mystical power. 

Another beautiful example in equations that are also deceptively simple 
was carried out by Otto Rossler, who was interested in chemical kinetics. Since 
chemical-reaction mechanisms that involve two compounds typically proceed at 
a rate governed by the two concentrations multiplied together, Rossler explored 
equations that contained products between two variables. He discovered many 
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Figure 5.26 The x-component found by numerical integration of the Lorenz 
equations for two different initial conditions. Heavy line, x(O) = -15.80, y(O) = 
-17.48, and z(O) = 35.64. For the thin line, y(O) and z(O) are the same, but 
x(O) = -15.79. 
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equations that showed chaos, but the best-known example is now called the 
Rossler equation: 

dx 
dt = - (y + z), 

dy 
- =X +0.2y, 
dt 

dz - = 0.2 + z(x - 5.7). 
dt 

(5.31) 

A plot of the trajectory in these equations is shown in Figure 5.27. Once again, a 
system that looks deceptively simple has remarkably complicated dynamics. 

Since the study of the mathematics in higher-dimensional nonlinear sys­
tems is a matter for graduate studies and mathematics research, the reader must 
consult more-advanced sources to continue studying these problems. 

LINEAR STABILITY ANALYSIS 

Just as in the analysis of finite-difference equations and low-order differ­
ential equations, an understanding of the dynamics in linear systems is essential. 
Indeed, the dynamics in first- and second-order linear differential equations 
generalizes in a remarkable way to higher-order systems. 

Figure 5.27 The trajectory of the Rossler equation, Eq. 5.31. 



252 Two - DIM ENS ION A L D I FF ERE N T I ALE QUA T ION S 

A linear differential of order N can be written as 

dXl 
= allXl + a12X2 + ... + aINXN, 

dt 

dX2 
= a21 Xl + a22X2 + .,. + a2NXN, 

dt 

(5.32) 

where the aij represent real constants. There are two alternative ways in which 
such equations can be written. One way is as a single differential equation in 
which the highest order of the derivative is N: 

d N X dN-lX dx 

CiN dtN + CiN-l dtN - l + ... + Cil dt + CioX = 0, (5.33) 

where the Cii are constants that can be calculated in principle by the reduc­
tion of Eq. 5.32 in a manner similar to the reduction of the two-variable linear 
differential equation. A more compact representation of the same equation is 

dx 
- = Ax, 
dt 

(5.34) 

where A is the N x N matrix of coefficients of Eq. 5.32, and x is the N -vector 

(Xl, X2, "', XN)' 

In almost all circumstances the solution of this equation can be written as 

(5.35) 

where the Cij are constants set by the initial conditions, and the Ai are the eigen­
values of A. The constants and eigenvalues can be real or complex, but a basic 
result in algebra asserts that complex roots must occur in pairs of complex con­
jugates. Thus, the important thing to remember is that the solution to linear 
differential equations is a sum of exponential functions. 

In exact analogy to the two-dimensional case, the eigenvalues are 
determined from the characteristic equation, which is either 

(5.36) 

or, in matrix notation, 

IA - All = 0, (5.37) 
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where I is the diagonal unit matrix. There is one situation where the above results 
are not true: if two or more eigenvalues are identical. Since this is a special situation 
that will only occur for certain choices of coefficients in the original equation, we 
do not consider it further. 

The behavior of the linear differential equation in N dimensions in the 

limit t ~ 00 is determined by the eigenvalues. If all the eigenvalues have negative 
real parts, then in the limit t ~ 00 all variables will decay to O. The origin is 
locally stable. The decay will be monotonic if all the eigenvalues are negative real 
numbers, or will be oscillatory if some of the eigenvalues are complex conjugates 
with negative real parts. If the real parts of some of the eigenvalues are positive, 
then the origin is not locally stable, and usually the dynamics will diverge in the 
limit t ~ 00. If the real parts of some of the eigenvalues are zero, then these are 
special cases. Small changes in the coefficients will generally lead to nonzero real 
parts of all the eigenvalues. However, if we think of the equations arising in realistic 
situations in which the coefficients depend on parameters, then parameter values 
at which the real parts pass through zero are associated with qualitative changes 
in the dynamics (bifurcations), and as such are important mathematically. 

The analysis of the linear equations sets the stage for the analysis of the 
nonlinear equations: 

i = 1,2"", N. (5.38) 

In perfect analogy to the two-dimensional case, the fixed points are found by 
finding values for which all the derivatives equal O. In the neighborhood of a 
steady state, we can evaluate the stability from a consideration of the eigenvalues 
of Eq. 5.37 where the elements aij of the stability matrix A are determined from 

where the evaluation of the partial derivatives is carried out at the fixed point. 
Since there are more variables now, the simple classification scheme for the 
two-dimensional differential equations is no longer applicable, but you can still 
visualize the geometry of the flows in the neighborhood of a steady state from the 
eigenvalues at that steady state. 

5.10 ADVANCED TOPIC: POINCARE INDEX THEOREM 

In this chapter, we have analyzed many theoretical models for dynamics in 

physical and biological systems. The different examples had different numbers of 
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fixed points, with different stability characteristics. For example, the van der Pol 
oscillator has a single unstable state that is either a node or a focus. The model 
for mutual inhibition has either one stable node, or a saddle point and two stable 
nodes. It may be surprising, but there are mathematical results that enable one 
to place restrictions on the numbers and types of fixed points that can be found 

in differential equations. 
The mathematical work dates to the end of the nineteenth century, when 

Henri Poincare discovered a remarkable result concerning the geometry of vector 
fields of differential equations. This result is considered an advanced topic in 
mathematics; it is rarely presented in advanced courses at the undergraduate or 
even graduate level. Yet Poincare's development of this result uses only elementary 
arguments that can be appreciated by students with no advanced mathematics. 
Because of the beauty and importance of this result, we give the main ideas. In the 
development we reconstruct Poincare's central argument, which can be found in 
his collected works [1954]. John Harper, ofthe University of Rochester, provided 
us with ideas about how to present some of this material. 

A little bit of terminology is necessary. A manifold is a space in which the 
local geometry of each point is identical and looks like a little piece of Euclidean 
space. For example, the circumference of a circle is a one-dimensional manifold. 
The surface of a sphere is a two-dimensional manifold since locally each point is 
surrounded by a two-dimensional region. Topology is a branch of mathematics 
that deals with properties of geometric spaces that do not change as the space is 
stretched or distorted, without cutting. 

Two geometrical objects are called topologically equivalent if they can 
be transformed from one to another by streching only without any cutting or 
pasting. For example, the surface of a cube, the surface of a pyramid in Eqypt, 
and the surface of a sphere are all topologically equivalent. Convex polyhedra 
are solid objects whose surfaces are topologically equivalent to a sphere. Convex 
polyhedra are composed offaces (polygons), edges (where two faces meet), and 

vertices (where three or more edges meet). We designate the number of faces, 
edges, and vertices of a convex polyhedron by F, E, and V, respectively. For 

example, for a cube we have F = 6, E = 12, and V = 8, and for an Egyptian 

pyramid we have F = 5, E = 8, and V = 5, see Figure 5.28. 
A remarkable topological theorem, discovered by Euler relates the number 

of faces, edges and vertices of a convex polyhedron. Euler's theorem states that 

F-E+V=2 (5.39) 

We give a plausibility argument for this result. 
Imagine a convex polyhedron drawn on a balloon. If a hole is made in one 

face of the polyhedron, the graph of the polyhedron can be laid out flat on a 
planar surface so that no two edges intersect. For example, for a cube we have 
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Figure 5.28 A cube (left) and a pyramid (right). For both we have F - E + V = 2. 

Figure 5.29 
F = 6, E = 12, V = 8. 

the situation shown in Figure 5.29. The face in which the hole was initially made 
is now an external face of the graph embedded on the plane. If any number of 
the edges bounding the external face is removed, F - E + V remains invariant 
since the removal of each of these edges decreases both the number of faces and 
the number of edges by 1. In Figure 5.30 we show how the object looks after 
all the edges bounding the external face in Figure 5.29 are removed. It is now 

Figure 5.30 
F = 2, E = 8, V = 8. 
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FigureS.31 
F = 2, E = 4, V = 4. 

possible to remove in turn the edges and vertices which jut out into the external 
face. Since this operation decreases the number of both edges and vertices by 1 
simultaneously, once again F - E + V remains invariant. This process can be 
continued, with only minor differences for any initial polyhedron until a single 
polygon, as in Figure 5.31, is produced. In the polygon E = V. Since there are 
two faces, an internal and an external face, we obtain Eq. 5.39. 

Eq. 5.39 is true for any polyhedron that is topologically equivalent to a 
sphere. 

A torus is a two-dimensional manifold that is topologically equivalent to 
the surface of a standard donut. It is not topologically equivalent to a sphere. Let 
us build a torus from a convex polyhedron that has two different faces with the 
same number of edges n, but the two faces do not share a common edge. We 
assume that the numbers of faces, edges, and vertices of the convex polyhedron 
are designated Fo, Eo, and Yo. Let us now paste together the two faces with same 
number of edges to form a torus. Call F', E', and V' the numbers of faces, edges, 
and vertices, respectively, of the toroidal polyhedron. By construction we have 

F' = Fo - 2, 

E' = Eo - n, 

Vi = Vo - n, 

so that 

F' - E' + Vi = O. 

Doing similar surgery to construct a torus with y holes, we find that 

F - E + V = 2 - 2y. (5.40) 

The torus with y holes is called a surface of genus y. It is a two-dimensional 
manifold since each point of the surface locally looks like a two-dimensional 
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surface. The number 2 - 2y is called the Euler-Poincare characteristic of this 
manifold. 

Poincare used this earlier result from Euler in a fundamental way. Assume 
that we have a vector field generated by a nonlinear differential equation that is 
defined on a surface of genus y, with a finite number of fixed points of the vector 
field. We construct a polyhedron of genus y on the surface where each fixed point 
is isolated in a single face of the polyhedron. Calling F, E, and V the number of 
faces, edges, and vertices of this polyhedron we obtain Eq. 5.40. 

The trajectories of the dynamical system will in general cut across the edges 
of the polyhedron. However, some of the trajectories may be tangent to the edges 
of the polyhedron. If a trajectory is tangent to an edge, in the neighborhood of the 
tangency it will be located on one side of the edge. A tangent is called an internal 
tangent or external tangent to a face depending on if it is inside or outside the 
face at its point of tangency. For each fixed point the index, I, is defined as 

Ext - Int 
1=1----

2 
(5.41) 

where Ext and Int designate the numbers of external and internal tangents, respec­
tively, to the face in which the fixed point is located. (Poincare actually defined the 
index as -1 times the index defined here, but our definition conforms to modern 
usage). This definition for the index is invariant to smooth transformations of 
the vector field inside of the face in which a fixed point is located, provided no 
new fixed points are generated inside the face. Using this definition, the indices 
of the fixed points discussed in Section 5.6 is + 1 for nodes and foci, and -1 for 
saddles Figure 5.32. 

The Poincare index theorem asserts that for a dynamical system embedded 
on a surface of genus y with a finite number of isolated fixed points, 

LI = 2 - 2y, 
fp 

(5.42) 

where the sum is taken over all the fixed points. Since by construction each fixed 

points is located in a single face, by substituting Eq. 5.41 in Eq. 5.42 we find 

L 1 = F - L Ext - Int. 
fp F 2 

Here is the key insight. Except at the vertices, a tangent that is internal to one face 
is external to its neighboring face. Therefore, the summation over faces can be 
taken over vertices. A single trajectory passes through each vertex. The degree of 
the vertex i, designated E;, is equal to the number of edges terminating at it. The 
trajectory through the ith vertex will be an external tangent to E; - 2 faces and 
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Figure 5.32 A node (left) and a saddle point (right). For the node there are no 
external or internal tangents of the flow to the face bounding the fixed point so 
I = 1 (from Eq. 5.41). For, the saddle point, there are four external tangents but 
no internal tangents so that I = -1. Figure provided by G. Bub. 

will not be an internal tangent to any faces see Figure 5.33. Therefore, the 
summation can be rewritten as 

L=F+V- L Ej
• 

~ v 2 

Since each edge terminates at two vertices, Lv ¥ = 2E, and the Poincare index 
theorem Eq. 5.42 follows. 

CallN, F, and S the numbers of nodes, foci, and saddle points, respectively, 
of a vector field embedded on a surface of genus y, and assume these are the only 
fixed points present. Since the index of nodes and foci is + 1, and the index of 

saddle points is -1, we find that 

N + F - S = 2 - 2y. 

Figure 5.33 
A vertex with degree 5, since 5 
edges terminate at it. The trajectory 
through the vertex is an external 
tangent to three faces. Figure 
provided byG. Bub. 
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Figure 5.34 
A donut with y holes. Adapted from Guillemin and 
Pollack (1974). 

An unbelievable consequence of this result occurs in geography. Imagine a 
globe in which there are mountain tops (peaks), depressions (pits), and passes. 
If we think of water flowing on the surface of the globe, then the peaks and pits 
would correspond to either foci or nodes of a vector field, and the passes would 
correspond to saddle points. Then, we find that 

peaks + pits - passes = 2. 

In meteorology we can also make assertions concerning the numbers of high­
pressure areas, low-pressure areas, and "saddles" on a global barometric weather 
map. 

The "tastiest" method of computing the Euler-Poincare characteristic of a 
surface is to prepare a chocolate covered donut with y holes (see Figure 5.34) in 
the manner of Guillemin and Pollack (1974). Place this out in the sun until the 
chocolate starts to melt, and examine the vector field formed by the flowing 
chocolate on the surface. There will be two nodes and 2y saddle points, so once 
again the Euler-Poincare characteristic is equal to 2 - 2y. 

Surprisingly, there is an application of this result to theoretical models 
of two-dimensional nonlinear dynamical systems. We are usually interested in 
problems in which there is a two-dimensional region. On the boundary of the 
region there are no critical points, and all trajectories point into the region. 
Then it follows that inside the region N + :F - S = 1. Therefore, sys­
tems with either a single node or focus are possible-such a situation arises 
in the van der Pol equations. Alternatively, we can also have a phase plane 
with two stable nodes and a focus such as we saw in Example 5.4 on mutual 
inhibition. 
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SOURCES AND NOTES 

A very nice elementary book on differential equations with lots of inter­
esting historical notes is Simmons (1991). Readers interested in a more rigorous 
mathematical treatment, but still at an elementary level should consult Hirsch and 
Smale (1974). Glantz (1979) provides an excellent introduction to linear differ­
ential equations and compartmental analysis with special reference to biomedical 
applications such as pharmacokinetics. A fine presentation of the applications of 
nonlinear differential equations to biology that covers much of the material here 
at a bit higher level is Edelstein-Keshet (1988). Finally, Murray (1989) provides 
an excellent advanced text in mathematical biology that treats two-dimensional 
differential equations with biological applications. 

The three dimensional equations presented by Rossler (1976) and Lorenz 
(1964b) are two important examples of simple nonlinear ordinary differential 
equations that display chaotic dynamics. A legitimate mathematical analysis 
of these equations is hard, and a complete analysis is not possible, but see 
Guckenheimer and Holmes (1983) for ideas of how to start. 

The random dot patterns were discovered by Glass (1969) with demon­
strations of the varied geometries of the vector fields in the neighborhoods of 
critical points given in Glass and Perez (1973). Marr (1982) called these images 
"Glass patterns': The patterns are still being used in the study of mechansims 
of visual perception, for example see (Kovacs and Julesz, 1992). These patterns 
provide a dramatic illustration of the local stretching and rotation that generates 
the different geometries of the vector fields in the neighborhood of critical points 
and complement the algebraic analysis of critical points based on the eigenvalues 
of the linearized equations. 

The Poincare Index Theorem is considered an advanced topic in mathe­
matics and is never presented at an elementary level. Surprisingly, Poincare uses 
simple geometrical ideas. The notions underlying Poincare's proof can be ap­
preciated by undergraduate students with little mathematical background and 

this result is often a memorable feature of the course. A legitimate proof of this 
theorem is given in Guillemin and Pollack (1974), whose many-holed-hot -fudge­
covered donuts are a wonderful didactic and gedunkin' device. See Glass (1975) for 
more information and references to the Poincare Index Theorem and extension 

to higher dimensions. 

~ EXERCISES 

~ 5.1 The solution to the linear two-dimensional ordinary differential equa­

tion is given by Eq. 5.10, which involves two constants, C3 and C4• Physically, we 
might measure the initial condition in terms of the initial position x (0) and the 
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initial velocity v(O). Find the values of C3 and C4 in terms of the initial condition 
x(O) and v(O). 

~ 5.2 An electrical circuit is composed of an inductance of magnitude L, a 
resistance of magnitude R, and a capacitance of magnitude C connected in a loop. 
At t = 0, there is an initial charge of qo across the capacitance and the current 
~ = O. The dynamics for this system is described by the following second-order 

linear differential equation: 

d2q dq 1 
L - + R - + - q = O. 

dt2 dt C 

As time proceeds the charge is lost from the capacitor and is dissipated as heat is 
produced as the current passes through the resistor. Under what circumstances 
is the system oscillatory? 

~ 5.3 Use the Taylor series expansion of the exponential, sine, and cosine 
functions to show that 

e yHi = e Y (cos 8 + i sin 8) . 

~ 5.4 Gatewood et al. ( 1968) proposed that glucose-insulin interaction could 
be modeled by the equation 

dg 
= - mIg - m2h, 

dt 

dh = - m3h + m4g, 
dt 

where m 1, m2, m3, and m4 are positive constants, g is the displacement of the 
glucose concentration from its basal value, and h is the displacement of the insulin 
concentration from its basal value. 

a. What is the value of g as t ---+ oo? 

b. Under what conditions will g show an oscillatory approach to the steady 

state? 

c. Sketch the flows in the (g, h) phase plane. 

~ 5.5 This problem is based on a mathematical model for the passage of food 
through the digestive tract in ruminants (e.g., deer) presented by Blaxter et al. 
(1956). Letr(t) be the amount offood in the rumenandJL(t) the amount of food 
in the abomasum. The passage of food in the rumen and abomasum is described 
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by the linear differential equations 

dr 

dt 

dJ,L = k1r - k2J,L, 
dt 

where k1 and k2 are positive constants and rand J,L are greater than or equal to 0 

for all times t 2: O. 

a. Give a diagram with two compartments that can serve to illustrate the 

passage of food through the rumen and abomasum, indicating with 

arrows the direction of the passage of food and the associated rates. 

b. Sketch the flows in the positive quadrant of the (r, J,L) phase plane. 

c. Using this sketch, describe the dynamics of both variables starting from 

an initial condition r(O) = ro, J,L(O) = O. Be sure to indicate where the 
variables pass through extrema and what happens in the limit t ~ 00. 

d. Write the original equations as a single second-order differential 

equation in J,L. 

e. Solve the equation in part d and give algebraic expressions for r(t) and 
J,L(t) starting from the initial condition r(O) = ro, J,L(O) = O. Confirm 

that the qualitative description of the dynamics in part c is correct. 

ffll 5.6 This problem is based on an example discussed at length in Glantz 
(1979). An intravenous administration of a drug can be described by a two­
compartment model, with compartment 1 representing the blood plasma and 
compartment 2 representing body tissue. The dynamics of evolution of the system 
are given by the differential equations 

a. Draw a schematic diagram that shows the compartments and the flows 

into and out of them. 

b. Write the differential equations above as a single, linear second-order 

differential equation for C 1. 

c. Solve this equation starting from an initial condition C 1 = N, C 2 = 0 

for the special case K1 = 0.5, K2 = K3 = 1. 

d. Sketch the flows in the phase plane for the special case in which K 1 = 
0.5, K2 = K3 = 1. What happens in the limit t ~ 00 starting from 
the initial condition in part c? 
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~ 5.7 A chemotherapeutic agent is being used to treat an intracranial tumor. 

Let x be the number of molecules of the agent in the blood and y the number 
of molecules that have crossed the blood-brain barrier. At t = 0, x = N and 
y = O. The dynamics are described by the differential equations 

dx - = a(y - x) - yx, 
dt 

dy - = a(x - y). 
dt 

a. Write a second-order differential equation for y. 

b. Find the characteristic equation. Show that if y is much larger than a, 
the roots of the characteristic equation are approximately -y and -a. 

c. Use the result from part b to solve the equation for y as a function of 
time for a = 10-3 hr-1 and y = 1 hr-l. 

d. For the values of a and y in part c, compute the time when y is a 
maximum. What is the approximate value of y at this time? 

e. For the values of a and y in part c, compute approximately (to within 
10 percent) the time when x is one half of its initial value. 

~ 5.8 A chemotherapeutic drug is administered intravenously. Assume that 
x is the concentration of the drug in the bloodstream, and y is the concentration 

of the drug in a target organ. Assume that the dynamics can be represented by 

dx 
dt = - k1x + k2 (y - x), 

dy 
dt = k2(x - y), 

where kl and k2 are positive constants and x ~ 0, y ~ O. At t = 0, a single large 
injection of the drug is given such that x(O) = 250 mg, and y(O) = O. 

a. Sketch the flows in the (x, y) plane. 

b. Based on this sketch, give graphs showing x and y as a function of time 

starting from initial conditions of x = 250, y = O. This can be a very 

rough sketch. 

c. Find a single second-order linear ordinary differential equation for x in 

which all terms containing y have been eliminated. 

d. Solve the equation found in part c starting with an initial condition of 

x = 250, Y = 0, with kl = 2 hr-1, k2 = 0.5 hr-l. 
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~ 5.9 This problem is based on data in Phang et al. (1971). Rat tissue is 
incubated in a medium containing radioactive carbon. The kinetics for the 
accumulation of radioactive label in the rat tissue are: 

dNI = ex (N2 NI) --
dt V2 VI • 

dN2 
= ex (~: -

N2) --
dt V2 • 

where ex is a positive rate constant, NI and N2 are the number of molecules of 
radioactive label in the medium and tissue, respectively, and VI and V2 are the 
volume of medium and tissue, repectively. Assume that the system is closed and 
at t = 0 there are M molecules which are present only in the medium and not 
in the tissue. 

a. What is the rate of change of (N I + N 2)? What is N I + N 2 as a function 
of time? 

b. At equilibrium, what is the value of N I? What is the value of N 2? 

c. Derive a second-order linear differential equation for N2• 

d. Derive the characteristic equation and use it to solve for N2 (t). 

e. If you have done parts c and d correctly, you will find 

Express K and y in terms of M. N I• VI. N2, and V2. 

f. The graph in Figure 5.35, from Phang et al. (1971), shows the fraction 
of initial radioactivity per 100 mg of tissue as a function of time. This is 
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Figure 5.35 Adapted from Phang et aI. (1971). 
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proportional to N2 (t). Using any technique you wish estimate the value 
of JI in part e. 

g. Sketch the flow in the N2, NI phase plane (NI ~ 0, N2 ~ 0). 

By now you may realize that you have already done an equivalent problem 
using a different method, Example 4.3. 

~ 5.10 A chemical compound undergoes the transformation 

This process is described by the kinetic equations 

dA - = -KIA, 
dt 

dB = KIA - K 2B, 
dt 

dC = K 2B, 
dt 

for 0 :::::: A,O :::::: B,O :::::: C, where KI and K2 are positive constants and A, 
B, and C represent the concentrations of each chemical species. When t = 0, 
A(O) = N, B(O) = 0, C(O) = o. 

a. Determine A as a function of time. 

b. Give a single second-order linear differential equation in which only B 
and its derivatives appear. Solve this equation for B(t). 

c. If KI = 2K2, at what time is B a maximum? 

d. Use your answer to part b to determine C(t). 

e. What are the values of A, B, and Cas t -+ oo? This can be answered 

without doing any algebra if you understand what is happening. 

~ 5.11 An ionic channel can exist in three states: S1> S2, and S3. SI and S3 
represent closed states (no ions can pass through the channel), and S2 is an open 
state. On a given cell there are a large number of channels, and the fractions of 

channels in states S1> S2, and S3 are designated x, y, and z, respectively. 
Transitions between the states follow the schematic diagram 
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where kt. k2 , and k3 are positive rate constants. A differential equation for this 
system is 

dx 
dt = - klx + k3y, 

dy 
dt = klx - (k2 + k3)y, 

dz 
dt = k2y, 

where 1 ~ x ~ 0, 1 ~ y ~ 0, and 1 ~ z ~ O. 

a. Sketch the flow in the x, y plane. 

b. Based on this sketch, give graphs showing x and y as a function of 
time starting from initial conditions of (i) x = 1, Y = 0, z = 0; (ii) 
x = 0, y = 1, Z = O. Note: The graphs may be approximations. 

c. Find a single second-order linear ordinary differential equation for y in 
which all terms containing x and z have been eliminated. 

d. Solve the equation found in part c starting with an initial condition of 
x = 0, y = 1, and z = O. 

e. Disregard the solution found above, and assume an initial condition of 
x = 0, y = 1, and z = O. Solve for y as a function of time assuming: 
(i) kl = 0 and the other rate constants are positive; (ii) k3 = 0 and 
the other rate constants are positive. HINT: This can be done with min­
imal computation if you understand the kinetic scheme above and the 
associated differential equations. 

~ 5.12 The graph in Figure 5.36 shows the results of an experiment in which 
the percentage of a tracer remaining in the blood is followed over 300 hours. Note 
that the ordinate is not linear. On this logarithmic scale, an exponential function 
is plotted as a straight line. The solid curve is the function 

where 1..2 < Al and all constants are positive. 

a. Give a rough estimate of the values of CI, C2, AI> and A2. (HINT: Figure 
out first what the dashed line and the dash-dot line represent.) 

b. What is an approximate expression (using a single exponential) for x (t) 
for long times (i.e., t > 200 hrs)? 

c. Write a second-order linear differential equation for x(t), expressing all 
constants in terms of Ct. C2, AI> and A2. 
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Figure 5.36 Adapted from Edelstein-Keshet (1988): Mathematical Models in Biol­
ogy, Random House, copyright 1988. Reproduced with permission of McGraw-Hill, 
Inc. 
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~ 5.13 Following a 500 mg oral dose of the antiarrhythmic drug lidocaine, 
the plasma concentration of lidocaine is as shown in Figure 5.37, reproduced 
from (Glantz, 1979, p. 174). The concentration profile is well described by the 

equation 

c(t) = 92.8 (-0.12ge- 6.'55 + 0.218e- 6;7 - 0.08ge- 1;.3 ) , 

where the time units are in minutes and the concentration is in Ilglml. 

a. This is the solution to a linear differential equation. What is the order 

of this differential equation? 

b. Estimate the time at which the plasma concentration is one half its value 

at 180 min. 

c. With what physiological proceses is the time constant of 65.7 min 

associated? 

~ 5.14 This problem is motivated by an advertisement for Dalmane (a sleep­

ing pill) that appeared in the 1.A.M.A. 250,1136-1138,1983. A sleeping pill will 
be most effective if the active substances appear rapidly in the bloodstream and 

have a half-life such that they are at negligible levels by morning. The upper panel 
in Figure 5.38 is a retracing of the graph shown in the advertisement, and the 
lower panel is experimental data following a single 30 mg oral drug dose in one 
subject taken from de Silva et al. (1974). The tracing in the advertisement appears 
to be based on this experimental graph. The advertising copy states there are 
"two short-half-life elements that appear rapidly and are rapidly eliminated;' 
and "Nl-hydroxyethyl-flurazepam ... has a serum half-life of2 to 3 hours:' 

Blood concentration was measured at 1,3,6, 12, and 24 hours after the 
dose was administered by two different techniques (the "scanner" and "elution" 
techniques). For this question consider the data for N 1 - hydroxyethyl-flurazepam 

(HEF) (which is apparently the basis for the graph in the advertisement). Calling 

x(t) the concentration ofHEF as a function of time, assume 

where a and fJ are positive constants. 

a. Assume that this system is described by a linear differential equation. 

What is the order of the differential equation? 

b. Assume that x(O) = 0, ~~ 11=0 > 0, and fJ > a. What can you say 
about Cl and C2? Which is positive? 

c. Determine the time when x is a maximum in termsofa andfJ. (Assume 

that the extremum is a maximum-it is not necessary to do the second 

derivative test.) 
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Figure 5.38 Top panel adapted from an advertisement that appeared in f.A.M.A. 
250, 1136-38 (1983). Bottom panel adapted from de Silva et al. (1974). Reproduced 
with permission of the American Pharmaceutical Association. 

d. From the data in the lower graph determine the half-life of HEF. 

e. Assume fJ = 8a. Use the data for the subject, found in the lower panel 
of Figure 5.38, to compute fJ and a using the half-life computed in part 
d. 

f. Assume that ~; 11=0 = 12 ~:ml . Use this and the results in parts band 
e to find Cl and C2. 

g. Use the values computed to determine the time when HEF is a maximum 
and the concentration at that time. 

h. Discuss whether the claims in the advertisement are substantiated by 

the data. 

41? 5.15 A modification of the Lotka-Volterra predator-prey equations is 

dx 

dt 
dy 

= ax - bx2 - xy, 

= mxy - ny, 
dt 
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where a, b, m, and n are positive constants and x and yare positive variables. 

a. Which variable represents the predator (e.g., foxes) and which the prey 

(e.g., rabbits)? 

b. Suppose y = 0 and x > 0 at t = o. What is the value of x as t --+ oo? 
What is the value of y as t --+ oo? 

c. Sketch the flows in the (x, y) phase plane for x > 0, Y > o. Assume 

~ > ~ 
d. On the basis of your analysis can you tell whether or not there are limit 

cycles? 

t? 5.16 Limpets and seaweed live in a tidepool. The dynamics of this system 
are given by the differential equations 

ds = s - S2 - sl, 
dt 

dl I 2 
- = sl- - -I 
dt 2' 

I ~ 0, s ~ 0, 

where the densities of seaweed and limpets are given by s and I, respectively. 

a. Determine all steady states in this system. 

b. For each nonzero steady state determined in part a, evaluate the stability 
and classify it as a node, focus, or saddle point. 

c. Sketch the flows in the phase plane. 

d. What will the dynamics be in the limit as t --+ 00 for initial conditions: 

(i) s(O) = 0, 1(0) = O? 
(ii) s(O) = 0, 1(0) = IS? 

(iii) s(O) = 2, 1(0) = O? 
(iv) s(O) = 2, 1(0) = IS? 

t? 5.17 The "Brusselator" is a mathematical model for chemical oscillations. 

The equations for the Brusselator are 

du 
dt = 1 - (b + l)u + au2v, 

dv 
- = bu - au2v, 
dt 

where u ~ 0, v ~ 0, and a and b are positive constants. 

a. Determine the values of u and v in terms of a and b at the steady state. 

b. Find the characteristic equation that can be used to determine the 

stability of the steady states. 
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c. Solve this characteristic equation. 

d. Try to find parameter values of a and b that give a (i) stable node; (ii) 
stable focus; (iii) unstable node; (iv) unstable focus; (v) saddle point. 
Not all of these are possible in this equation; indicate those that are 
possible and explain why. 

e. If u is held constant at some nonzero value, what will be the behavior of 
v starting at different initial conditions? 

~ 5.18 The following equations arise in the analysis of nonlinear equations 
in population biology (Edelstein -Keshet, 1988). Your problem here is to consider 
the dynamics determined by these equations. 

dP = -S, 
dt 

dS - = aP(1 - P) - S, 
dt 

where -00 < P < 00, -00 < S < 00, and a > o. 
a. Determine the steady states. 

b. Find the characteristic equation that can be used to determine the 
stability of the steady states. 

c. Solve this characteristic equation and classify each steady state (e.g., as 
a stable focus, unstable node, saddle point, etc). 

d. Sketch the flows in the (P, S) plane, being sure to show the evolution 
starting from different initial conditions. What happens in the limit 
t ----+ 00 from different initial conditions? 

~ 5.19 The following two-dimensional nonlinear ordinary differential equa­
tion has been proposed as a model for cell differentiation. Your problem here is 
to consider the dynamics determined by this equation. 

dx 

dt 

dy 

dt 

where 0 ::::: x < 00, 0 ::::: y < 00. 

= y -x, 

5x2 

= -y, 
4 +x2 

a. Determine the steady states. 

b. Determine the characteristic equation in the neighborhood of each 
steady state, and solve this characteristic equation to classify each steady 
state (e.g., as a stable focus, unstable node, saddle point, etc). 
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c. Sketch the trajectories in the (x, y) plane, being sure to show the 
evolution starting from different initial conditions. 

d. What happens in the limit t ~ 00 from different initial conditions, and 
why might this be appropriate to model cell differentiation? 

~ 5.20 Assume that the densities of circulating blood cells (density x) is 
controlled by a hormonal agent (y) produced by the blood cells. The dynamics 
are determined by the differential equations 

dx 2y 
- = -x, 
dt 1 + y2 

dy 

dt 
= x - y. 

a. Determine the steady states for x, y ~ O. 

b. Sketch the flows in the (x, y)-phase plane for x, y ~ o. 
c. For an initial condition of x = 10, y = 0.1, what will happen in the 

limit t ~ oo? 

~ 5.21 In an article on periodic enzyme synthesis, Tyson (1979) analyzes a 
mathematical model for feedback inhibition of enzyme synthesis. This prob­
lem deals with an equation from Tyson's paper. Let XI and X2 represent the 
concentrations of biochemicals. Assume that 

dXI 1 = --- -KxI 
dt x~ + 1 ' 

dX2 
= XI - KX2, 

dt 

where n is a positive integer and XI ~ 0, X2 ~ O. Consider this equation for 
K 2 _ I 

- 2"' 

~ 

a. There is a steady state in this equation when X2 = 1. Find the value of 
XI at this steady state. 

b. Determine the stability of the steady state computed in part a. Show that 
the stability of the steady state does not depend on the value of n. 

c. Sketch the flows to the above equation in the (XI - X2) phase plane for 
n > 1, indicating the behavior as t ~ 00. 

5.22 A model for feedback inhibition is 

dx O.Sn 
- -X, 
dt o.sn + yn 

dy xn 
= - y, 

dt o.sn + xn 
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where x and yare positive variables and n is a positive constant greater than 2. 

a. Sketch the flows in the (x, y) phase plane (x > 0, y > 0). 

b. There is one steady state, at x = y. By inspection, find the values of x 
and y at this steady state. 

c. Compute the eigenvalues at the steady state. Is the steady state stable or 
unstable? What type of steady state is this (node, focus, or saddle point)? 

~ 5.23 The Duffing equation is 

dx 
dt = y, 

dy 
= - y + x - x 3• 

dt 

Assume that -00 < x < +00, -00 < y < +00. 

a. Determine the steady states. 

(5.43) 

b. For each steady state algebraically determine the stability and specify if 
it is a node, a saddle point, or a focus. 

c. Sketch the flows in the (x - y)-plane. 

d. Describe the dynamics starting from x = 0, y > 0, in the limit t -+ 00. 

~ 5.24 In an excitable system such as a neuron, a small deviation from a stable 
steady state can lead to a large excursion before the steady state is reestablished. 
As we discussed in Dynamics inAction 15, the Fitzhugh-Nagumo equation can be 
used as a model for a neuron. This problem also deals with the Fitzhugh -Nagumo 
equation using a different set of parameters. Consider the differential equation 

dx 

dt 

There is one steady state at x = 2, Y = - ~ . 

1 » E > O. 

a. Determine the x -isocline. For this curve determine the maxima, minima, 
and inflection points, using appropriate algebraic tests. Find the values 
of x and y for each of these points. Sketch the curve. 

b. Algebraically determine the stability of the steady state and classify it as 
node, focus, or saddle point. 

c. Sketch the flows in the (x, y) phase plane, assuming 1 » E > O. 
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d. Suppose there is a small displacement from the steady state to x = 1, 
Y = - ~ for 1 » E > o. Sketch the graph that shows x as a function 
of time. It is not necessary to put any units on the time axis, but try to 
estimate values on the x -axis. 

~ 5.25 The following equations arise in the analysis of nonlinear dynamics 
in neurobiology. Your problem here is to consider the dynamics determined by 
these equations. 

dx Sx3 9x 
-=y--+-
dt 8 4 ' 

dy 
dt = - y, for x < 0, 

dy x 3 

dt = - y + 8 + x 3 ' 

where -00 < x < 00, -00 < y < 00. 

a. Sketch the x- and y-isoclines. 

for x ~ o. 

b. There is one steady state at x = 2, Y = ~. From examination of the 
graphs of the x- and y-isoclines, determine the values of x and y at the 
other steady states. HINT: There are a total of three steady states in this 
problem. 

c. Sketch the flows in the (x, y)-plane, being sure to show the dynamics 
starting from different initial conditions. Based on this sketch, classify 
the steady states (e.g., as a stable focus, unstable node, saddle point, etc.) 
that are present in the phase-plane sketch. What happens in the limit 

t -+ 00 from the initial condition x = 0.5, y = O? 

d. Find the characteristic equation that can be used to determine the stabil­

ity of the steady states. Solve this characteristic equation to classify each 
steady state. HINT: In doing this it is easy to make mistakes in the alge­
bra, so try to work carefully. Use your sketch to help eliminate algebraic 
errors. 

~ 5.26 This problem deals with the van der Pol oscillator, Eq. 5.25. 

a. Show that the van der Pol equation can also be written as a single second­
order differential equation 
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b. For Ixl « 1, the above equation can be approximated by the linear 
equation 

dx 
- +EX = O. 
dt 

Solve this equation for E = 0.6 and initial conditions x(O) = 0, 

~~ 11=0 = 1. 

c. What is the behavior of the solution to part b in the limit t --+ oo? 

d. Compare the dynamics in the linear equation and in the original 
nonlinear van der Pol equation in the limit t --+ 00. 

~ 5.27 

a. Draw three different vector fields on the surface of a sphere in which 
there are two nodes. 

b. Draw three different vector fields on a torus in which there are no steady 
states. 

~ 5.28 When we linearized the Lotka-Volterra equations about the fixed 
point at x* = ~,y* = ~,we found that the real part of the eigenvalues 
was zero. In order to show that the trajectory really is that of a center, closed loops 
around the fixed point, we consider the following quantity, analogous to energy: 

E = a In y + 8 lnx - py - yx. 

a. Show that a In y - py hasaminimumaty = a/po Similarly, show that 
8 In x - y x has a minimum at x = ~. Since E is these two terms added 
together, E also has a minimum at the fixed point, and has a bowl-like 
shape; curves of constant E are closed curves around the fixed point. 

b. Show that ~7 = 0 for the trajectories of the Lotka-Volterra system. You 
can do this by finding ~7 in terms of ~~ and *' and substituting in 
the values for ~ and * from the Lotka-Volterra equations. 

Since x and y move along curves of constant E, the trajectory consists of 
closed curves around the fixed point: periodic cycles. 

~ COMPUTER PROJECTS 

Project 1 Write a computer program that does Euler integration of 
two-dimensional ordinary differential equations. Test it on the Lotka-Volterra 
equations (or other equations that are presented in the exercises in this chapter). 
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Project 2 Write a computer program to integrate the Lorenz equations 
using the Euler method. 

1. Start with D. = 0.05 and make a plotofx(t). Then reduce D. toO.Ol, and 
see if x(t) changes substantially. The changes become more dramatic as 
time increases. Repeat this process to find a satisfactory value of D.. 

2. Once you have settled on a value for D., integrate the Lorenz equations 
starting from an initial condition that is very close to the attractor. You 
can find such an initial condition by starting at another arbitrary initial 
condition and integrating the equations until you are on the attractor. 
Then, pick off the last x, y, and z values to use as your new initial 
condition. 

3. Change the initial condition by a small amount, and see how long it 
takes for the sensitive dependence on initial conditions to create a very 
large change in x(t) compared to that found in (2). Do this again for 
other initial conditions that are even closer to that in (2), and describe 
how the time that it takes for x(t) to deviate dramatically from the x(t) 

calculated in (2) depends on the difference in initial conditions. 

Project 3 In Section 5.8 we introduced the Fitzhugh-Nagumo equations, 

dv 
dt = I - v(v - a)(v - 1) - w, 

dw 
= €(v - yw). 

dt 
(5.44) 

These models show a current pulse injected into an axon can generate an action 
potential. By injecting current steadily, it is possible to generate repeated action 
potentials. Part I. Use linear stability analysis to figure out how large the current 
I needs to be to destabilize the fixed point in the model. The sequence of steps 
you will need to follow is: 

1. Find the fixed point as a function of I. It is actually possible to solve 
algebraically the cubic equation for v. Symbolic calculation packages 
like Mathematica® or Maple® will do this automatically, but you can 
also find the solution to the cubic in many mathematics handbooks. 
Alternatively, you could find the fixed point numerically using Newton's 
method. 

2. Linearize the equations about the fixed point. 

3. Find the eigenvalues of the linear equations. If the real part of the 
eigenvalues is less than 0 for a given value of I, then the fixed point 
is stable. 
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Figure 5.39 The real part of the eigenvalues of the linearized dynamics at the fixed 
point versus the current I injected into the axon. 

Figure 5.39 shows a graph of the real part of the eigenvalues versus I, found using 
Mathematica. For I < 0.03508, the real part of the eigenvectors is negative, 
meaning that the fixed point is stable. For larger values of the current, the fixed 
point is unstable. 

Part II. Use the Euler method to show the trajectory for I = 0.1, where the 
fixed point is unstable. 
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Time-Series 
Analysis 

6.1 STARTING WITH DATA 

Up until now we have examined mathematical descriptions of dynamical 
systems and seen how different types of behavior can be generated, such as fixed 
points, limit cycles, and chaos. The goal of applied dynamics is to relate these 
mathematical systems to physical or biological systems of interest. The approach 
we have taken so far is model building-we use our understanding of the physical 
system to write dynamical equations. For example, we used our understanding of 
the interaction of predators and prey to motivate the Lotka-Volterra equations. 
These equations then suggested the types of dynamics we were likely to observe 

in the field, such as population oscillations around a fixed point, or extinction. 
In this chapter, we shall take the opposite approach. Starting with a sequence 

of measurements-a time series-we want to see what the data themselves can 

tell us about the dynamics. In particular, we will introduce some tools from time­
series analysis (often termed signal processing) that can sometimes be used to 
suggest what types of equations are appropriate, or to compare the predictions 
made by mathematical models to measurements made in the field. 
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The ultimate goal for time-series analysis might be to construct a computer 
program that, without any knowledge of the physical system from which the data 
come, can take the measured data as input and provide as output a mathematical 
model describing the data. This can be done with current technology (see Sec­
tion 6.7), but the method has a severe shortcoming: The resulting mathematical 
model generally does not have identifiable components that can be given physical 
meaning. Thus, it is not possible to use such data -generated mathematical models 
to determine the effect of changing some aspect of the physical system, which is 
often the motivation for studying dynamics in the first place. 

In practice, the approach that is taken is a combination of model building 
and time-series analysis. Model building based on our knowledge of the physical 
system is used to suggest what features to look for in the data; time-series analysis 
is used to detect and quantify these features or to refute their existence, thus 
motivating changes in the model. 

In this chapter, we shall mimic this process; a series of models will be 
proposed, data will be generated from these models, and time-series analysis 
techniques will be introduced to show how the models and data can be related to 
one another. The choice of models here is intended to illustrate various aspects of 
time-series analysis and does not include the physical and biological information 
that would motivate realistic models of specific phenomena. 

6.2 DYNAMICS, MEASUREMENTS, AND NOISE 

In the previous sections of this book, we have dealt extensively with 
dynamics. By now, we are familiar with equations of the form 

XHI = f(x,) 

and 

dx 
dt = g(x, y) 

dy 
dt = h(x, y). 

The functions f(), g(), and h() govern the dynamics of the systems, and given 
the functions, we know how to look for dynamical behavior such as fixed points, 

cycles, and chaos. 
When dealing with data, we need to introduce two new concepts: 

measurement and noise. 
In conducting an experiment or making measurements in the field, we can 

measure only a limited set of quantities and are able to make those measurements 
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with limited precision. For example, an ecologist studying predator-prey dynam­
ics might be able to count the population of the predator only, even though it is 
clear from models such as the Lotka-Volterra equations that both the predator 
and prey playa role in the system dynamics. 

When constructing a mathematical model of observed dynamics, it is es­
sential to include an equation that describes how the actual measurements are 
related to the dynamical variables. For instance, in the Fitzhugh-Nagumo model 
of nerve cell dynamics (Eq. 5.29), the transmembrane voltage v is usually mea­
sured in experiments, while the recovery variable w cannot be measured directly. 
In this chapter, an additional equation will be added to dynamical models, de­
scribing how the measurement at time t, denoted as Dr or D(t), is related to the 
variables in the dynamical system. 

The measurements approximate the true dynamical variables; the difference 
between the two is called the measurement error. The measurement error arises 
from several factors: systematic bias, measurement noise, and dynamical noise. 

Systematic bias results from a flaw in the measurement process. For in­
stance, suppose one tried to measure the use of a university's library by counting 
the number of students in the library just before exams at the end of the semester. 
Such a count would probably seriously overestimate library usage over the course 
of a year. Such systematic bias will not be discussed further here. 

Measurement noise refers to fluctuations in measurements that arise from 
chance. Even if there were a well-defined average level oflibrary use, the number 
of students at any particular moment would likely differ from this average. 

Dynamical noise is another important source of noise in data. Real-world 
systems do not exist in isolation. They are affected by outside influences. For 
example, the population of prey depends not just on the population of predators, 
but also on environmental variables such as the temperature and precipitation, 
which themselves fluctuate. One would like to include such outside influences 
in dynamical models. This is often done by regarding the outside influences as 
random noise that affects the dynamical variables. 

DYNAMICS IN ACTION 

16 FLUCTUATIONS IN MARINE POPULATIONS 

In order to study the dynamics of phytoplankton, marine biologist W. E. Allen made 

daily measurements from 1920 to 1939 of the total number of diatoms per liter 
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of water off of two piers in Califomia, at the Scripps Institute of Oceanography 

and Point Hueneme. These impressive data sets are displayed in the figure. Like all 

measurements, there are flaws and shortcomings in this data. There is certainly a 
component of measurement noise here: Not every liter of water contains the same 

number of diatoms. Systematic biases in the measurements may also exist. Important 
dynamical variables, such as the number of organisms that eat phytoplankton, were 

not measured. 

2 Scripps pier 

1930 1940 

2 Point Hueneme pier 

1930 1940 

Weekly averages of daily counts 
of total number of diatoms 
(phytoplankton) (millions of 
cells per liter) at the Scripps 
and Point Hueneme piers, 
Califomia, 1920-1939, collected by 
W. E. Allen. Data from Tont (1986). 

There are many outside influences that affect the dynamics: the amount of sunlight, 
the water temperature, and the amount of nutrients in the water. These were not 
measured. Even if these variables had been measured at the piers, the fact that 
ocean currents carry phytoplankton from place to place makes it unclear how to 
interpret measurements made in a single place. 

GAUSSIAN WHITE NOISE 

A source of random numbers with which everyone is familiar is a deck of 
cards. Imagine that you have a very large deck of cards and that each card has 
a number from -1 to 1 written on it. The deck has been thoroughly shuffled 
so that the cards are in random order. Each card that you draw from the deck 
tells you virtually nothing about either the previous cards that were drawn or the 
subsequent cards yet to be drawn. In this situation, the drawn cards are said to be 
independent of one another. The resulting numbers are said to be "drawn from 
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a distribution" of numbers. Here the distribution is the set of all the numbers in 

the deck. 
It is easy to imagine a situation in which numbers drawn from a distribution 

would not be independent of one another. Suppose the cards in the deck were 
sorted in ascending order. Then each card would give you a good idea of what the 
value on the following card would be. When the random numbers drawn from the 
deck are independent of one another-when the deck is shuffled randomly-the 

numbers form a source of white noise. 
White noise is often a good model of measurement and dynamical noise. But 

what is the distribution from which the white noise is drawn? It might seem that 
the distribution will depend on details of the system being studied, but for reasons 
described ahead, it happens that a very commonly encountered distribution in 
practice is the Gaussian distribution. 

The random variability in a measurement or a random outside influence is 
often the sum of many different types of random variability. For example, in mea­
suring the population of flies in a field, there are many potentially random events: 
the number of flies that happen to be near the capturing net, the temperature 
and wind velocity at the time the measurement was made (which influences the 
number of flies who are up and about), and so on. Careful experimental design 
can minimize the influence of such factors, but whichever ones remain often tend 

to add up. 
In terms of the deck-of-cards analogy, this means that each measurement 

error or outside perturbation is not a single card drawn from a deck, but instead 
results from drawing several cards at once and adding up the numbers on the 
cards. Dynamics in Action 7 describes a random walk, a process in which inde­
pendently drawn random numbers are added up to give a final result. As seen 
in Appendix A, the probability distribution for a random walk is the bell-shaped 
Gaussian distribution shown in Figure 6.1. 

-(x - M)2 
p(x)dx = ~ exp 2 dx. 

v2rra 2 2a 
(6.1) 

M and a are constants: M is the mean value, and a is called the standard 
deviation. 

Equation 6.1 is to be interpreted in the following way: The probability that 

a value drawn from a Gaussian distribution will fall into the range x to x + dx 

is p(x)dx when dx is small. p(x) is called the probability density. If we want to 
know the probability of noise falling in a larger range, it is necessary to calculate 

the integral-the probability that the noise is in the range a ::: x ::: b is 

lb p(x)dx. (6.2) 
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Figure 6.1 
A Gaussian probability density, 
Eq. 6.1, with mean M = 30 and 
standard deviation 0" = 3. The 
black bar has length 20" . 

Figure 6.2 The probability of a single measurement falling into a specified range 
is the integral of the probability density over that range. The probability of the 
measurement falling in the range [M - 20", M + 20" I is the area shown in black, 
which is approximately 0.95. 

Table 6.1 The probability that a single 
measurement, drawn from a Gaussian distribution 
with mean M and standard deviation 0" , falls into 
the indicated interval. 

Interval Prob. 

M - 0.50' to M + 0.50" 0.383 

M-a to M+a 0.683 

M - l.Sa to M + l.5a 0.866 

M-2a to M+2a 0.954 

M - 2.50' to M + 2.50' 0.988 

M-3a to M+3a 0.997 
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The integral in Eq. 6.2 is so important in practice that tables of its values 
are widely published. Using one of these tables, such as Table 6.1, we can see that 
the probability of the noise falling into the range M - 2a to M + 2a is roughly 
0.954, or about 95 percent. See Figure 6.2. 

+ MoDELOHE 

The behavior of the finite-difference equation 

Xt+! = A + pXt (6.3) 

is easily studied with the methods presented in Chapter 1. There is a steady state 

at 

Xt = A/(l - p) = M 

that is stable if Ipl < 1, which is the case we shall assume here. (We use the 

variable M as shorthand for (l~P) .) The solution to the finite-difference equation 
is exponential decay to the steady state: After the transient passes, we have steady­
state behavior Xt = M. 

For simplicity, we will assume that a direct measurement of the dynamical 

variable Xt is made, but since there is measurement noise the measurement at 
time tis 

(6.4) 

where Wt is a random number drawn independently at each t from a Gaussian 
probability distribution with a mean of zero and standard deviation a. 

Figure 6.3 shows data Dt generated from this model, with A = 4,p = 0.95, 
and consequently M = (l~P) = 80. Wt is Gaussian white measurement noise 
with a standard deviation of a = 2. 

This model might serve as a description of a system where there is some 
quantity (e.g., population level or amount of a circulating hormone) that is main­
tained at a steady level. The model assumes that no outside perturbation affects 

xt-the dynamics of the model are completely trivial once the transient has died 
out: steady state. 

Using the model as a motivation in interpreting measured data, we might 
ask the following questions: 

• What is the value of the steady state in the data? 

• What is the level of measurement noise in the data? 
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Figure 6.3 
Data D t from the model 
X t+l = A + PXt with 
measurement Dt = Xt + Wt. 
A = 4, P = 0.95, and the 
standard deviation of Wt is 
a = 2. 

We also might want to decide if the model is good for describing the 
measured data: 

• Is there evidence that there really is a steady state? 

• Is there evidence that there is only measurement noise and no outside 
perturbations to the state Xt? 

D 

6.3 THE MEAN AND STANDARD DEVIATION 

We make a series of measurements, as in Figure 6.3 and we have a model 
in mind such as Model One, which suggests that the system is at a stable steady 
state. How do we estimate the value M of this steady state from the measurements? 

Intuition tells us that we should average all the N measurements D 1, D2, • •• ,DN 
rather than take just a single measurement, say D7 , as our estimate of M. Because 
we cannot measure M directly, but rather estimate it from Df> we will denote 

the quantity we estimate as M est• Although M depends only on the dynamical 
equation 6.3 and-according to the model-is constant, Mest may vary depending 
on how many data points D t we collect and on when they are collected. 

To see where the idea of averaging comes from, consider trying to find the 
value Mest that is closest to all of the measurements Db ... , D N. We take the 
separation between M est and Dt to be (Dt - M est ) 2 • To make M est as close as 
possible to all the measurements, we minimize the total separation E, 

N 

E = L(Dt - Mest)2. (6.5) 
t=1 
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To perform the minimization, take d~" and set it equal to zero (remember, 
we're trying to find the value of Mest that gives the smallest value of E): 

dE N 
-- = 0 = 2 LCDt - Mest). 
dMest t=1 

C6.6) 

Rearranging the right-hand side ofEq. 6.6, we find 

1 N 
M est = - LDt. 

N t=1 

C6.7) 

This is the familiar formula for averaging. M est is termed the sample mean of the 
set of measurements Dt • 

STANDARD DEVIATIO .... 

By calculating the mean of the measured data, we now have an estimate, 
Mest> of the value of the steady state M. We are now interested in the fluctuations 
Vt of the measurements around the mean, 

Model One interprets these fluctuations as noise. One of the goals of time-series 
analysis of the Model One data is to assess the validity of this interpretation. 

As a first step, we want to characterize the size of the fluctuations. One way 
(which will turn out not to be very useful) is to consider the mean value of the 
fluctuations: 

1 N 1 N (1 N ) - LVi = - LCDt - M est } = - L D t - M est = M est - M est = 0 
N t=1 N t=1 N t=1 

o 20 40 t 60 80 100 

Figure 6.4 
The sample mean Me,t of the 
data shown in Figure 6.3 is 
79.74. Subtracting this value 
from each data point D, gives 
the fluctuations about the mean, 
Vt = Dt - Me,t, as plotted here. 
The standard deviation of these 
fluctuations is 2.06. 



288 TIME-SERIES ANALYSIS 

The mean value of the fluctuations is always zero! This isn't so remarkable when 
we remember that the fluctuations are defined to be the difference between each 
measurement Dt and the mean Mest = L~1 Iff. (The fact that the mean of 
the fluctuations around Mest is always zero, even though the fluctuations are 
hypothesized to be random, points out that Mest is only an estimate of the fixed 
point M-the fluctuations around M are unlikely to average out to be exactly 
zero.) 

More useful is the mean value of the square of the fluctuations: 

N N 
2 1 "2 1 ,, 2 a = N ~ Vt = N ~(Mest - D t ) • 

t=1 t=1 

(6.8) 

a 2 is called the variance. The square root of the variance, a, is the standard 
deviation. Note that Na 2 is the same quantity that we minimized in Eq. 6.6 in 
order to find the mean, so the mean might be defined as "the value that minimizes 
the variance:' 

STANDARD ERROR OF THE MEAN 

Although Mest is easy to calculate, it is only an estimate of the true mean M. 
Why only an estimate? Consider the limiting case where only a single measurement 
D1 is made. In this case, Mest = D 1, and clearly any noise in D1 is duplicated in 
Mest . With two measurements, D1 and D2 , there is some chance that the noise 
will cancel out, but it probably will not cancel out exactly. 

Intuition tells us that the more measurements we use in averaging, the 
better our estimate Mest will be. We can quantify this intuition. A good way to 
interpret Mest is that it is the sum of the true value M plus some uncertainty, 

Mest = M + uncertainty. (6.9) 

The uncertainty in Mest comes from averaging the noisy components of the 
individual measurements. Very often the amplitude of the uncertainty is well 
described by a Gaussian probability distribution. The standard deviation of this 
uncertainty is 

a 

./N' 
(6.10) 

which is called the standard error of the mean. Note that the IN dependence of 
the standard error of the mean implies that taking more measurements reduces 
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the uncertainty in the estimate of M, but that in order to reduce the uncertainty 
by a factor of 2, one needs to collect four times as much data. 

An important assumption that goes into the derivation of the formula 
for the standard error of the mean given in 6.10 is that the measurements are 
independent of one another. In the next several sections, we will see various ways 
to test for such independence. When measurements are not independent, the 
uncertainty in the estimate of the mean may vary with N in different ways. An 
extreme case is that of 7 noise, described in Dynamics in Action 6. For 7 noise, 
the variance increases as N increases, and so the uncertainty in the estimate of 
the mean increases as more data are collected! 

o ExAMPLE 6.1 

Are the data plotted in Figure 6.3 consistent with Model One? More specif­
ically, does the mean of the data correspond to the theoretical value of the steady 
state for the parameters used in Model One? 

Solution: The mean of the 100 data points plotted in Figure 6.3 is found to 
be Mest = 79.74, and the standard deviation is 2.06. The theoretical value of the 

steady state for the parameters used is M = (l~P) = 80. So now the question 
is whether 79.74 is close enough to 80 for us to conclude that the data and the 
model are consistent. 

Since there are 100 data points, the standard error of the mean is ~ = 
0.206. This standard error describes the uncertainty in the estimate of the mean­
how much estimated mean might deviate from the true mean just because of 
chance fluctuations in the data. As a rule of thumb, the difference between a 
number and M est is only statistically significant if the difference is greater than 
twice the standard error of the mean. (This is only a guideline. A more accurate 
and precise statement of the meaning of statistical significance is given in statistics 
textbooks such as Snedecor and Cochran (1989).) In this case, the difference 
between M, the theoretical value of the steady state, and Mest is 179.74 - 801 = 
0.26, which is less than twice the standard error of the mean. Therefore, we 
conclude that the difference between Mest and M is statistically insignificant: The 

data are consistent with the model. 
D 

+- MoDEL lWo 

A possible deficiency with Model One is that it does not include any outside 
influences on the state variable Xt. For this reason, all the observed variability is 
modeled as measurement noise. 
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Figure 6.5 
Data D t from the model 
Xt+l = A + PXt + Vt with 
measurement D t = Xt + Wt. 

A = 4, P = 0.95. The standard 
deviation of Wt is u = 2 and 
that of Vt is 3. 

A simple way to modify Model One to include outside influences is to write 
the finite-difference equation 

Xt+l = A + PXt + Vt. (6.11) 

This incorporates a random influence Vt on the state variable. As before, the 
measurement function D t will be taken, for simplicity, to be the state variable Xt 

itself, plus random measurement noise W" 

Dt = Xt + Wt • (6.12) 

We now have two different sources of noise in the model. We will assume that 
these two sources are completely independent and that each has its own mean 
and standard deviation. 

Somesimulateddatafromthismodel,withA = 4,p = 0.95 (i.e.,M = 80, 

as in Model One) are shown in Figure 6.5. Here we again take the standard 
deviation of Wt to be 2, and we will assume that the standard deviation of Vt is 3. 

The mean of each of the random influences is assumed to be zero. 
Some differences between the data from Model One and Model Two can be 

seen: Model Two produces a much greater range of variability than Model One 
and shows slow trends, whereas Model One does not. 

In interpreting the measured data according to Model Two, we might ask: 

• What are the dynamics of movement toward the stable fixed point after 
an outside perturbation? In particular, can we estimate the time constant 
of exponential decay, P, from the data? 

• How much of the variability in the data is due to measurement error, 
and how much is due to outside perturbation? o 
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6.4 LINEAR CORRELATIONS 

One of the assumptions in Model One is that the observed fluctuations 
around the steady state are a result of white measurement noise; that is, the noise 
in each measurement is independent of the noise in every other measurement. 
How can we test the validity of this assumption in the data? If the fluctuations 
were not independent, how could we quantify their dependence? 

So far, we have characterized flucutations by their mean and standard de­
viation. These two statistics have an important property: They do not depend on 
the order in which the data occur. That is, if each measurement was written on its 
own card, and the stack of cards was shuffled, sorted, or rearranged in any way 
whatsoever, the mean and standard deviation would remain exactly the same. 

As we discussed in Section 6.2, a randomly shuffled deck of cards generates 
values that are independent of one another. Since the mean and standard deviation 
are not influenced by the order of cards in the deck, they are of no use in deciding 
whether fluctuations are independent of each other. 

In order to quantify the degree of dependence or independence, consider 
two limiting cases. Recall that the fluctuations around the mean are denoted V,. If 
the fluctuations are white noise-this is the case of complete independence-then 
we can model them as 

(6.13) 

where W, is white noise. (We write W, instead of W, in order to distinguish this 
model of Vi from the white noise used in Models One and Two that affected the 
variable D,. You can think of W, and W, as different decks of cards.) 

At the other extreme, Vt+ 1 might be completely dependent on V" that is, 

Before moving on to nonlinear forms of the function! (V,), we will start here 
with the simplifying assumption that !(V,) is linear: 

(6.14) 

Combining these two extreme cases of Eqs. 6.13 and 6.14 into one model 
of the fluctuations, we can write 

(6.15) 
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Note that Eq. 6.15 hasn't been derived from any calculation; it is just a convenient 
way of writing a model having a parameter P that indicates the degree of depen­

dence (with the assumption oflinearity) between v,+l and VI. When P = 0, VI+l 
is independent of VI. If P is close to 1, then V,+1 is almost the same as v,; if P 
is close to -1, then VI+l is again almost the same as v" but with a value of the 
opposite sign. Remember that if Ipi > 1, the steady state at V = 0 in Eq. 6.14 is 
unstable. If the data are not blowing up to 00, then the model ofEq. 6.14 must 

have Ipi < 1. 
How can we estimate P from measured data? We can take the following 

approach: Look for a value Pest that makes the square of the difference between 

VI+1 and P VI as small as possible-a value that fits the equation VI+l = Pest VI 
as closely as possible. We will do this using a least-squares criterion: 

N-l 

E = L(V,+1 - Pestv,)2. (6.16) 
1=1 

Finding the minimum by taking the derivative of E with respect to Pest and setting 
this equal to zero, we get 

dE N-l 

= 0 = L(VI+1 - Pestv,)v" 
dPest 1=1 

(6.17) 

which implies 

(6.18) 

Pest is called the correlation coefficient. 

o ExAMPLE 6.2 

In the data from Models One and Two, are the fluctuations around the fixed 
point consistent with the assumption that they are due to white measurement 

noise? 

Solution: We have already found the mean of the data D, from Model One 
to be Mest = 79.74. The fluctuations around the mean are therefore 

v, = DI - 79.74. 

Using measured data in the formula for the correlation coefficient in Eq. 6.18, 
we find that Pest = -0.0026, which is close to zero and therefore consistent with 
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Figure 6,6 
A scatter plot of the fluctuations 
around the mean: Vr+l versus V, 
from Model One. (One thousand 
data points are shown.) 

a claim that VI+1 is independent of VI ' (More advanced texts on statistics give a 

precise meaning of "close to zero" in terms of the uncertainty in the estimate Pest. 

See, for example, Box and Jenkins (1976).) Figure 6.6 shows Vt+l plotted against 

VI for the Model One data. The round cloud of points is typical of a lack of 

correlation between the two variables. 

The mean of the measurements from Model Two is Mest = 84.10. Calcu­

lating the correlation coefficient by applying Eq. 6.18, we find Pest = 0.786. This 

indicates a substantial degree of correlation between VI+1 and VI' as shown by 

the cigar-shaped cloud of Figure 6.7. This leads us to conclude that the fluctu­

ations from the mean in Model Two are not entirely the result of white noise 
measurement error. 

The measurement noise WI and the dynamical noise VI in Model Two are 
both Gaussian white noise, but they play different roles. The measurement noise 
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Figure 6,7 
A scatter plot of the fluctuations 
around the mean: V,+1 versus V, 
from Model Two. (One thousand 
data points are shown.) 
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is completely forgotten from one time step to the next-Dt+1 contains no infor­
mation about the measurement noise at time t. The dynamical noise Vt , however, 
changes the value of the state variable Xt. Imagine that after time t the dynamical 
noise Vt were turned off. The noise at time t would be remembered while the 
state variable moved back exponentially to its fixed point. This "memory" of past 
dynamical noise, which can be characterized by the impulse response function 
studied in Section 4.7 creates the correlation between Vt and Vt+1• In contrast, 
there is no mechanism to preserve memory of the measurement noise from one 
time to another. 

The calculated value of the correlation coefficient, Pest = 0.786, tells us that 
consecutive measurements are not independent of one another. We might want to 
go further, and use Pest as an estimate of the value of P in the Model Two dynamics 
(Eq. 6.11 ), which we know to be P = 0.95. The difference between Pest and P arises 
mostly from the influence of the measurement noise Wt in Eq. 6.12. Since the 
measurement noise is incorporated in Pest' Pest cannot be used by itself to estimate 
p. In Example 6.3 we will see one way to estimate P from the measurements. D 

+ MODEL THREE 

Models One and Two display fixed points and exponential decay to a 
fixed point, respectively. Another type of behavior frequently encountered is 
oscillations. For example, consider the two coupled differential equations 

dx 
- = y + v(t), 
dt 

dy - = -ay - bx, 
dt 

(6.19) 

where v(t) is random noise. If we neglect the dynamical noise v(t), we can use 
the tools from Chapter 5 and write down the characteristic equation for this 
differential equation, and then find the eigenvalues. They are 

-a Ja 2 - 4b 
A= 2 ± 2 ' (6.20) 

so for a > 0 and b > ~ the equation produces oscillations of exponentially 

decaying amplitude. The frequency of the oscillations are w = ,/a22-4b and the 

time constant of the exponential decay is ~. 
In this case, we have two dynamical variables, x (t) and y (t). We shall assume 

that we measure only one of them, x (t), along with Gaussian white measurement 
noise Wi. The measurements D j are made at discrete times, every T time units, 

D j = x(iT) + Wj. (6.21) 
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Figure 6.8 shows a measured time series from Model Three with a = 0.5, 
b = 3, and T = 0.1. We set the standard deviation of the dynamical noise v(t) 

to be 3 and that of the measurement noise Wi to be 1. 

Although there are ups and downs in the data, it would be hard to claim 
from Figure 6.8 that the dynamics have much to do with an exponential decay in 

the amplitude of the oscillations. Nonetheless, motivated by the model we might 
ask 

• What are the dynamics of movement toward the stable fixed point after 
an outside perturbation? In particular, what is the intrinsic frequency of 
the oscillation and the time constant of exponential decay? 

• How much of the variability in the data is due to measurement error, 
and how much is due to outside perturbation? 

To evaluate whether the model is appropriate for describing the data, ask: 

• What is the evidence that there are oscillations in the dynamics, as 
opposed to random perturbations and exponential decay as in Model 
Two? 

D 

THE AUTOCORRELATION FUNCTION 

The dynamics of Model Two involve exponential approach to the fixed 
point. The dynamics of Model Three involve sine-wave oscillations with an am­

plitude that decays exponentially. The data generated from the models do not 
show these dynamics very clearly but do indeed contain within them information 
about the exponential decay and sine-wave oscillations. We can use coefficients 
of correlation to reveal the dynamics obscured by noise. 

Recall that Vt denotes fluctuations of the measured values around the mean, 
Vt = D t - Mest • The correlation coefficient fits the relationship between Vt+1 
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Figure 6.8 
A time series from Model 
Three, with a = 0.5, b = 3, 
and T = 0.1. The differential 
equations were integrated 
numerically using the Euler 
method with a time step 
D. = 0.1. The standard deviation 
of the dynamical noise v(t) is 3; 
that of the measurement noise 
W(t) is 1. 
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and Vt to the equation V,+l = P Vt + Wt. We can easily generalize the correla­
tion coefficient to describe the relationship between v,+k and v" giving us the 

autocorrelation function R (k), 

(6.22) 

k is called the lag between the variables Vt and v,+k' Note that the variable t is 
a "dummy variable"-it is used purely as an accounting device in the summa­

tions. R (k) is quite simple to calculate from data: One repeats basically the same 
calculation for several different values of k. 

o ExAMPLE 6.3 

Use the autocorrelation function to show that the measured data from 

Models One, Two, and Three show distinct dynamics for the three models. 

Solution: Figure 6.9 shows the autocorrelation function R(k} for the data 
from Model One. The autocorrelation function for this data, and for all data, 

takes the value 1 at k = 0, that is, R(O} = 1. The reason for this can be seen by 
inspecting Eq. 6.22; when k = 0, the numerator is the same as the denominator. 

For the Model One data, R(k) is approximately zero for k > O. (The 
deviations from zero are due to the finite length of the data used in calculating 
R(k). See Exercise 6.5.} This is consistent with the model of the fluctuations as 
resulting from white measurement noise. In fact, this shape for R (k) is often taken 
as the definition of white noise, especially in older textbooks written before the 
current appreciation of nonlinear dynamics and chaos. 

For the Model Two data, R(k} has a different shape, as Figure 6.10 shows. 

From its value of 1 at k = 0, R (k) falls off sharply to approximately 0.8 at k = 1. 

For k ::: 1, R(k} falls off exponentially. From the parameters used in Model Two, 

we know that the exponential dynamics in the absence of noise have the form 

1· 
0.8 

R(k) 0.6 
0.4 
0.2 

o . .. . ... . . . . .. 
-O.2~_~ _____ _ 

o 5 10 k 15 20 

Figure 6.9 
The autocorrelation function 
R(k) versus k for the data from 
Mode10ne. 
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Figure 6.10 
The autocorrelation function 
R(k) versus k for the data from 
Model Two. 

Figure 6.11 
The autocorrelation function 
R(k) versus k for the data from 
Model Three. 

Xt = 0.95' Xo. The thin line in Figure 6.10 plots this theoretical exponential decay 
and as can be seen, it fits the autocorrelation function very closely. 

The sharp fall-off in R (k) from k = 0 to k = 1 reflects the white measure­
ment noise in Model Two. This fall-off can be used to estimate the variance of the 
measurement noise. Without going into detail, we note that the fall-off has an 
amplitude of roughly 0.2. This means that 20 percent of the total variance of the 
Model Two data can be ascribed to white measurement noise. Since the total vari­
ance can be calculated from Eq. 6.8 to be 50.1, the variance of the measurement 
noise is estimated to be roughly 50.1 x 0.2 ~ 10. This gives an estimated standard 
deviation of 3.2, consistent with the theoretical value of 3 used in generating the 

data. 
The autocorrelation function for the Model Three data is shown in Fig­

ure 6.11. It consists of a sine wave of exponentially decaying amplitude. From 
the figure, the period of the sine wave is easily found to be roughly 36 time 
units. The thin lines show an exponentially decaying envelope of the form 0.98' . 
This compares well with the theoretical form for the noiseless dynamics as 

0.975' sin( ;:.~ ) + cos( ;:.~ ), where A and B are set by the initial conditions. 0 
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6.5 POWER SPECTRUM ANALYSIS 

Consider a slight modification of Model Three: The dynamics and mea­
surement process are the same, except that in addition to measuring Dt , let us 
also measure the dynamical noise Vt. Perhaps in this situation it is impolite to 
call Vt "noise" since we know what it is. Thus we will now call Vt the input to 
the system, and we'll call D t the output. We are interested in the input/output 
relationship. 

THE FOURIER TRANSFORM 

In Section 4.7, we saw how a signal could be broken down, or decomposed, 
into the sum of simpler signals. For instance, the signal shown Figure 4.17 can 
be decomposed into the four simpler signals shown in Figure 4.18. This type of 
decomposition can be performed in any number of ways. 

One incredibly powerful decomposition is into sine waves of different 
frequencies. Recall from Section 4.7 the following facts for linear systems: 

1. The output that results from a sine-wave input of frequency cu is a sine 
wave of the same frequency cu but perhaps of different amplitude and 
phase. The amplitude of the output sine wave Aoutput (cu) is proportional 
to the amplitude of the input sine wave Ainput(cu): 

Aoutput(cu) = G(cu)Ainput(cu). 

For any input phase cJ>input(cu), the output phase cJ>output(cu) is shifted by 
a fixed amount at each frequency, 

<I> (cu) = cJ>output (cu) - cJ>input (cu ). 

G (cu) is called the gain of the system, and it may be different at different 

frequencies. <I> (cu ) is called the phase shift and may also differ at different 

frequencies. 

2. Linear superposition of inputs says that if the input can be written as a 

sum of sine waves of different frequencies, then the output is the sum of 
sine waves of those same frequencies. The amplitude and phase of the 
sine wave at each frequency in the output are exactly the same as if the 
input had been purely the single corresponding sine wave in the input. 

The method for decomposing a signal into sine waves of different frequen­

cies is called the Fourier transform. The details of how this is done are covered 
in many texts (see Press et al. (1992». Here we simply point out that any signal 
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can be decomposed into sine waves and that the result is an amplitude and phase 
at each frequency. 

An especially important case is when the input is white noise. For white 
noise, A input (w ) is a constant for all w. The constant is proportional to the standard 
deviation of the white noise. The phase lPinput(w) varies from one frequency to 
another, and is generally regarded as random. Since Ainput(w) is constant, white 
noise can be considered as a sum of signals of all different frequencies. This is 
where the name "white" comes from, by analogy to the fact that white light is a 
mixture of equal parts of many different frequencies oflight. 

THE T'RANSFER FUNCTION 

Having measured the input and output signals from Model Three, we use 
the Fourier transform to decompose each of the two signals into a sum of sine 
waves of different frequencies. At each frequency w, we have amplitudes Ainput (w) 

and Aoutput(w) and phases lPinput(w) and lPoutput(w). We can easily calculate 

G('.') -_ Aoutput(w) d "'() A.. () A.. () ..., an 'V w = Y'output W - Y'input W • 
Ainput(W) 

Note that G(w) and <I>(w) are functions offrequencyw. This pair offunc­
tions is called the transfer function of the system. Ifwe know the transfer function 
for a linear system, then we can calculate the output for any given input, or vice 
versa (as long as G(w) I- 0). 

You may recall from Section 4.7 that an input! output system is described by 
its impulse response. The transfer function and impulse response are different 
ways of looking at exactly the same thing. In fact, the transfer function is the 
Fourier transform of the impulse response. 

THE POWER SPECTRUM 

Suppose that we do not actually measure the input but that we know or 
assume that it is white noise. This tells us that Ainput(W) is constant. Knowing 
this, we can calculate the gain G (w) to within a constant of proportionality, even 

without having measured the input: 

G(w) = const Aoutput(w). 

However, since we don't know anything about lPinput(w), we cannot calculate 
<I> (w). The square of G (w) is called the power spectrum. 

The power spectrum contains exactly the same information as the auto­
correlation function-the power spectrum is in fact the Fourier transform of 
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the autocorrelation function. Although the information is the same, the different 
format of the information sometimes makes it advantageous to use the power 
spectrum rather than the autocorrelation function for analyzing data. 

DYNAMICS IN ACTION 

17 DAILY OSCILLATIONS IN ZOOPLANKTON 

The top figure here shows hourly measurements of zooplankton density. The power 
spectrum, shown in the bottom figure, displays the square of the amplitude of 
the oscillations at each frequency. Here, instead of measuring frequency in units 
of cycles/second (Hertz), we use cycles/day to reflect the time scale over which 
zooplankton density changes significantly. 
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Hourly measurements of 
zooplankton density (in g/m3 ) 

measured in the Middle Atlantic 
Bight starting on 25 June 1988. (See 
Ascioti et al., 1993) 

123 
Cycles/Day 

4 The power spectrum G2(w) of the 
data from the above figure. 

The power spectrum G2(w) from this data shows a peak at 1 cycle per day. This 
peak corresponds to the daily changes in zooplankton density that come from the 
day/night cycle. (There is also a peak in G2(w) at 2 cycles per day. This suggests 

that the daily cycle is not a simple sine wave, but that each cycle has some other 
shape.) 
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In addition to the daily changes at 1 and 2 cycles per day, the zooplankton data 
contain other variations. For instance, there is a week-long buildup that reaches to 
a maximum on July 10. Such slow variability in the zooplankton density appears as 
the large values of G2(w) for low frequencies (<< 1 cycle/day). The power spectrum 
is often used, as in this case, to display periodic variability at a given frequency that 
might be hidden by other forms of variability. 

+ MooELFouR 

Models One, Two, and Three have linear dynamics. The parameters used 
in the models have been set so that, in the absence of dynamical noise, the stable 
fixed point is approached asymptotically. Nonlinear models can have nonfixed 
asymptotic behavior. As we saw in Chapter 1, the quadratic map 

(6.23) 

can show a variety of behaviors from stable fixed points, to stable periodic cycles, 
to chaos. In particular, for JL = 4.0 the dynamics are chaotic, while for JL = 3.52 
there is a stable cycle of period 4. Equation 6.23 involves no dynamical noise. 

In order to emphasize the difference between the chaotic dynamics of Model 
Four and the noisy linear dynamics of Models One, Two, and Three, we shall 
assume that there is no measurement noise: 

(6.24) 

Figure 6.12 shows a time series taken from Model Four. 
Since there is neither dynamical nor measurement noise, the model is 

completely deterministic. This means that, in principle, if we know the initial 
condition we can calculate all future values. Of course, if the model is chaotic, 

there may be practical limitations on our ability to do this. 
With this model as a hypothesis, we might ask the following questions about 

our data: 

1. What evidence is there that a deterministic process generates the data? 

2. What evidence is there that the data involve a nonlinear process? 

3. If the data are indeed chaotic, how large is the sensitive dependence on 
initial conditions? 
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Figure 6.12 
A simulated time series from 
Model Four, with J-L = 4.0. There 
is no measurement noise. 

Figure 6.13 
A scatter plot of fluctuations 
around the mean: V,+l versus V, 
from Model Four. 

We can start the data analysis with the tools already at our disposal. The 
mean of the data in Figure 6.12 is Mes! = 0.471. The fluctuations about the mean 
Vr = Dr - Mest can be used to calculate the correlation coefficient between Vr+1 

and Vr. This is Pest = 0.054, close to zero even though a scatter plot ofVr+1 versus 
Vr does not look like a ball. (Compare Figure 6.13 with Figure 6.6. Both scatter 

l' 
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R(k) 0.6 
0.4 
0.2 . . o .' • .. . ... .... 

--0.2 ________ _ 

o 5 10 k 15 20 

Figure 6.14 
The autocorrelation function 
R(k) calculated from the data in 
Model Four. 
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plots produce Pest near zero.) In fact, the autocorrelation function for the data 
is very similar to that found for the data from Model One (compare Figure 6.9 
to Figure 6.14). This suggests that the data from Model Four are white noise, 
apparently contradicting the fact that the data are from a deterministic model. 

The resolution to this paradox can be seen if we remember that the cor­
relation coefficient and the autocorrelation function measure linear correlations 
in the data. The scatter plot of Vt+1 versus Vt shows a very strong relationship, 
but the relationship is nonlinear and hence not accurately represented by the 
correlation coefficient and autocorrelation function. o 

6.6 NONLINEAR DYNAMICS AND DATA ANALYSIS 

In the previous section we saw that statistics such as the correlation coef­
ficient and the autocorrelation function are not able to distinguish between the 
data from the linear Model One and those from the nonlinear Model Four. In this 
section we will describe data-analysis methods that are appropriate for nonlinear 
systems. Nearly all of the techniques have been developed since 1980, and new 
developments are made on an almost daily basis. 

Most techniques for nonlinear data analysis involve two steps. In the first 
step, the data are used to reconstruct the dynamics of the system. This is the 
subject of the present section. The second step involves characterization of the 
reconstructed dynamics and will be the subject of Sections 6.7 and 6.8. 

RECONSTRUCTING FINITE-DIFFERENCE EQUATIONS: 
RETURN MAPS 

Model Four is a finite-difference equation (the quadratic map that we stud­
ied in Chapter 1). Compare Figure 6.13 to Figure 1.16. The scatter plot derived 
from data reproduces the parabolic form of the graph drawn from the finite­
difference equation. This shouldn't be surprising. A finite-difference equation 
like Xt+l = f(Xt) describes the relationship between Xt+l and Xt. A scatter plot 
of the measured data, Dt+l versus D" describes exactly the same relationship. 
Since in Model Four we defined D t = Xt, each of the dots in the scatter plot 
falls on the function f (.), and the dots do a good job of indicating the parabolic 
geometry of f(·). (In Figure 6.13 we plot Vt+1 versus Vt • This is this is the same 
thing as plotting Dt+l versus D t but translating both axes by the mean M est .) 

The idea of using a scatter plot to display the relationship between successive 
measurements is fundamental to the analysis of data from nonlinear systems. We 
will call the scatter plot a return plot, but other names found in the technical 
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literature for this type of scatter plot are first-return plot, Poincare return map, 

and return map. 

DYNAMICS IN ACTION 

18 RECONSTRUCTING NERVE CELL DYNAMICS 

The top figure shows a recording of the voltage across the membrane of a giant 
axon (the axon is a part of a nerve cell) from a squid. These data were collected by 
Alvin Shrier and John Clay, at the Woods Hole Oceanographic Institution. 

Transmembrane voltage from a periodically stimulated squid giant axon. The times 
of the stimuli are also indicated. The bottom trace shows the stimulation current. 
Stimuli were applied every 10 msec. These data were provided by Drs. A. Shrier 
andJ. Clay. 

An electrode has been inserted into the cell, and a periodic stimulus has been 
applied. In response to each stimulation, the axon has either a small response (a 
·subthreshold response") or a big one (an "action potential"). The transmembrane 
voltage has been sampled by a computer 10,000 times per second. Since the 
voltage does not change much over 0.0001 seconds, a retum plot of the voltage 

Xt+ 1 versus Xt stays very close to the line of identity, and there is no evidence in this 
plot for a single-valued nonlinear function (see the next figure). 

One technique for generating a retum plot appropriate for the squid axon data is to 
reduce the time series into a set of discrete measurements made at a time interval 

having a relationship to the systems's dynamics. In the squid axon case, a sensible 
time interval is the time between stimuli, rather than the time between successive 
voltage samples taken by the computer. Several types of measurements might be 
taken once per stimulus. For example, we might take a single measurement from the 
recording some fixed time (say, 20 msec) after each stimulus. Or we might choose 
to measure the recording only at the peak of the response to each stimulus. 
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A return plot Xt+1 versus Xt for the 
25 voltage across the membrane of the 

squid axon. 
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• Ai+1 versus Ai for the squid axon 
data, where Ai is the logarithm of 

9 the area under response i. 

The bottom figure shows a return plot made by calculating the logarithm of the 
area under each stimulus response. The plot shows that the repetitive subthreshold 
responses seen in the time series result from an unstable fixed point; action poten­
tials are generated only when the dynamics move away from this fixed point. The 
action potentials that appear to occur at random intervals in the top figure are really 

generated by a nonlinear dynamical system that can be largely characterized by the 

return plot. 

For other systems, it may not be obvious how frequently to make measurements 

for the purpose of drawing a return plot. For example, the sunspot data shown in 

the preface were collected once per month. Nothing about a one-month interval 

relates to the dynamics of the sun-if we want to extract information about the 

dynamics, another measurement interval might be more appropriate. 
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In many cases, data have been collected from a continuous-time dynamical system 
properly described by differential equations rather than by finite-difference equa­
tions. In such cases, it may be appropriate to use the phase-plane or embedding 
reconstruction techniques described in the following sections. Sometimes, how­
ever, a retum map does describe effectively the dynamics behind continuous-time 
data. In drawing such a retum map, take care to select a time interval that reflects 
some important aspect of the dynamics. 

RECONSTRUCTING THE PHASE PLANE 

Consider data generated from the second-order differential equation 
describing a harmonic oscillator: 

(6.25) 

As shown in Section 5.4, this equation can be rewritten in terms of two first-order 
differential equations, 

dx 
dt = y 

dy = _ bx. 
dt 

(6.26) 

The variables x and y form the phase plane, and Eq. 6.26 describes the flow of 
the dynamics on this plane. 

Suppose that we measure a time series D(t) = x(t) from Eq. 6.25 (see 
Figure 6.15). How can we reconstruct the phase plane and the flow on it from the 
measured data? At any instant, the position of the system on the phase plane is 
given by the coordinates (x, y). The time series itself gives us D at every instant. 

1~~--~--~-'r-~ 

0.5 : ~ 
Dt 0······· -0.5 ~.:.: ~: ~: -1 •• •• 

o 20 40 60 t 80 100 

Figure 6.15 
The quantity D, measured 
from Eq. 6.25. 
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Figure 6.16 Two versions of the reconstructed phase plane for the data gener­
ated from Eq. 6.25. The gray dots indicate the position in the phase plane at the 
corresponding times in Figure 6.15. 

We can measure y(/) from D(/) by noticing in Eq. 6.26 that y = ~~. If we plot 
out ~~ versus D, we get the trajectory of the system in the phase plane-this 
describes the flow based on the measured data (see Figure 6.16). 

Given a time series x (I), how do we calculate ~~ ? There are simple electronic 
circuits that act as differentiators, and in the past such a circuit might have been 
used to sketch out the trajectory on an oscilloscope screen. Today data typically 
are collected by computer, and so the measurement D(/) actually consists of a 
sequence of measurements made at discrete times Do , Db D2 , • •• • Using the 
textbook definition of the derivative of x at time I, 

dx(/) = lim X(I + h) - X(/) , 
dl h ..... O h 

we are motivated to approximate the derivative at time 1 as 

dDr 
dl 

= 

For the discrete-time measurements, h can only take on the values 0, 1, 2, 3, 

... -it cannot have a fractional value. The smallest useful value is h = 1, but 
sometimes, as we will see below, it is appropriate to select larger h. 

Reconstructing the phase plane is thus a matter of plotting Dt+rDt versus 

Dr. Notice that only two quantities are involved: Dr+h and Dr. They contain all 
the information in the plot, and it is effective simply to plot Dt+h versus Dr . 

Equation 6.26 is a special case because ~~ gives us y. In general, dynamics on 
the phase plane are given by the pair of coupled differential equations (see Eq. 5.18) 

dx 
dt = f(x , y) , 

dy - = g(x , y). 
dl 

(6.27) 
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Figure 6.17 
The quantity D, measured from the 
van der Pol system, Eq. S.2S 

If we measure only x(t), how can we calculate the value of y? The answer is that 

often we cannot, but we do not need to in order to display relevant information 
about the dynamics in the phase plane. Notice that if we measure x (t) and calculate 

~~ ,we have both a direct measurement of x and a calculated value of f(x, y). 

Some information about y is contained in the value of f(x, y), and often this 

information is enough to allow us to get a good idea of the dynamics. Fig­

ures 6.17 through 6.19 give an example that shows how the reconstructed 
(Dr, Dr+ I) phase plane compares to the original (x, y) phase plane. 

To summarize, by making a series of measurements Dr and plotting Dr+h 

versus D" we can often reconstruct the phase-plane dynamics of a system, even 
though we never make direct measurements of the dynamical variable y. 

EMBEDDI .... G A TIME SERIES 

As we saw in Chapter 4, a continuous-time system of ordinary differential 
equations that generates chaos must involve at least three equations. This means 
that the two-dimensional dynamics in a phase plane cannot represent chaotic be-

-1.5 - 1 -0.5 0 0.5 1 1.5 
x(t) 

Figure 6.18 
Dynamics in the original x, y 
phase plane for the van der 
Pol equation. 
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- 1.5 - 1 - 0.5 0 0.5 1 1.5 

Figure 6.19 
Dynamics of the van der Pol 
equation in the reconstructed 
D t+1O versus D t phase plane. 

havior. In order to reconstruct the geometry of a continuous-time chaotic system 
from a time series, we can extend the technique developed for reconstructing the 
phase plane. The phase-plane reconstruction involved plotting successive points 
in a two-dimensional space. To reconstruct the dynamics in a three-dimensional 
space, we plot the points as a three-dimensional coordinate: 

More generally, we can embed the time series in a p -dimensional space by taking 
p-coordinates, 

DI = (Dr. DI-h, D I - 2h , ... , D1-(p-l)h). (6.28) 

We use the boldface DI to denote the embedded measurements, to differentiate 
from D1, which denotes a single measurement at time t. DI incorporates mea­

surements made at different times, ranging from t to t - (p - l)h, but the index 
t is used for notational convenience. 

This technique of representing a measured time series as a sequence of 
points in a p-dimensional space is called time-lag embedding. There is an impor­
tant theorem (Taken's embedding theorem) that says the reconstructed dynamics 
are geometrically similar to the original for both continuous-time and discrete­
time systems. The sequence of points created by embedding a time series is called 
the trajectory of the time series. p is called the embedding dimension, and h is 
the embedding lag. 
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Figure 6.20 
A measured signal D t from the 
Lorenz system CEq, 6.29). 
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As an example, consider the Lorenz system of three ordinary nonlinear 
differential equations that produce chaos: 

dx 
- = lO(y - x), 
dt 

dy 
= 28x - y - xz, 

dt 
(6.29) 

dz 8z 
dt = 28xy - 3" 

If one could measure x(t), y(t), and z(t) simultaneously, in a physical system, 
then by plotting out the three-dimensional coordinate (x(t), y(t), z(t)), we can 
reconstruct the dynamics in the three-dimensional phase space. But if we measure 
only one of the variables, so that D(t) = x(t), we can create a reconstruction that 
is faithful to the geometry of the original, as shown in Figures 6.20 through 6.22. 

Figure 6.21 
The trajectory of Eq. 6.29 in the 
original x, y, z phase space. 
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Figure 6.22 
The reconstructed trajectory 
ofEq. 6.29 using Dr , Dr- 8 , Dr- 16 • 

The chaotic dynamics of Model Four were generated by a single equation 
involving a single state variable. Chaotic dynamics can also be generated by sys­
tems with more state variables, for instance the Lorenz equations (Eq. 6.29) have 
three state variables producing a chaotic attractor with a fractal dimension of 

approximately 2.06. 
Although the dimension of a chaotic attractor may be less than the number 

of state variables, it can never exceed the number of state variables. In order to il­
lustrate some of the properties of high-dimensional chaotic systems, we introduce 
a new model that produces chaotic dynamics, the Ikeda map: 

Xt+l = 1 + JL(Xt cos mt - Yt sin mt), 

(6.30) 

where mt = 0.4 - (1+;l~Yl) and JL = 0.7. The Ikeda map has two dynamical 
variables, Xt and Yt. (mt is just a convenience variable and can easily be eliminated 
from the equations by substitution.) 

Since Eq. 6.30 has just two dynamical variables, any attractor it has can be 
at most two-dimensional. This is not very high, so let us consider another chaotic 
dynamical system, the Henon map: 

Zt+l = 1.4 + O.3Vt -z;, (6.31) 

Vt+l = Zt· 
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This equation also has two variables, so its attractor can also be at most two­
dimensional. 

Taken together, however, the Ikeda map and the Henon map have four 

dynamical variables, Vt, Wt, XI> Yt, so the attractor for the combined system can 
be at most four-dimensional. Suppose we measure 

D t = Xt + f3Zt + WI> (6.32) 

where Wt is random Gaussian white measurement noise. Our measured data will 
reflect the dynamics of both the Henon and Ikeda maps, and also the random 
noise Wt • Similarly, a natural or experimental time series may reflect the dynamics 
of several subsystems. Here, we will somewhat arbitarily pick f3 = 0.3 and set 
the level of measurement noise to a standard deviation of 0.05 (see Figure 6.23). 

This trick of adding signals from unrelated chaotic systems allows us to 
make a chaotic system of a higher dimension than any of the individual systems. 
We could add any number of such systems. Surprisingly, we could even add two 
or more copies of the same chaotic system, as long as the initial conditions were 
different in each copy. 

Sometimes the dynamics of subsystems are coupled together so that one 
subsystem affects another. All of the sets of equations examined previously in this 
book have been this way. For Model Five, we will linearly couple the X variable of 
the Ikeda map to the z variable in the Henon map, 

Xt+l = 1 + JL(Xt cos mt - Yt sin m l ) + 0.2ZI' (6.33) 

and leave the dynamical equations for the other variables as they are in Eq. 6.31. 
Using a model of this sort in interpreting a measured time series, we might 

ask the following questions: 

• How many variables are involved in the dynamics? 

• Is there an attractor, and what is its dimension? 

o 100 200 300 400 500 
t 

Figure 6.23 
A simulated time series from 
Model Five, Dt = Xt + f3Zt + Wt. 
The measurement noise Wt has 
standard deviation 0.05. 
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Figure 6.24 
The autocorrelation function of 
the Model-Five data shown in 
Figure 6.23. 

• Can we distinguish between the measurement noise and the determin­
istic dynamics? 

• If the system is very high dimensional, is it even possible to detect the 
deterministic dynamics? 

Again, we start our analysis of the data with the tools we have already 
introduced. The mean of the Model Five data is M est = 0.828, and the standard 
deviation is a = 0.455. The fluctutions about the mean are Vt = Dr - Mest • 

The autocorrelation function R (k), shown in Figure 6.24, is consistent with white 
noise. 

Although there is no dynamical noise in the equations, a scatter plot of v,+ 1 

versus Vt for the Model Five data (Figure 6.25) does not show the simple geometry 

that was evident in the Model Four data (Figure 6.13). For Model Five, Vt+l is 
clearly not a function of Vt , even though we know that deterministic dynamics 
are at work. As we shall see, by using a two- or higher-dimensional embedding, 
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Figure 6.25 
A return plot of fluctuations 
about the mean: Vt+l versus VI 
for the Model Five data. 
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the deterministic relationship between Vt+1 and previous values (Vt, Vt-I, ... ) 

becomes clearer. o 

6.7 CHARACTERIZING CHAOS 

In Chapter 1, chaos was defined to be bounded, deterministic dynamics 
that are aperiodic and display sensitive dependence on initial conditions. In this 
section we will study time-series analysis techniques that allow us to investigate 
each of these characteristics in data. 

BOUNDEDNESS 

According to Chapter 1, dynamics are bounded if they stay in a finite range 
and do not approach 00 or -00 as time increases. In practice, things are more 
subtle than this. An example is given by the simple linear system Xt+ I = RXt. The 
solution is Xt = Rt Xo, that is, Xt grows or decays exponentially. Suppose that we 
measure Dt = 1.. For IRI > 1, the dynamics of x are unbounded, but Dt will x, 
go to zero as t ~ 00. For IRI < 1, the dynamics are bounded but D t ~ ±oo. 
This example shows that when dealing with measured data it is not sufficient to 
say that dynamics are bounded if a measured time series stays in a finite range, 
or unbounded if the time series blows up. In fact, if for no other reason than not 
having the opportunity to wait until t ~ 00, we can never definitively know from 
measurements whether the "true:' unmeasured state variables stay bounded. 

The definition of bounded as "staying in a finite range" is not very useful 
when dealing with data; any measured data will be in a finite range, since the 

mass and energy of the universe are finite. Infinity is a mathematical concept, not 
a physical one. 

A different, but related concept for assessing boundedness in data is sta­

tionarity. We say that a time series is stationary when it shows similar behavior 
throughout its duration. One useful definition of "similar behavior" is that the 
mean and standard deviation remain the same throughout the time series. An 
operational definition might be that the mean and standard deviation in one third 
of the signal are not significantly different from those in the other two thirds-or 
one might prefer to use quarters or tenths, and so on. 

If a time series is nonstationary, then it is questionable whether the tech­
niques described in the following sections can be applied meaningfully. In this 
case we can attempt to generate stationarity by altering the time series. A simple 

and often effective technique is to first-difference the time series. That is, if the 
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measurements are ... , Xi, Xi+1> Xi+2, ... , then define Yi = Xi - Xi-l and use Yi 

for further analysis. 
Another technique for attempting to create stationarity is motivated by 

exponential growth. If Xr+l = RXr for IRI > 1, then Xr will be nonstationary as 
will the first difference Yr = Xr - Xr-l' However, ...!L will be stationary. 

Xt-l 

APERIODICITY 

Chaotic behavior is aperiodic. It might seem that the question of aperiod­
icity is one with a yes-or-no answer: Either a time series is periodic or it is not. 
However, in the presence of measurement noise, a measured time series from a 
truly periodic system can appear aperiodic. Because aperiodic systems can differ 
in their aperiodicity, it can be meaningful to quantify "how aperiodic" a time 
series is. Recall that aperiodicity means that the state variables never return to 
their exact previous values. However, in an aperiodic system, variables may return 
quite close to previous values. We can characterize aperiodicity by asking "How 
close?" and "How often?" 

Since we often do not directly measure all of the state variables of a system, 
we need to use the embedding technique to represent all of our measured data's 

state variables. Recall that Dr is the measurement made at time t. By embedding 
the time series, we create a sequence 

Dr = (Dr, Dr-h, ... , Dr-(p-l)h), 

where p is the embedding dimension and h is the embedding lag. Each Dr is 
a point in the p-dimensional embedding space, and the embedded time series 
can be regarded as a sequence of points, one point at each time t. Each point 
represents the state of the system at that time. 

We can calculate the distance between the' two points at times i and j: 

~i,j = IDi - Djl. 

If the time series were periodic with period T, then~i,j = o when Ii - jl = nT, 
for n = 0, 1,2,3, .... In contrast, for an aperiodic time series, ~i,j will not show 

this pattern. Suppose we pick some distance r, and ask when IDi - Djl < r. 
One way to do this is to make a plot where i is on the horizontal axis, j is on the 

vertical axis, and a dot is placed at coordinate (i, j) if IDi - Djl < r. Such plots 
are called recurrence plots because they depict how the reconstructed trajectory 
recurs or repeats itself (see Figures 6.26 and 6.27). 

For a periodic signal of period T, the plot looks like Figure 6.26 for very 

small r. This is a series of stripes at 45 degrees, with the stripes separated by a 
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Figure 6.26 
A recurrence plot for 
the quadratic map 
Xt+l = 3.52xt (l - Xt). A 
black dot appears whenever 
JDi - DjJ < r. The trajectory 
has a period of 4, so the 
recurrence plot consists of 
diagonal stripes separated by 4. 
The embedding dimension 
p = 2, and r = 0.001. 

distance of T in the vertical and horizontal directions. (In all recurrence plots, 

there is a stripe along the diagonal corresponding to i = j.) 
For a chaotic time series, the recurrence plot has a more complicated struc­

ture, sometimes with hints of almost periodic trajectories-one can see brief 

episodes where there are parallel stripes at 45 degrees (see Figures 6.28 and 
6.29). For randomly generated numbers, such a structure is not evident (see 
Figures 6.30 and 6.31). 

One thing to keep in mind is that the number of dots in a recurrence plot 
tells how many times the trajectory came within distance r of a previous value. 
The correlation integral C (r) is defined to be the fraction of pairs of times i and 

20 40 60 80 100 

Figure 6.27 
The same as Figure 6.26, but r is 
ten times bigger: r = 0.01. The 
plot is identical to Figure 6.26. 
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Figure 6.28 
Recurrence plot for the chaotic 
time series generated by 
Xt+! = 4xt (l - Xt); P = 2, 
r = 0.001. 

number of times IDj - D j I < r 
C(r) = N(N - 1) (6.34) 

You can think of C (r) as the density of ink in a recurrence plot. The numerator 
is the actual number of dots in the plot, and the N (N - 1) in the denominator is 
the maximum possible number of dots. (Remember, we exclude the cases where 
i = j. Otherwise, the denominator would be N 2.) 
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Figure 6.29 
Same as Figure 6.28, but r is ten 
times bigger. 
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THE CORRELATION DIMENSION 

Figure 6.30 
Recurrence plot for random 
white noise; p = 2, r = 0.1. 

The correlation integral is one of the most fundamental quantities in chaotic 
time-series analysis. What is important is not the value of C (r) at any particular 
single value of r, but how C (r) changes with r. As r is increased, more dots 
appear in the recurrence plots and so C (r) increases. Figures 6.32, 6.33, and 
6.34 show the correlation integral for the periodic data, the chaotic data, and the 
random white noise. For a perfectly periodic system, increasing r a little does not 
change the number of dots very much-compare Figures 6.26 and 6.27. For the 
chaotic data of Model Four, increasing r by the same amount causes more dots 
to appear (Figures 6.28 and 6.29), but the most dramatic increase occurs in the 
random white noise (Figures 6.30 and 6.31). C(r) is flat for the periodic system 
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Figure 6.31 
Same as Figure 6.30, but r is ten 
times bigger. 
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Figure 6.32 
The correlation integral C(r) 
of a periodic time series with 
period 4 generated from 
X,+l = 3.52x,(l - x,). N = 100 
data points were used, in an 
embedding dimension of p = 2. 
Note that C(r) is plotted on a 
log-log scale. 

Figure 6.33 
The correlation integral C(r) 
from a chaotic time series 
generated from Model Four 
(X,+l = 4x,(1 - x,»; N = 100, 
P = 2. 

Figure 6.34 
The correlation integral C(r) 
from a time series produced by 
a computer random-number 
generator; N = 100, P = 2. 

(Figure 6.32), has a gentle slope for the chaotic system (Figure 6.33), and has a 
steeper slope for the random system (Figure 6.34). 

There is a dose relationship between the correlation integral C (r) and the 

concept offractal dimension introduced in Section 3.3. Imagine for a moment that 
you have a set of points scattered more or less uniformly on a one-dimensional 
curve, as in Figure 6.35. Pick one of the points as a reference, and count how 

many of the other points are within distance r of the reference. As r is increased, 
the number of points within distance r will increase directly as the length r. Now 
imagine that the points are scattered more or less uniformly on a two-dimensional 
surface (Figure 6.36). Choosing one of the points as a reference, we can see that 
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Figure 6.35 
When points are scattered along a 
one-dimensional curve, the number of points 
closer than distance r to a reference point 
increases linearly with r. 

the number of points within distance r of the reference will be related to the 
area of a circle of distance r, that is, 7r r2. Similarly, if the points were scattered 
throughout a three-dimensional volume, the number of points within distance r 

of a reference point would be related to the volume of a sphere of radius r, that 
is, ~ 7r r3. In general, for points scattered throughout a v-dimensional object, the 
number of points closer than distance r to a reference point is proportional to r v • 

In calculating the correlation integral of a set of points, one uses each of the 
points as a reference and counts how many of the other points are within distance 
r. This suggests that the correlation integral of a scattering of points throughout 
a v-dimensional volume will be proportional to r v , that is, 

(6.35) 

where A is a constant of proportionality. Taking the logarithm of both sides 
ofEq. 6.35 gives 

log C(r) = v log r + log A. (6.36) 

In order to find v, we simply need to plot log C(r) versus log r and find the 
slope of the resulting line. This procedure can also be applied to estimate the 

....... 

Figure 6.36 
When points are scattered on a 
two-dimensional surface, the number of 
points closer than distance r to a reference 
point increases as the area of a circle of 
radius r. 



6 . 7 C H A RAe TE R I Z I N G C H A os 321 

fractal dimension of an object, in place of the box -counting technique described 
in Dynamics in Action 5. 

One way that the correlation dimension has been used in time-series analy­
sis is to look for attractors in time series. The initial idea, proposed by Grassberger 
and Procaccia (1983), was based on the observation that the attractors of chaotic 

systems are often self-similar and can be described by a fractal dimension. If a 
time series comes from a dynamical system that is on an attractor, then the tra­
jectory made from the time series by embedding will have the same topological 
properties as the original attractor-as long as the embedding dimension is large 
enough. In particular, the reconstructed trajectory will have the same dimension 
as the original one. Takens (1981) proved that if the original attractor has di­
mension v, then an embedding dimension of p = 2v + 1 will be adequate for 
reconstructing the attractor. In practice, p 2:: v will often be adequate, but the 
only guarantee comes when p 2:: 2v + 1. 

Since the objective of the Grassberger-Procaccia analysis is to find the di­
mension v, one does not know at the outset what embedding dimension p to 
use. The solution to this problem is to calculate v from the correlation integral at 
many different values of p, as shown in Figure 6.37. 

For a time series from a system that is on a v-dimensional attractor, the cor­
relation dimension of the time series offers a means to estimate the dimension of 
the attractor. However, for systems that are not on an attractor, the interpretation 
of v can be much more difficult. 

One relatively simple case for interpreting v is random white noise. Con­
sider a sequence of random white noise measurements, such as those from Model 
One. From Figure 6.6, you can see that when the data from Model One are em­
bedded with p = 2, they create a solid-looking blob. Since this blob covers the 
whole plot with ink (or at least it would if there were many more data points), 
it is two-dimensional (i.e., v = 2 when p = 2). Similarly, an embedding with 
p = 3 would create a three-dimensional blob that would completely fill a three­
dimensional volume, and so v = 3 when p = 3. In the ideal case for random 
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Figure 6.37 
An idealized case of correlation 
dimension v versus embedding 
dimension. The dots display v for a time 
series with attractor dimension 2.7, while 
the x symbol gives v for random white 

Embedding dimension noise. 
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white noise, v = p. Here, "ideal" means "we have an infinite amount of data." 
Of course, it is impossible to have an infinite amount of data, but even for small 
data sets the relationship v ~ p may hold. One theoretical rule of thumb is that 
lOP data points are needed to show that v ~ p is true up to any given p; thus 
1000 (or 103) points are needed to show that v = p for p = 3. In practice, this 
rule is quite conservative, and v can be shown to increase with p even for much 
shorter time series. 

When introduced in the early 1980s, the correlation dimension was greeted 
with incredible enthusiasm and optimism. Now it has fallen into some disrepute. 
As shown in Figure 6.37, for a time series from a system on an attractor, v levels 
out with increasing ponce p is large enough, while for random white noise, v 

increases with p. There has been a strong temptation for people to invert this 
logic and to believe that if v levels out with increasing p, then the time series 
reflects an attractor. Sometimes this is the case, but sometimes it is not. There 
are cases where v levels out but there is no attractor. A particularly important 
case is that of :7 noise (see Dynamics in Action 6). To guard against the incorrect 
interpretation of the correlation integral, it is important to use surrogate data, as 
described in Section 6.8. 

o ExAMPLE 6.4 

Estimate the dimension of the chaotic attractor underlying the Model Five 
data. 

Solution: The first step is to embed the time series. This requires the choice 
of an embedding dimension p and an embedding lag h. One way to choose an 
embedding lag is to take the smallest value of h at which the autocorrelation 
function R(h) ~ o. In this case, Figure 6.24 shows that R(l) ~ 0, so we will use 
h=1. 

Rather than picking a single embedding dimension, we will repeat the 
calculations for p = 1, 2, ... , 10. At each of these embedding dimensions, we 
repeat the same steps: 

1. Calculate the correlation integral C (r) using Eq. 6.34. 

2. Using Eq. 6.36, use C(r) to calculate the dimension v. One way to do 
this is to plot log C versus log r. v is the slope of this graph: 

v= 
dlogC 
d logr . 

However, this slope generally depends on the value of r selected. To avoid 
this problem for the moment, we will plot out the slope v as a function 
ofr. 
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Figure 6.38 
Slope v versus r for embedding 
dimensions p = 1 through 
p = 10. 

Figure 6.38 shows how the slope v changes with r for different embedding 
dimensions. For the largest values of r found in the embedded time series, the 
slope approaches zero, regardless of the embedding dimension used. Estimating 
a dimension by using large r is somewhat like looking at the object from a great 
distance; no matter what the object, it will look like a single point-an object of 
dimension O-just as a distant star looks like a single point of light. 

For the smallest values of r, the slope v depends on and increases 
with the embedding dimension. This is characteristic of noise and reflects the 
measurement noise in the Model Five data. 

For r ~ 0.5 the slope is roughly the same for many different embedding 
dimensions. Figure 6.39 shows v (at r = 0.5) for p = 1,2, ... ,10. The pattern 
is similar to that seen in Figure 6.37, and we conclude that the attractor of the 
Model Five data has a dimension of approximately 3.9. A range of values of r at 
which v is fairly constant is often called a scaling region. 

The need to pick a specific range for r is one of the difficulties, and a great 
weakness, of estimating dimensions. In this case, we chose a range near r = 0.5 
because that value of r gives us the results closest to the ideal form shown in 
Figure 6.37. Here we have the advantage of knowing that there is an attractor, 
and therefore we have good reason to believe we are justified in our choice of r. 
Without this information, interpreting the meaning of the dimension calculation 
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0 Figure 6.39 

1 2 4 6 8 10 The correlation dimension versus 
P embedding dimension p for r = 0.5. 
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could be quite challenging and problematic, and the results should be treated with 
skepticism. o 

DETERMINISM 

We say that a system is deterministic when future events are causally set 
by past events. A finite-difference equation like xt+ 1 = f (Xt) is deterministic as 
long as f (Xt) has only one value for each possible value of Xt; given the past value 

x" the function f () determines the future value Xt+1. For Model Four, which is 
a finite-difference equation that produces chaos, if we knew Xo then by iteration 
we could calculate all future values of Xt using Eq. 6.23. 

But, of course, we do not know Xo exactly, since our measurements are 

made with noise: Dt = Xt + Wt • If we take Do as our estimate of the initial 
condition xo, and iterate from this using Eq. 6.23, then sensitive dependence 
on initial conditions will cause our predictions to become faulty. For instance, 

suppose the true initial condition is Xo = 0.37 but that our measurement of 

Table 6.2 x, and y, from 
two identical finite-difference 
equations, Xt+l = 4x,(l - x,) and 
y,+l = 4y,(1 - y,). Although 
Xo R:: Yo, by time t = 5 the values 
of x and y have moved far apart. 

Xt Yt t 

0.370 0.380 0 

0.932 0.942 1 

0.252 0.217 2 

0.754 0.680 3 

0.741 0.870 4 

0.767 0.451 5 

0.715 0.990 6 

0.814 0.038 7 

0.605 0.147 8 

0.956 0.501 9 

0.167 0.999 10 
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the initial condition is Do = 0.38. As shown in Table 6.2, our predictions based 
on Eq. 6.23 will diverge from the true values. At first the predictions will be 
quite good, but after five or so time steps, they become completely wrong. Even 
when the predictions are good, they are not perfect because of the measurement 
nOlse. 

We can decide from data whether an underlying deterministic system is 
present: Use the data to construct a model of the dynamics, and then see whether 
the predictions made from this model are accurate. If the predictions are perfect, 
then the system is completely deterministic. If the predictions are good, but not 
perfect, then the system has a deterministic component. If the predictions are 
terrible, then the system is not deterministic at all. 

We can construct dynamical models from data in a number of different 
ways. One of the simplest methods works as follows. Suppose that we make our 
measurements up to time T and that we want to make a prediction of the value 
at time T + 1. 

1. Embed the time series to produce Dt • 

2. Take the embedded point at time T, 

DT = (DT, DT-h, ... , DT-(p-I)h), 

and look through the rest of the embedded time series to find the point 
that is closest to D T • Let's say that this closest point has time index a. 
This means that Da is closer to DT than any other Dt • 

3. The definition of determinism is that future events are set causally by 
past events. DT describes the past events to DT + I. Similarly Da describes 
the past events to the measurement Da+l • IfDT is close to Da , and if the 
system is deterministic, then we expect that Da+1 will be close to DT+I. 

So we take as our prediction of DT+I the measured value Da+l • We will 
call this prediction PHI. 

This is a funny kind of model. Our previous models have consisted of sets 
of explicit equations. This model, which is used for prediction, consists of a data 
set (the measured time series) and a set of instructions (e.g., "find the nearest 
point Da"). The set of instructions is called an algorithm, and the model exists 
implicitly in the set of data and the algorithm. Such data-implicit models were 
uncommon before the advent of computers, but now they are commonplace and 
of increasing importance. 

There are many variations on this simple model of dynamics. One elab­
oration is to take not just the time a where Da is closest to DT, but to take K 
differenttimes aj, a2, ... ,aK where DaJ , Da" ... ,DaK are all close to DT. Then 
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the prediction of DT+l is taken as the average of Da1+h Da2+h ••• , DaK+1: 

(6.37) 

Given a method for making a prediction 'PT+h we need to make an actual 
measurement of DT+l in order to decide if the prediction is good or bad. The 
difference between 'PT+I and DT+I is the prediction error, which tells us about 
the quality of the prediction. Of course, a single prediction might be good or bad 
just by chance. To give a more meaningful indication of the determinism in the 
data, we can take the average of many prediction errors. Suppose we make 2T 
measurements of a time series. We take the first half of the time series to construct a 
data-implicit model of the dynamics. Then we use the model to predict the values 
of the second half of the time series. 

There are two ways to do this. One is to use the model to predict the value 
at time T + 1. Then, we construct a new embedded point using this predicted 

value 'PT+l: 

We then find the nearest points to DT + I to make a prediction of the value at time 
T + 2, which we call PT+2. This process can be iterated-we use past predictions 
to make future predictions. This method can in fact be used to extrapolate a time 
series beyond its measured values. 

Although such extrapolation is useful to make predictions far in the future, 
for the purposes of assessing determinism in data it is better to use the measured 
data directly. In this second way of making predictions, in order to predict the 
value at time T + 2, we make the embedded point 

Note that here the measurement at time T + 1 is used, and not the prediction 
'PT +I; we are not using the past predictions to make future predictions. 

Once we have made predictions for the second half of the time series, we 
can calculate a mean prediction error, £: 

(6.38) 

Very large £ means the predictions are bad and the system is not deterministic. 
Conversely, small £ suggests that the system is deterministic. 
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How do we decide if £ is large or small? What do we compare it to as a 
standard? Suppose that we are very lazy and that instead of calculating a new 
prediction for each time T + k, we made the same prediction for all times. 
Presumably this would be a bad method of prediction, since it completely ignores 
the dynamics of the data. What is the best value to use for this bad method of 
prediction? We want to choose a value Plazy that minimizes the mean prediction 
error, 

(6.39) 

Compare Eq. 6.39 to Eq. 6.5. They are very similar; the minimization we are 
doing here is almost identical to the minimization we performed to find the 
sample mean M est • In fact, a good value for Plazy is the sample mean of the time 
series. Given that we set Plazy = Mest> the mean prediction error £lazy in Eq. 6.39 

is very similar to the variance of the time series, a 2, as can be seen by comparison 
to Eq. 6.8. 

A convenient way to decide if £ is large or small is to compare it to £lazy' or 
rather to the variance of the time series a 2 • We can do this by taking the ratio 

£ 
a 2 • 

If this ratio is close to one, then the mean prediction error is large. If the ratio is 
close to zero, then the mean prediction error is small. 

Cl ExAMPLE 6.5 

We can examine the data sets from Models One through Four to look 
for determinism. Rather than using just the closest neighboring point in the 
embedded time series to make the prediction, we will use K nearby points, as 
in Eq. 6.37. 

Solution: For the example here, we will use an embedding dimension 
p = 1 so that D t = D t • As discussed in Section 6.6, it often makes sense to pick 
p>1. 

For the Model-One data, Figure 6.40 shows the ratio of the prediction error 
to the variance, ;, ,as a function of the number of neighbors K used to make the 
prediction. When K is small, the ratio is greater than 1. This says that the model 
makes worse predictions than the lazy method of simply predicting the mean. As 
K becomes large, the ratio goes to unity. 
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Figure 6.40 
Prediction error -£ versus number of 
neighbors K used in the prediction for 
the data from Model One. 

Recall that there are no active dynamics in Model One. The system is at a 

fixed point and all of the variability in the measurements is due to the random 
measurement noise Wt • There are no deterministic dynamics to predict, so it is 

not surprising that prediction is ineffective. Since there are 100 points in the time 
series, when K is near 100 virtually all of the points in the time series are being 

averaged together to produce the prediction, and Eq. 6.37 yields a prediction 
that is basically the mean, Mest • This is therefore the same as the lazy prediction 

method of using Mesh and so e = (]'2. In fact, since there are no dynamics to the 
data, we cannot do better than using Mest to predict the time series, since M est is 

the quantity that minimizes the prediction error, as in Eq. 6.5. When K is small, 

the number the prediction algorithm generates will vary around the mean since 
only a few of the points are used in the averaging. As described in Section 6.3, 
the fewer points used, the more the prediction will vary around the mean. Since 
the mean gives the best possible prediction for this data, any deviation from the 
mean will give worse predictions. 

For the Model-One data, the prediction error is large (i.e., ;2 ::: 1) and we 
are justified in concluding that the data are random, consistent with the known 
mechanism of the model. 

Model Two, in constrast, shows definite predictability. The ratio ;2 is shown 

in Figure 6.41. Here the ratio is less than unity for small K, and approaches unity 

as K approaches 100, the number of points in the time series. At very small K, the 

predictions are worse than at intermediate K -averaging the five to ten nearest 

£ 2~ •• 
- 1 • 
cJl • • • • • • 

o Figure 6.41 
-£ versus K for the data from Model 
Two. 
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Figure 6.42 
!r versus K for the data from Model a 
Three. 

points produces a better prediction than simply using the single nearest point. 
This prediction is substantially better than using M est • Therefore, we conclude 
that the data from Model Two contain some determinism but are not completely 
deterministic. This is consistent with Eq. 6.11, which has a deterministic compo­
nent to its dynamics (pXt) in addition to the random dynamical noise (Vt) and 
measurement noise (Wt ). The 1000 data points from Model Three produce quite 
similar results, as shown in Figure 6.42. 

Model Four is completely deterministic. The data analysis using prediction 
error confirms this; the prediction error is virtually zero for small K and, as 
expected, the ratio ;2 approaches unity as K approaches the number of points 
in the time series (see Figure 6.43). 

The prediction results for Models One, Two, and Three could have been 
anticipated from the the autocorrelation function. The autocorrelation function 
R(k) for Model One shows no correlation between measured values DT and 
DT+l (Figure 6.9). The autocorrelation functions for the data from Models Two 
and Three show quite strong correlations between DT and D T+1 (Figures 6.lO 
and 6.11). This is not the whole story, however. Note that although the autocorre­
lation function for Model Four (Figure 6.14) is much the same as that for Model 
One, the prediction results are completely different. The prediction method is 
sensitive to the nonlinearity in Model Four, whereas the autocorrelation function 
is not. 
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Figure 6.43 
~ versus K for the data from Model a 
Four. 
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[Technical note: In this example we have made a slight modification to the 

calculation of e described in the body of the text. There we divided the time series 
into two halves and used the first half to construct the data-implicit model, while 
using the second half to evaluate the predictive abilities of the model. Here we 
do not divide the time series. We use all of the data in constructing the model, 
and we evaluate the predictions based on the same data. However, when making 
a prediction PT+l> we exclude the point DT from the data used to generate the 
model. If we did not do this, then the closest point to DT would obviously be itself, 
which would give PHI = DT+I (for K = 1). This would a perfect prediction, 
but completely worthless since we would be predicting what we already knew. By 
excluding DT, we avoid this problem and can use all of the data at once.] 

D 

DYNAMICS IN ACTION 

19 PREDICTING THE NEXT ICE AGE 

Over the past millions of years, glaciers have repeatedly built up in the northem 
hemisphere, covering land that is now in temperate climates. The last ice age ended 
roughly 10,000 years ago. 

When will the next ice age come? This is a question for climate prediction, as 
opposed to the short-term weather prediction with which we are all fami liar from the 
nightly news. Unlike the day-to-day weather, the fundamental principles underlying 
climate are largely unknown. This means that data-implicit models may have an 

important role to play. The following application of data-implicit modeling to ice­
age prediction is drawn from Hunter (1992). 

An indirect record of global ice volume is contained in the ratio of two oxygen 

isotopes, 0 16 and 0 18, found in the shells of Formanifera that are found at the 

bottom of the ocean. Cores taken at the ocean bottom indicate this ~~: ratio over 
the past 800,000 years, a period that includes roughly eight ice ages. 

The mechanism that causes ice ages is not known. The Milkanovich theory is based 
on the idea that the amount of summer sunlight in the Northem hemisphere is a 
dominant factor. If summer sunlight is too low, snow that fell during the winter 
cannot all melt in the summer, and so ice gradually accumulates. 
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Nonlinear model prediction of global ice volume 
90~----~------~----~-------r------' 

80 

70 

~ 
:;:J 

~ 60 

.~ 
~ 50 

00 
~ 40 

:;::; 
10 

~ 
30 

20 

Model 
training 

data 

-

-
Measured 

data 

10L------L----~~----~----~~~~u 

-150 -100 - 50 o 50 100 

Thousand of years 

Measured global ice volume and predictions from a data-implicit model. Redrawn 
from Hunter (1992). 

The amount of summer sunlight depends on the luminosity of the Sun, but also 
on parameters of the Earth's orbit. The closer the Earth is to the Sun, the more 
light falls on the Earth. The Sun-Earth distance varies over the course of the year 
and is governed by the eccentricity of the Earth's orbit. The axis of the Earth's 
rotation is slightly inclined with respect to its orbital plane; this obliquity is what 

causes the yearly seasonal cycle. The angle of inclination changes over time, just as 

a spinning top wobbles. This is called precession. Scientists have a good under­

standing of these orbital parameters and are able to calculate their past and future 

values. 

What is not known, however, is how the accumulation of snow depends on these 

parameters. What seems to be important is the eccentricity, which modulates the 

amplitude of precession. The eccentricity is therefore related to the variability in the 

angle of inclination. When there is much variability, past accumulations of snow have 
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an occasional chance to melt; when there is little variability, snow accumulations 
may not have the opportunity to melt completely. 

Other factors also make modeling difficult. When there is snow on the ground over 
large fractions of the Earth's surface, more sunlight is reflected back into space, 
increasing the propensity for snow to accumulate. However, changes in ocean level 
and cloud cover may have countervailing effects. 

Hunter used past records of global ice volume, as inferred from measured g~: ratios 
in ocean cores, and constructed a data-implicit model of global ice volume (see 
the figure on the previous page). Since future orbital parameters are well known, he 
used them as well. 

The indirectly measured global ice volume and the calculated orbital parameters 
for 800,000 years ago until 60,000 years ago were used to construct a data-implicit 

model. This model was iterated until the present, in order to confirm that the model 
could have predicted the last ice age, which occurred 10,000 years ago. Starting 

at the present, and using calculated future values of orbital parameters, the model 

is iterated to predict future ice volume. According to the model's predictions, the 

next ice age will start in 30,000 years and will peak in 50,000 years. 

o ExAMPLE 6.6 

From the data from Model Five, use nonlinear predictability to estimate 
how many variables are involved in the dynamics. 

Solution: Nonlinear prediction allows us to look for a functional relation­

ship between Vt+ I and previous values of V. If the predictability is good-if £ is 
small-then Vt+1 is determined by previous values of V. Figure 6.44 shows £ 
for embedding dimensions p = 1, 2, 3, and 4. The best predictions are made 
when roughly ten nearest neighbors are used, and these predictions appear to be 
improving as p is increased. Figure 6.45 shows £ for k = 10 nearest neighbors 

for embedding dimensions p = 1 through p = 10: The predictions are best 
for p = 3 or p = 4, suggesting that three or four previous values of V do the 
best job of determining Vt+1• This is consistent with the fact that four coupled 
dynamical equations were used to generate the data. 

Perhaps it is surprising that using more than four previous values of V does 
not lead to a better prediction. After all, using more information can't hurt, can it? 
Due to the sensitive dependence on initial conditions in chaotic systems, values 
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Figure 6.44 
Nonlinear predictability !r 
versus the number of nearest 
neighbors K used to make the 
prediction. Results are shown for 
embedding dimensions p = 1 
through p = 4. 

of V from far in the past do not contain much information about the value of 
Vt+1• If we use these irrelevant values in finding nearest neighbors, predictions 

will be poor. This irrelevance of the distant past limits our ability to investigate 

high-dimensional chaotic systems using time-lag embedding. o 

SE .... SITIVE DEPE .... DE .... CE 0.... I .... ITIAL CO .... DITIO .... S: 
LYAPU .... OV EXPO .... E .... TS 

Suppose that we have two copies of Model Four-one using the variable 

x, the other using y-that are identical except that their initial condition can be 

made to differ. We start with Xo and Yo very close together. As we iterate the system 
from the two initial times, Xi and Yi start to move apart, slowly at first and then 
more rapidly. Eventually, Xi and Yi show no correlation with one another, yet the 
dynamics of both arise from the same equation (see Table 6.2 on page 326). 

This "stretching apart" of the distance between initially nearby points is 
called sensitive dependence on initial conditions. One way to characterize a 
chaotic dynamical system is to measure the strength of this sensitive dependence. 

1 • 
0.8 • • • • £ 0.6 • • - • 

<? 0.4 • • Figure 6.45 
0.2 Nonlinear predictability !r 

0 versus embedding dimension. 
3 5 7 9 K = 10 nearest neighbors were 

P used to make the prediction. 
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In order to develop some ideas about how to measure sensitive dependence 
on initial conditions, let's assume that we have perfectly deterministic dynamics 

Xt+! = f(xt). (6.40) 

If we have two initial conditions Xo and Yo whose initial separation Ixo - Yo 1 is 
very small, the separation after one time step is 

where we make use of the definition of the derivative 

df I = lim f(xo) - f(yo) . 
dx xo Yo-Ho Xo - Yo 

The strength of the sensitive dependence on initial conditions is therefore 

1 ~ I I· Clearly, this depends on the initial conditionxo. What we want, though, 
xo 

is a number that describes sensitive dependence for the map as a whole, and not 
just at one initial condition; we want to "average" all initial conditions. We can 
motivate the proper form of averaging by noting that 

and, by iteration, 

n-l df I 
IXn - Yn 1 ~ n dx Ixo - Yol 

t=O x, 

(where n means multiplication in the same way that L means summation). 
Recalling from Chapter 1 that the solution to the linear finite-difference equation 

Xt+ 1 = aXt is Xn = an Xo, we see that the average separation per iteration (which 
is a for the linear system) is 

( fi df I ) ~ 
t=O dx x, 

This is the geometric mean of the quantities 1 ~ Ix, I. The term Lyapunov 

exponent is used for the logarithm of this average separation per iteration. 
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A procedure, then, for quantifying the sensitive dependence on initial 

conditions from a one-dimensional finite-difference map is as follows: 

1. Iterate the map to generate a sequence of values Xo, Xl> X2, ••• ,Xn-\. 

2. Calculate the slope of the map at each of the points XQ, ••• , Xn-\. 

3. Calculate the absolute value of the geometric mean of the values in step 

(2). (If you are doing this on a computer, beware of round-off errors.) 

This value represents the sensitive dependence on initial conditions of 

the map as a whole. 

o ExAMPLE 6.7 

Estimate a Lyapunov exponent for the Model Four data. 

Solution: The first step is to use the data to construct a prediction model 

as described earlier in this section. We can then use this prediction model as the 

function f (x) in Eq. 6.40. 

A prediction model of the form ofEq. 6.37 is not adequate for the purpose 

of finding Lyapunov exponents from data. Although the data-implicit model 

ofEq. 6.37 provides us with a value of f() at each data point, it does not tell us 

what ~ is, and this information is needed to find the Lyapunov exponent. 

Instead, we need to fit a prediction model that does specify the slope ~~ at 

each data point. Many different models could do this job. Possibly the simplest is 

to fit short line segments to the data-a locally linear model. The slope of these 

line segments then gives ~~ . 
Figures 6.46 and 6.47 show a locally constant model (Eq. 6.37) and a locally 

linear model fit to some of the Model Four data in a return plot (a one-dimensional 

embedding). For these plots, K = 3 points were used. In a two-dimensional 

0.2 0.4 0.6 0.8 
Dt 

Figure 6.46 
A model of the form Eq. 6.37 
fits the data to short, level line 
segments-a locally constant 
model. 
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0.4 0.6 
Dt 

Figure 6.47 
A locally linear model fits the 
data to short line segments. The 
slope of the line segment at each 
point gives * at that point. 

embedding, small portions of planes would be used instead of line segments; in 
a higher-dimensional embedding, hyperplanes would be used. o 

'* MoDEL SIX 

Models One, Two, and Three are linear models. A general form of a multi­
dimensional, linear, finite-difference equation is the autoregressive model, 

(6.41) 

In this equation, Xt+l depends on the p previous values: XI> ••• , Xt-(p-l). The 
parameters ao, ... , ap-l are fixed in time and play the same role as p in Eq. 6.3 
or Eq. 6.11. The dynamical noise at time t is Vt and is almost always assumed to be 
Gaussian white noise. Here we will assume that there is no measurement noise, 

that is, D t = Xt. 

Equation 6.41 is capable of producing many different types of output, de­

pending on the values ofthe parameters ao, ... , ap _!' Three different examples 
are shown in Figures 6.48, 6.49, and 6.50. 

The analysis ofEq. 6.41 is central to a number of fields in science and tech­
nology, and, correspondingly, there are a number of different names that can be 

found in the technical literature: Statisticians tend to use the term "autoregressive 
(AR) model;' control engineers use "all-pole model;' signal processing engineers 
use "infinite impulse-response filter," while physicists prefer "maximum entropy 
model." 

Whatever the name, the dynamics displayed by the model are those we have 

already seen in linear models: exponential growth and decay, and oscillations 
whose amplitudes either grow or decay exponentially. However, in contrast to 
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Figure 6.48 
An output of Model Six for 
ao = 1.39, al = -0.703, 
a2 = 0.038, a3 = 0.735, 
a4 = -0.46. 

Figure 6.49 
An output of Model Six for 
ao = 0.677, al = 0.175, 
a2 = 0.297, a3 = 0.006, 
a4 = -0.114, as = -0.083, 
a6 = -0.025. 

the linear models we have already studied, Eq. 6.41 can produce several different 
frequencies of oscillation at the same time, with the amplitudes of the different 
frequencies growing or decaying exponentially at different rates. The result is 
that Eq. 6.41 is quite general, suitable for modeling many diverse types of data. 

For any given time series, the question of how to find the best ao, aJ, ... , 
ap-l can be addressed in the spirit of the prediction models we have already 
studied. We use Eq. 6.41 to make a linear prediction at time T + 1 using the 
measurements Dr made prior to that time: 

50 100 150 200 250 300 
t 

Figure 6.50 
An output of Model Six for 
ao = 1.05, al = -0.5. 
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We want to select the parameters ao, at> ... , ap-l to minimize the prediction 
error using a least-squares criterion: 

N-l 

£ = L(Pi - Di)2 
i=p 

N-l 

L(Vi)2. (6.42) 
i=p 

Finding the parameters ao, at> ... , ap-l that minimize £ is somewhat technical, 
but the upshot is that there is a formula that specifies the parameters in terms of 
the autocorrelation function R (k) of the data. This means that the autocorrelation 
function uniquely specifies a linear model of the data in the form ofEq. 6.41. This 
model is sometimes called an optimal linear model because it uses the parameters 
ao, at> ... , ap-l that minimize £, but it should be understood that the model is 
"optimal" only relative to other linear models and that nonlinear models might 
produce a smaller prediction error. 

The question of how to select p, called the model order, is more subtle. 
Ultimately, this is a philosophical question, and the technical issues surrounding 
it are well beyond the scope of this text. 

Fortunately, we will see that the model order p is not important for our 
purposes in this chapter. The only facts about the autoregressive model that we 
need to keep in mind are 

1. It is a model with linear dynamics. 

2. Optimal model parameters ao, at> ... , ap-l can be selected that 
minimize the prediction error £ for any given time series. 

3. The optimal parameters can be calculated from the autocorrelation 
function R(k). 

In particular, this last point means that if two time series have the same 
autocorrelation function, then they have the same optimal linear model. 

The main question we will attempt to answer using Model Six is, are the 
data well described by a linear model, or is there evidence in the data for nonlinear 
dynamics? 

D 

6.8 DETECTING CHAOS AND NONLINEARITY 

We have a time series and we want to know whether the system that 
produced it is chaotic. How can we tell? 
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The answer is easy: We cannot. Any finite amount of data might come from 
a chaotic system, or might come from a random system. The situation is similar to 
the famous scene of monkeys at typewriters: Ifwe put enough monkeys at enough 
typewriters for long enough, all the works of Shakespeare will eventually be pro­
duced. So, given a Shakespearean tragedy, how can we know for sure whether 
it was produced by the Immortal Bard, or by a monkey pecking randomly at a 
typewriter? 

o heavy lightness, serious vanity, 
Misshapen chaos of well-seeming forms, 
Feather of lead, bright smoke, cold fire, sick health, 
Still-waking sleep, that is not what it is! 

William Shakespeare (1564-1616), Romeo and Juliet, Act 1, Scene 1 

,Fs a teetsdl,ss t cfrihohpincusfs 1 e 
od egt acgl,tm gtkiwitv waolakate ihoe-s to mheii eeia mslsy 

sihnofsyStena ovs 
ilwi,rrb elehilOg h ! i,Mhskohr ,pnf dana hset-eea n 

A typing monkey (simulated) 

Of course, only a fool would claim that the works of Shakespeare were gen­
erated by a typing monkey. We can look at even a small fragment of Shakespeare's 
works, and see structure such as words and syntax, and divine more abstract 
structure such. as meaning. The chances of seeing such structure in randomly 
generated letters are so small that we discount the very possibility as absurd. 

We can look at time series in a similar way. Suppose that we look for chaotic 
structure in a time series. If we see it, then we can argue that the time series is 
unlikely to have been generated by random noise. 

But what is "chaotic structure"? We have already seen that the definition of 
chaos includes three elements: 

• determinism, 

• aperiodicity, and 

• sensitive dependence on initial conditions. 

In Section 6.7 we introduced several ways to quantify these elements in a 

time series. 
The fourth element in the definition of chaos, "boundedness," is not of 

much use to us here. It is easy to generate random numbers that are bounded. 
For instance, if we write each number from a time series on a deck of cards, and 
then shuffle the cards, the deck will serve as a random-number generator that is 
bounded. So, whatever structure there is in "boundedness" cannot distinguish 

between chaos and randomness. 
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Figure 6.51 
The Model-Five dynamics 
started at several nearby initial 
condition. Each 0 marks an 
initial condition plotted as 
DH! versus D t ; there are 30 of 
them. The x's mark the state 
after iterating the Model-Five 
dynamics for 5 time steps, from 
each ofthe 30 initial conditions. 

Actually, we have to be careful even in using the other three elements in the 
definition of chaos. Consider the use of determinism in detecting chaos. Mod­

els Two and Three show deterministic structure (see Figures 6.41 and 6.42) even 

though they have only linear dynamics and are therefore incapable of producing 
chaos. 

A similar problem arises when looking at sensitive dependence on initial 
conditions. Figures 6.51 and 6.52 show what happens to two small clouds of initial 
conditions in the dynamics of Model Five. The sensitive dependence on initial 
conditions in the chaotic dynamics causes the clouds to broaden over time. Very 

similar behavior can be observed in Figures 6.53 and 6.54, which show the linear 
dynamics of Model Three. In this case, the cloud broadening is due to dynamical 
noise, not chaos. 
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Figure 6.52 
After 200 time steps of the 
chaotic Model Five dynamics, the 
cloud of initial conditions spread 
outs, showing the sensitive 
dependence on initial conditions. 
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Figure 6.53 The Model-Three dynamics, started at several nearby initial condi­
tions. Each of the o's marks one initial condition, plotted as Dt+l versus D,. The x's 
mark the position that the Model-Three dynamics take each initial condition after 
5 time steps. The cloud of initial conditions has spread out, reflecting the influence 
of the noise in the Model-Three dynamics, but visually, it is hard to distinguish this 
from sensitive dependence on initial conditions. 
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Figure 6.54 
After 200 time steps of the linear 
Model Three dynamics 

TOWARD AN APPROPRIATE .... ULL HYPOTHESIS 

Scientists often work by putting forward a hypothesis and then trying to find 
an example to refute it, to show that the hypothesis is incorrect. As applied to chaos 
and time series, following this procedure means that one does not try to prove 
that a time series is chaotic, but rather to refute or reject some other hypothesis. 
The hypothesis that one is trying to reject is called the null hypothesis. 

What is an appropriate null hypothesis, when thinking about the possibility 
of chaos in a time series? Up until now, we have pointed to the dichotomy between 
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chaos and randomness, suggesting that we should use randomness as the null 
hypothesis. But what do we mean by randomness? 

One possibility is white noise: Each measurement D t is independent of every 
other measurement. This is a convenient hypothesis because it readily suggests a 
test; if we can find any dependence between measurements, then we can reject the 
null hypothesis. Unfortunately, we have already seen cases where we can reject 
the white noise null hypothesis even when there is no chaos. For example, in the 
case of Models Two and Three, the autocorrelation function shows that there is 
dependence between successive measurements, even though these models involve 
only linear dynamics and therefore cannot produce chaos. 

The white noise null hypothesis is somewhat like the hypothesis of typing 
monkeys. It is not too often that we have to decide whether a sentence was written 
by Shakespeare or by a typing monkey. More likely, the problem is one of deciding 
whether a work was written by Shakespeare or, say, by Alexander Pope-typing 
monkeys can be ruled out from the very beginning, and doing so tells us nothing 
useful about the true author. White noise is simply too restrictive to be a good 
null hypothesis when testing for chaos. 

Lo! thy dread Empire CHAOS! is restor'd; 
Light dies before thy uncreating word; 
Thy hand, great Anarch! lets the curtain fall; 
And Universal Darkness buries All. 

Alexander Pope (1688-1744), The Dunciad 

A better null hypothesis is provided by Model Six, which gives an optimal 
linear model of any data set. The hypothesis here is that the dynamics are linear, 
with Gaussian white noise random inputs. We will therefore call this the linear­
dynamics null hypothesis. This null hypothesis is inconsistent with the possibility 
of chaos, since linear dynamics cannot produce chaos. This means that if a time 
series is chaotic, we should in principle be able to reject the null hypothesis. 

TESTING THE NULL HYPOTHESIS WITH SURROGATE DATA 

We have a measured time series and a null hypothesis. How do we test 
whether the time series is inconsistent with the null hypothesis? We use what 
is called a discriminating statistic, some quantity that can be computed both 

from the measured time series and also from a time series that is consistent with 
the null hypothesis. Three discriminating statistics that are relevant to chaos 
are the nonlinear predictability £, the Lyapunov exponent, and the correlation 
dimension, but other discriminating statistics can potentially be used. 

We test whether the time series is consistent with the null hypothesis in 
the following way: First, calculate the value of the discriminating statistic on the 
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measured time series. We will call this value V. Then find the range of values 
for the discriminating statistic for time series that are consistent with the null 
hypothesis. If V falls within this range, then the discriminating statistic cannot 
distinguish between the null hypothesis and the measured time series. On the 
other hand, if V falls outside the range, then the time series is inconsistent with 
the null hypothesis. 

One way of finding the range of values of the discriminating statistic for a 
time series consistent with the null hypothesis is this: Generate many different 
time series that are consistent with the null hypothesis, and then calculate the 
value of the discriminating statistic for each of these time series. We will call 
this value Si for each of the null hypothesis time series. Data generated to be 
consistent with the null hypothesis are called surrogate data. This process of 
using surrogate data to find the range of values for data consistent with the null 
hypothesis is called bootstrapping. 

There is a particularly simple method for generating surrogate data con­
sistent with the null hypothesis of linear dynamics with Gaussian white noise 
inputs. In Section 6.5, we saw that a linear dynamical system can be characterized 
by a transfer function, which consists of two parts: the transfer gain G (w) and the 
transfer phase <I>(w). The transfer function describes the relationship between 
any input and the output of the linear dynamical system. In order to calculate the 
transfer function, we need to measure both the input and the output. However, 
if the input is Gaussian white noise, then even if we do not measure the input we 
can calculate the transfer gain G(w). The transfer phase <I>(w) will be random 
numbers between 0 and 21f at each w. Or, to be more precise, since we don't 
measure the input, the phases <I>(w) look random to us, even though they are 
determined by the input. 

If we took the same linear dynamical system and gave as input a new se­
quence of Gaussian white noise random inputs, then the transfer gain would be 
the same as before, but the transfer phase would be a new set of random numbers. 
In order to simulate this, we can take the following steps: 

1. Compute the Fourier transform of the original time series. This will con­

sist of an amplitude Aoutput(w) and a phase r!>output(w) at each frequency 
w. 

2. Replace the phases r!>output(w) with random numbers ranging between 0 
and 21f. Note that this has no effect on the amplitude Aoutput (w). (Tech­
nical note: In the original time series, r!>output(w) = -r!>output( -w), and 
this symmetry should be maintained when assigning random phases.) 

3. Compute the inverse Fourier transform of Aoutput(w) and the ran­
domized r!>output(w). This produces a new time series, the surrogate 
data. 
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The surrogate data has the same Aoutput (w) as the original time series. Since 
the power spectrum is proportional to A~utput(w), the surrogate data time series 
has exactly the same power spectrum as the original. Since the autocorrelation 
function is the Fourier transform of the power spectrum, the surrogate data 
also have exactly the same autocorrelation function as the original time series. 
This means that it is impossible to discriminate between the surrogate and the 
original based on the autocorrelation function or anything that is derived from 
the autocorrelation function. 

Recall from Model Six that the parameters in the optimal linear model of a 
time series are derived from the autocorrelation function. Since the surrogate data 
and the original data have exactly the same autocorrelation function, both the 
surrogate data and the original have identical optimal linear models. In generating 
surrogate data in this manner, we do not need to specify the model order p of 
the linear model: The surrogate data and the original time series have the same 
optimal linear model for any model order. 

Because we want to find the range of values for the discriminating statistic 
for data consistent with the null hypothesis, we will want to make many different 
surrogate data time series. Each one is called a realization of the null hypothesis. If 
we want to make many different realizations of the null hypothesis, then we follow 
the same process, using different random numbers for the phases cPoutput(w) in 
step 2. Typically, lO to lOO different realizations are used. 

Now the procedure is easy: Calculate the value of the discriminating statistic 
for the original time series and for each of the surrogate data time series. If the 
value for the original time series is outside the range of values found for the 
surrogates, then the original time series is inconsistent with the null hypothesis. 

We have considerable latitude in choosing a discriminating statistic. If one 
is interested in chaos, then an appropriate discriminating statistic is the nonlin­
ear predictability £, or the Lyapunov exponent, or the correlation dimension. 
However, in principle, any discriminating statistic could be used, even if it has 
nothing whatsoever to do with chaos. Whatever discriminating statistic is being 
used, the result indicates whether the original time series is consistent with the 
null hypothesis oflinear dynamics with Gaussian white noise inputs. 

o ExAMPLE 6.8 

Use surrogate data to indicate whether the data from Model Three and the 
data from Model Five reflect linear or nonlinear dynamics. 

Solution: We follow this sequence of steps: 

• Generate many different realizations of surrogate data for each of the 
data sets. In this case, we will use ten realizations for each data set. Some 
examples are shown in Figures 6.9 through 6.14. 
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Figure 6.55 
A realization of surrogate data 
for Model Three. 

Figure 6.56 
A second realization of surrogate 
data for Model Three. 

• Calculate a discriminating statistic on the original data and on the 
corresponding surrogates. For this example, we will use nonlinear pre­
dictability f, as a discriminating statistic. We will use an embedding 
dimension of p = 4 for both the Model Three and Model Four data. 

• See whether the value of the discriminating statistic for the original data 
lies outside the range for the many realizations of the surrogate data. 

Figure 6.59 shows the nonlinear predictability f, for the Model Three 
data and for ten surrogates generated from this data. The Model Three data's 
predictability lies within the range of the surrogates. This means that nonlinear 
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t 

Figure 6.57 
A realization of surrogate data 
for Model Five. 
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Figure 6.58 
A second Model Five surrogate. 

Figure 6.59 
Nonlinear predictability !r 
versus K for the Model Three 
data (dots) and ten surrogate 
data sets (x). An embedding 
dimension of p = 4 was used. 

Figure 6.60 
Nonlinear predictability !r 
versus K for the Model Five data 
(dots) and ten surrogate data sets 
(x). 

predictability does not refute the null hypothesis that the data arise from a linear 

model. Note that -!r « 1 for the Model Three data. This means that there is 
some determinism in Model Three. However, the surrogate data analysis tells us 
that this determinism is consistent with linear dynamics. 

The results for the Model Five data are different. (See Figure 6.60). For 
small values of K, the Model Five data's predictability lies well outside the range 
of values found for the surrogate data. This allows us to reject the linear dynamics 
null hypothesis. 

D 
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6.9 ALGORITHMS AND ANSWERS 

Suppose you have a time series from some field measurement, for example 
the Standard & Poor's stock price index measured each day. Suppose also that 
you have two computer programs, one to calculate a Lyapunov exponent and one 
to calculate a correlation dimension. You run the programs on your time-series 
data, setting parameters such as the number of nearest neighbors to use or the 
scaling region. The computer prints a message saying that the Lyapunov exponent 
is 0.2 and the correlation dimension is 3.1. 

Does this mean that stock prices have a self-similar attractor with a dimen­
sion of 3.1 and that there is sensitive dependence on initial conditions? Not at 
all! Most computer programs are written to provide an output for any input. In 
designing the algorithm, the programmer makes certain assumptions. For ex­
ample, the algorithm for quantifying sensitive dependence on initial conditions, 
described in Section 6.7, assumes that data are well described by a deterministic 
finite-difference equation. The algorithm for calculating the correlation dimen­
sion assumes that the trajectory lies on an attractor. If the data do not satisfy these 
assumptions, then the output of the algorithms should not be interpreted as an­
swers to questions such as "Is there sensitive dependence on initial conditions?" 
or "Is there an attractor with a fractal dimension?" 

The advantage of using surrogate data and testing the null hypothesis is that 
the assumptions behind the algorithms become unimportant. This is because we 
are no longer answering questions such as "Is there an attractor with a fractal 
dimension?" Instead, we are asking whether or not the time series is consistent 
with the null hypothesis. 

It is tempting to believe that if we use a discriminating statistic that is mo­
tivated by chaos-for instance, the nonlinear predictability £-then finding that 
the original time series is inconsistent with the linear dynamics null hypothesis 
means that the time series is chaotic. This is incorrect. All we can conclude, no 
matter which discriminating statistic is used, is that the time series is inconsistent 
with the null hypothesis. Some nonchaos phenomena that can lead to rejection 
of the null hypothesis are 

• nonstationarity of the data; 

• non-Gaussian white noise random inputs; 

• nonlinearities in the measurement process; 

• nonlinearities in the dynamics that do not involve chaos, such as the 
nonlinearity seen in the Lotka-Volterra equations, Section 5.5. 

If the linear dynamics null hypothesis is rejected, then we have still not 

proved that the dynamics are chaotic. As of this writing, there is no general and 
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standard test for any of the above nonchaos phenomena in time series that involve 
measurement noise or dynamical noise. 

Conversely, if we cannot reject the null hypothesis, then all we can say is that 
"the measured data are consistent with the null hypothesis:' This does not mean 
that the null hypothesis is correct-it means that we don't have any evidence 
that the hypothesis is incorrect. There might be too much measurement noise to 
reject the linear dynamics null hypothesis, or the dynamics might be chaotic but 
of such high dimension or high Lyapunov exponent that we do not have enough 
data to see the chaotic structure. 

SOURCES AND NOTES 

There are many branches in the literature surrounding time series analysis, 
but the root of time series analysis emerges from statistics. A knowledge of basic 
statistics is indispensable to the study of time series, and there are many intro­
ductory statistics textbooks such as Snedecor and Cochran (1989). The "standard 
toolbox" of techniques for analysis of time series from linear systems is based in 
spectral analysis and the auto- and cross-correlation functions. The principles are 
laid out in Box and Jenkins (1976) and Jenkins and Watts (1968). Somewhat less 
comprehensive introductions that provide an introduction to probability theory 
are Bendat and Piersol (1971) and Peebles (1987). 

Time series analysis is particularly important in the closely-related en­
gineering fields of signal processing and control. There are a large number of 
textbooks in this area, including Oppenheim and Schafer (1989) and Rabiner 
and Gold (1975) for signal processing, and Kailath (1980) for linear systems con­
trol theory. An important subject is estimation-how one deduces the values 
of unmeasured variables from measured ones-and also has a large literature. 
An overview is provided by Gelb et al. (1974). There is also a large engineer­
ing literature dealing with nonlinear control systems; Isidori (1989) provides an 
introduction. 

The subject of time series analysis of chaotic systems is quite new, and there 
are no standard texts on the subject. Instead, one must resort to the technical 
literature, which can be quite intimidating. A good place to start is with review 
articles; two excellent ones are Grassberger et al. (1991) and Abarbanel et al. 
(1993). An intermediate-level introduction to chaos and randomness is given in 
Eubank and Farmer (1990). 

The review articles mentioned above contain many references to the re­
search literature. Here, we mention some articles that are particularly germane 
to the presentation of this chapter. The basis for almost all nonlinear dynamics 
time series analysis methods is time-lag-embedding of data. The first application 
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of this technique to chaotic time series was by Glass and Mackey (1979) in the 
context of delay-differential equations, and the technique was introduced more 
generally in Packard et al. (1980) based on a suggestion by Ruelle. An impor­
tant theorem was proved by Takens (1981) and extended and elaborated upon 
by Sauer et al. (1991). The influence of noise is considered in Casdagli et al. 
(1991). 

Recurrence plots were introduced by Eckmann et al. (1987). Somewhat 
earlier, Grassberger and Procaccia (1983) had shown that the correlation dimen­
sion was a practical means of characterizing chaotic attractors. This technique 
has been widely used in applications, despite difficulties in interpreting results 
in data that may not be chaotic. Nonlinear prediction techniques were intro­
duced by Farmer and Sidorowich (1987) in part to overcome this difficulty in 
interpretation. A paper written for non-specialists is Sugihara and May (1990). 
The presentation given in Chapter 6 is strongly influenced by Casdagli (1989), 
and the ice-age example is drawn from Hunter (1992). Methods for detecting 
determinism without constructing prediction models are described in Kaplan 
and Glass (1992, 1993) and Kennel et al. (1992). Of course, prediction techniques 
may be of ultimate use in forecasting the future. Many of the scientists involved 
in developing these methods have left academia for Wall Street. A popular review 
of the possible connections between chaos and finance is given in The Economist 
(Oct. 9,1993). 

The use of surrogate data is essential for deciding whether an irregu­
lar time series arises from nonlinear deterministic chaos or linear stochastic 
dynamics. The method was introduced by Theiler et al. (1992). An early appli­
cation of phase-randomization to biological data is found in Kaplan and Cohen 
(1990). 

The nonlinear techniques described in Chapter 6 are still part of the on­
going research enterprise. We do not know which methods will grow in use and 
which will wither as useless historical diversions. We also do not know what new 
techniques will emerge as important to using nonlinear dynamics to understand 
time series, but given that the field had its inception as recently as the late 1970s, 
it is likely that changes will be dramatic. 

tt?l EXERCISES 

tt?l 6.1 Time Series A (see Table 6.3) was produced by a computer random 
number generator. The mean of the entire time series is Mest = 0.178, and the 
standard deviation is a 2 = 1.045. Is Mest significantly different than zero? 

Calculate the mean of the first ten points of Time Series A, and the last ten 
points. Are the two means statistically different from zero? (If we want to know 
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Table 6.3 Time Series A 

1 0.372 2 -0.161 3 0.526 4 2.06 
5 -1.04 6 0.206 7 1.23 8 -2.83 

9 0.452 10 -0.4 11 0.323 12 1.83 
13 1.9 14 -0.353 15 -0.596 16 0.66 
17 1.54 18 0.283 19 -2.21 20 -0.565 
21 -0.812 22 2.39 23 -0.383 24 -0.449 
25 -1.59 26 -2.24 27 0.534 28 -0.226 
29 -1.15 30 0.464 31 -0.0285 32 -0.6 
33 0.947 34 0.696 35 0.0939 36 0.615 
37 -0.134 38 -0.162 39 0.812 40 -0.0927 
41 -0.266 42 -0.987 43 0.451 44 -0.623 
45 0.31 46 0.426 47 0.963 48 -1.02 
49 0.259 50 0.649 51 -1.72 52 -2.14 

53 0.642 54 0.415 55 -1.45 56 1.58 
57 1.46 58 -0.105 59 1.03 60 1.93 
61 0.0236 62 0.573 63 -0.263 64 0.129 
65 -0.617 66 1.31 67 -0.446 68 1.08 
69 -0.116 70 -1.17 71 2.47 72 1.15 
73 0.984 74 1.44 75 0.447 76 -0.311 

77 0.515 78 -0.193 79 -0.915 80 -0.486 
81 0.43 82 0.225 83 -0.496 84 -0.98 
85 -0.0647 86 1.92 87 1.79 88 -0.179 
89 -0.539 90 1.24 91 0.0622 92 2.13 
93 -0.224 94 0.266 95 -0.491 96 0.296 
97 2.21 98 0.181 99 0.77 100 -0.0416 

whether the two means are statistically different from each other, Student's t-test 
can be used, and is described in almost any introductory statistics textbook.) 

tff?l 6.2 In Section 6.3 the estimated mean Mest was found as the value that 
minimizes the squared difference between itself and the values in the time series: 

N 

E = L(D1 - Mest)2. (6.43) 
1=1 

Another familiar quantity is the median, which is the value that half of 
the points are above and half below. Show that the median M is the result of 
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minimizing 

N 

E= LIDr-MI. (6.44) 
r=1 

(HINT: The derivative of I Dr - M I with respect to M is equal to ± 1, depending 
on whether Dr is greater than or less than M.) 

tf7 6.3 Each year the Happy Valley School District administers standardized 
tests to its students. The tests consist of 100 questions, each of which has a yes 
or no answer. A student gets one point for each question answered correctly, and 
zero points for each incorrect answer. The results of the testing are shown to 
parents in the form of a histogram, for all the students, as shown in Figure 6.61. The 
data fit the famous "bell-shaped curve;' which we have been calling a Gaussian 
distribution. 

1. Given that the mean score is 60.2, is there any reason to think that the 
students do better than they would if they answered questions randomly? 
(HINT: If all 100 questions were answered at random, the mean score 
would be 50 and the standard deviation would be 5.) 

2. Your daughter, otherwise an A student, has done badly, scoring 40 on 
the test. Normally she scores a 90 on such tests. The school claims that 
she has tried intentionally to give the wrong answer on every question, 
but your daughter claims she was sick on the day of the test and couldn't 
read the exam questions. Is your daughter's answer plausible? 

3. An angry parent complains that the school isn't doing its job, and that 
the students haven't learned anything except how to mark the exam sheet 

200 

150 

100 

50 

10 30 50 70 90 

Figure 6.61 A histogram of the number of the scores received by students on a 
standardized test. The mean score is 60.2, and the standard deviation is 10.1. There 
are 1000 students' scores recorded here. 
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at random. The parent has read Dynamics in Action 7 of this book, and 
knows that a random walk produces a Gaussian-shaped distribution. 
The parent claims that the scores show that 30 of the questions were so 
easy that anyone could answer them, and the remaining 70 questions 
were answered at random. Do the data support the parent's claims? 
(HINT: Use the fact that the standard deviation of the distances moved 
by random walkers goes as the square root of the number of steps, to 
calculate what the standard deviation would be for 70 questions.) 

tf}f? 6.4 Use the return plot given in Dynamics in Action 18 to construct 

functions At+l = f(At) that fit the data. 

1. Construct a piecewise constant model. 

2. Construct a piecewise linear model. 

Can either model produce an irregular series of action potentials? Can either 
model produce chaos? 

tf}f? 6.5 In studying the Model 1 and Model 4 data, it was claimed that the 
respective autocorrelation functions were consistent with white noise. (See Fig­
ure 6.9 and 6.14.) The autocorrelation function for ideal white noise is R(O) = 1 

and R(k > 0) = O. In the two figures, it is apparentthat while R(k > 0) is close 
to zero, it is not exactly zero. How close is good enough? 

Like the sample mean, the calculated value of R (k) will vary from the "true" 
value because of sampling fluctuations. Given that the signal is really white noise, 
the calculated R(k > 0) from any particular dataset of length N is a random 
number picked from a distribution with a mean of zero and a standard deviation 

ofl/v'N. 
Are the graphs of R(k) given in Figures 6.9 and 6.14 consistent with white 

noise? (100 data points were used to construct the graphs). 

tf}f? 6.6 One test for the stationarity of a time series is whether the variance in 
the first half of a time series is the same as the variance in the second half. Of 

course, the two calculations are unlikely to produce exactly the same values, so 
we need to have some way to decide whether the variances are similar enough to 

justify saying that they are the same statistically. 
The standard statistical test for comparing two variances is the F-test, which 

is based on the ratio of the two variances. If the variances were the same, then the 
ratio would be 1. Figure 6.62 gives 95 percent confidence levels for the ratio, as a 
function of the length of the time series. (We assume that the two time series have 
the same length.) If the ratio is within the two lines, then there is no statistically 
significant difference between the two variances. 

Calculate the variance of the first 10 points in Time Series A, and of the last 

10 points. Are they statistically different? 
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Figure 6.62 The 95 percent confidence levels for the ratio of the variances of two 
time series, as a function of the time series' length N. 

2.. COMPUTER PROJECTS 

Project 1 Write a computer program to perform nonlinear prediction on 
a time series, as described in Section 6.7. 

Project 2 Write a computer program to calculate the correlation integral 
C (r) of a time series. Your program should read in the time series, and also an 
embedding dimension and an embedding lag. (A good choice for the embedding 
lag is the value k at which the autocorrelation function first falls to lie.) 

At any given r, the correlation integral is easily calculated: calculate the 
distance from each embedded point to every other embedded embedded point, 
and count how many of those distances are smaller than r. The value of C (r) is 
then 

Number of distances < r 
C~)= .' 

Total number of dlstances 

Given a time series of N points, and using an embedding dimension of p and 
embedding lag of h, then there are N - (p - I)h embedded points. The total 
number of distances is (N - (p - l)h)(N - (p - I)h - 1)/2 ~ N 2 /2. 

One is often interested in calculating C (r) at many different values of r. 
Considerable efficiency can be gained by calculating all of the distances between 
points IDi - Djl for j = i + I to Nand i = I - (p - I)h to N and making a 
histogram of the result. The correlation integral is then the number of counts in 
the histogram to the left of the desired value of r, divided by the total number of 
counts. In order to facilitate looking at small values of r, it is useful to make the 
histogram based on the logarithm of the distances between points, rather than 
the distances themselves. 
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Project 3 Write a program to calculate the correlation dimension of a time 
series. One way to do this is to follow the procedure outlined in Example 6.4, 
which requires selecting a scaling region. This can be a subjective procedure, and 
difficult to apply to surrogate data. 

A simple method for estimating the correlation dimension is to select two 

length scales rl and r2 < rl, and calculate 

Theiler and Lookman (1993) point out that it is highly effective to select r2 so that 
C(rl)/C(r2) ~ 5, which reduces the problem to selecting a single length scale 
rl. It is convenient to set rl to be roughly u / 4, where u is the standard deviation 
of the time series. 

Project 4 Write a computer program to create surrogate data. 
You will need the following ingredients, each of which is described in Press 

(1992), or is available from many commercial packages such as MATLAB@ or 
MATHEMATlCA@. 

• A Fourier transform subroutine such as an FFT. Some FFT subroutines 
will only work with data that is a power of two in length, for example, 
256, or 512. To understand this exercise, you will have to understand 
how the results of the FFT are stored in your computer, and you can 
only get this information by reading the manual that comes with your 
Fourier transform software. 

• A random number generator. The random generator should have a seed 
that can be set to initialize the generator. 

Your program should follow these steps: 

1. Read in the time series. If you have an FFT subroutine that requires that 
your data be a power of two in length, you will need to truncate your 
data to the nearest power of two before proceeding. 

2. Take the Fourier transform of your data. You now have an array of 

complex numbers. In principle, each of these complex numbers has a 
form x + i y, but different computers and software packages will store 
complex numbers differently. 

3. Set the seed of the random number generator to a value you specify. 

4. For each of the complex numbers in (2), except the first and the last one, 
do the following: 

• Calculate r = J x 2 + y2. 

• Generate a random number () uniformly distributed between zero 
and 21r. Most computer random number generators create a number 
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that is uniformly distributed between zero and one, so all you need 
to do is multiply the output of the random number generator by 2rr . 

• Replace x by r cos () and replace y by r sin (). Many Fourier tran­
form routines perform calculations for both positive and negative 
frequencies. If this is the case for you, then at any given frequency 
you will generate only one () at each frequency, using () for the posi­
tive frequency and -() for the negative frequency. (When taking the 
Fourier transform of a real time series, the result at frequency -w is 
the complex conjugate of the result at w.) 

Leave the first and last-often termed DC and Nyquist frequency­
alone. 

5. Take the inverse Fourier transform of the phase-randomized data you 
generated in (4). The inverse Fourier transform is often calculated using 
the same subroutine as the Fourier transform; your manual can explain 
how to perform the inverse. 

6. Print out the real part of the result of (5). If you have done things cor­
rectly, the numbers should all be real, except perhaps for a tiny imaginary 
component due to computer round-off error. In order to produce a dif­
ferent realization of the surrogate data, change the random seed that was 
set in step (3). 

In practice, a number of mistakes can be made. The most common is to 
forget to use the same () for corresponding positive and negative frequencies. If 
you find that, after taking the inverse Fourier transform, the imaginary part of 
the answer is not negligible, then you have probably made this mistake. Another 
common error arises from the complicated manner that some FFT subroutines 
store their output. Often, the DC component is stored as the first element of an 
array, and the Nyquist is stored next. 

To test your program, generate a sine wave that has an integer number of 
cycles. For example, if you have N points in your time series, then sin(2rrt ~) 
for t = 1, . .. , N will have 10 cycles. The surrogate data generated from this sine 
wave should have exactly the same number of cycles, and be shifted only in phase. 
If you make a sine wave with a non-integer number of cycles (say, 10.5), then you 
will notice that the surrogate data looks like a sine wave whose amplitude slowly 

changes. 
Make a long random time series that consists of zeros and ones. The sur­

rogate data generated from this time series will have the same autocorrelation 
function, but will not be zeros and ones. The amplitudes in the surrogate data 
will have a Gaussian distribution. 

Project 5 As pointed out in Exercise 4, the method of generating surrogate 
data using phase-randomization of the Fourier transform produces data with a 
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Figure 6.63 
A time series from a linear 
dynamical system, subjected 
to a nonlinear measurement, 
Di = arctan(xi)· 

Gaussian distribution of values. Often, the original data does not have a Gaussian 
distribution, and so it is easy to distinguish the original data from the surrogates by 
using a discriminating statistic that looks for non-Gaussian distributions. This 
can be misleading when using surrogate data to look for nonlinear dynamics, 
because a non-Gaussian distribution can be created by a measurement function 
that is nonlinear, even if the underlying dynamics are linear and Gaussian. For 
instance, the time series shown in Figure 6.63 was produced by a linear dynamical 
system, but subjected to a nonlinear measurement-the arctangent of the data 
was taken, producing values that tend to be near ±1.5. The phase-randomized 
surrogate data looks qualitatively different from the original data, because its 
values do not cluster near ±1.5 but instead form a Gaussian distribution. 

There is a technique that helps to avoid being mislead by nonlinear 
measurement functions: apply nonlinear measurement transformations to the 
phase-randomized surrogate data to give it a distribution identical to the original 
data. This is called amplitude-adjusted surrogate data, and often looks much 
more like the original data (see Figure 6.65). The Null Hypothesis behind 
amplitude-adjusted surrogate data is "linear dynamics with a possibly nonlinear, 
monotonically increasing measurement function." This Null Hypothesis is some­
what more general than the "linear dynamics, linear measurement" hypothesis 
behind the phase-randomized surrogate data. 

o 200 400 600 800 1000 

Figure 6.64 
Surrogate data of the signal in 
Figure 6.63 generated by phase 
randomization of the Fourier 
transform. 
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Figure 6.65 
Surrogate data of the signal in 
Figure 6.63 generated using 
amplitude adjustment before and 
after phase randomization of the 
Fourier transform. 

Amplitude-adjusted surrogate data can be created by shuffling the original 
time series in a very careful manner. Each point in a time series can be thought of as 
having two indices, which we will call the time index and the amplitude index. The 
time index refers to the temporal order of the points. The first point has time index 
1, the second has time index 2, and so on. The amplitude index refers to the actual 
values, irrespective of their order in time. From this perspective, the smallest value 
has amplitude index 1, the next smallest has amplitude index 2, and the largest has 
amplitude index N. In order to apply a nonlinear measurement transformation, 
we first generate a target time series that has the desired distribution. Then, we 
take the source time series, and replace each point by the value of the point in the 
target time series that has the same amplitude index. This can be accomplished 
by sorting the target and source time series in the following sequence: 

1. Sort the source time series according to amplitude index, keeping track 
of the time index. After the sorting, the values will be in increasing 
amplitude order, but the time index associated with each value will be 
out of order. 

2. Sort the target time series in the same way. 

3. Replace the amplitude values in the sorted source time series, with the 
corresponding amplitude values in the sorted target time series. Make 
sure to leave the time indices as they were in the sorted time series. Call 
this the "mixed" time series. 

4. Sort the mixed time series in ascending time index order. 

The result will be that the amplitude values in the target time series replace 
those of the source time series, but the time order remains that of the source time 

series. 
Write a program that applies this sorting algorithm to transform a source 

time series to the amplitude distribution of a target time series. You can test this 

program by using a sine wave as a source, and uniformly distributed numbers 
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(e.g., 1,2,3, ... ) as a target. The result should be a triangle wave that increases 
and decreases in phase with the original sine wave. 

Overall, the process for making amplitude-adjusted surrogate data is as 
follows: 

1. Amplitude transform the original data to a Gaussian distribution. Use 
the original data as the source time series, and Gaussian white noise as 
the target time series. 

2. Make the phase-randomized surrogate of the transformed data. 

3. Amplitude transform the surrogate data to the original data. Now, the 
original data is the target time series, and the surrogate data is the source 
time series. 

Surrogate data produced in this way will have exactly the same distribution 
as the original time series. In fact, the surrogate data is the original time series, 
but shuffled in order. The shuffling has been carefully done so that the result is 
not necessarily white noise-which is the result if you randomly shuffle the order 
of a time series-but has an autocorrelation function that is quite similar to the 
original time series' autocorrelation function. 



ApPENDIX A 

A Multi-
Functional 
Appendix 

In dynamics, one sees many equations of the form 

y = I(x), (A.l) 

~~ = I(x), or Xt+l = I(xt). In these equations, a dependent variable (y or ~~ 
or Xt+ I) is expressed as a function of an independent variable (x or Xt ). Saying 
that y is a function of x is just another way of saying that for a given value of x, we 

can calculate the unique corresponding value of y. Exactly how this calculation is 
done, of course, depends on the "form of the function." For example, the function 

I(x) = 2x - 7x 2 

can be easily evaluated; when x = 3 this function has the value 2 x 3 - 7 X 32 = 
-57. When x = 3.1, the value is -61.07. Other forms of functions are not always 
simple to evaluate in one's head or using just paper and pencil. For example, the 
function cos(x) evaluated at x = 3 has the value -0.9899925, although almost 
everyone would need a calculator to find this out. 
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Just a few different forms of functions cover most of the territory in dy­
namics. After becoming familiar with the shape of the graphs of these functions, 
one can often use intuition to understand important aspects of an equation. If 
you know what context different functions arise in, you can often quickly see in 
an equation the underlying physical or biological mechanism. 

To determine the geometrical features of a graph of a function, y = f (x) 

you have to carry out only a small number of computations. You are probably 
already familiar with these from calculus, but here is a quick summary. 

• The x-intercept or zeroes. Set the dependent variable y equal to 0 and 
solve for x. This is the problem people are solving when they factor an 
equation or use numerical techniques such as Newton's method. 

• The y-intercept. Set x equal to 0 and solve for y. 

• The behavior at x = ±oo and o. Substitute these values for x in the 
equation and determine the value of y. If y is indeterminate (e.g., 0/0 
or 0 x (0) you will have to determine which term grows the fastest in 
the neighborhood of the point under consideration. This is often easy 
to see geometrically, but if you have a problem you will have to apply 
I'Hopital's rule (see your calculus book). 

• The maxima and minima. Compute the first derivative, *, ofEq. A.I 
and set it equal to o. The values of x that satisfy the resulting equation 
are usually maxima or minima. For the maxima the second derivative 
~ is negative, whereas for minima it is positive. Caveat: This does 
not work all the time, so be aware of tricky functions that will confuse 
you if you do things mechanically without thinking. For example, the 
functions y = x 3 and y = X4 are simple to graph, but you must be 
careful applying this rule. 

• The inflection points. These are values of x for which the sign of the 
first derivative changes si§n. They can usually be found by computing 

the value of x for which B is zero. The caveat above concerning tricky 
functions applies here as well, so be careful. 

• Singular values. For some values of x, y approaches ±oo. For example, 

in the function f(x) = (X~7)' the denominator is zero when x = 7. 

We now discuss several functions that are found in applications. Although 
most of the functions can be written in more general fashion by translation of the 
origin and rotations of the axes, we present the functions in the most usual and 
useful representations. Lowercase Roman and Greek letters (with the exception of 
x, y, and t) refer to real constants. The same symbol, such as b, will have different 
meanings in the different functions in which it appears as a parameter, but this 
should not cause any confusion. The dependent variable is y and the independent 
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variable is x or t (t will be used for those functions that in practice usually have 
time as the independent variable). 

A.1 THE STRAIGHT LINE 

The straight line 

y = mx + b 

is of great importance. The graph of this function is a straight line of slope m. The 
y-intercept is b (see Figure A.I). Many physical relations are well described by a 
straight line (sometimes with b = 0), at least as a good first approximation. Thus 
Boyle's law states that the pressure of a fixed volume of gas is proportional to the 
absolute temperature, and Ohm's law states that the current through a resistor is 
proportional to the voltage. 

In analyzing dynamical equations, nonlinear functions are often approxi­
mated by a straight line. In addition, there are many examples in which nonlinear 
functions can be transformed to a linear function. This leads to a powerful 
technique to plot data and determine parameters. 

o ExAMPLE A.1 

Exponential decay (see Chapter 4) is described by the function y = ke-at • 

Interpret the graph of In y as a function of t. 

Figure A.I The straight line y = mx + b with m = 1.3 and b = 1. 
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-1 

Figure A.2 The quadratic function y = ax2 + bx + c with a = -3, b = 4, and 
c = 2. 

Solution; Take the natural logarithm of both sides of the exponential decay 
function to obtain In y = In k - at. The plot of In y as a function of t is thus a 
straight line with slope -a and y-intercept In k. o 

A.2 THE QUADRATIC FUNCTION 

By adding a term proportional to x 2 to the right-hand side of the equation 
of a straight line we obtain a quadratic function, generally written as 

y = ax2 + bx + c. 

This equation-which is the equation of a curve called a parabola (see 
Figure A.2 )-has a single maximum or minimum that is easily found by setting the 

first derivative equal to zero. The extremal point falls at x = ;: and it is a max­
imum if a is negative and a minimum if a is positive. Nonlinear finite-difference 
equations where the right-hand side is a quadratic function are considered in 
detail in Chapter 1. 

A.3 THE CUBIC AND HIGHER-ORDER POLYNOMIALS 

A polynomial function is a function of the form 

P 

Y = L::anXn = ao + ajX + a2x2 + ... + apxP, 
n=O 
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FigureA.3 
The cubic function 
y = -2x3 + x. Note 
the 2 extremal points at 
x = ±OA08 and the three 
roots at x = 0, ±O.707. 

where the sum is taken over non negative integers, the an are constants, and p is 
the order of the polynomial. Thus the quadratic function considered above is a 
second-order polynomial, and the third-order polynomial is also called the cubic 
function (see Figure A.3). Generally, your life will not be much disturbed by 
polynomials of order higher than 3. However, there are two things you should 
know about the higher-order polynomials: 

• The number of values of x where y = 0 is less than or equal to the order 
of the polynomial. 

• The number of extremal points of an nth-order polynomial is less than 
or equal to n - 1. 

Three main places where cubic functions appear in applications are the 
finite-difference equations where the right-hand side is a cubic function, see 
Chapter 1; the van der Pol equation, a second-order nonlinear equation that gen­
erates limit cycle oscillations, see Chapter 5; and the Fitzhugh -Nagumo equation, 
a second-order nonlinear equation for excitable systems, which is also described 
in Chapter 5. 

A.4 THE EXPONENTIAL FUNCTION 

The exponential function, 

f(x) = emx , 

is probably the most important nonlinear function that arises in applications (see 
Figure AA). The derivative of the exponential function is proportional to itself: 

df(x) 
dx 

demx 
= = memx = mf(x). 

dx 
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FigureA.4 
The exponential function 
y = emx withm = 0.7. 

This leads to the appearance of the exponential function in problems involving 
growth and decay, where the rate of change of a substance x is proportional to 
the amount of x present. 

o ExAMPLE A.i 

Consider the differential equation ~~ = ay, where a is a constant. Show 
that the solution of this equation is y(t) = keat , where k is a constant. 

Solution: The solution of a differential equation is an expression that 
when substituted into both sides leads to an identity. The derivative of y(t) is 

~~ = kaeat = ay(t). o 

Exponential functions arise, along with the sine and cosine functions (see 
Section A.6), as solutions oflinear ordinary differential equations. Thus, whenever 
an applied mathematician finds that data can be described by an exponential 
function, or a sum of exponential functions, a theoretical model posed as a system 
of linear ordinary differential equations is immediately suggested. Such sorts of 
models have been particularly popular in compartmental analysis and in studies 
of kinetics of ionic channels. 

A.S SIGMOIDAL FUNCTIONS 

Sigmoidal functions have a characteristic shape that starts at one value and 
rises smoothly to another value as x ~ 00, with a single inflection point. One can 
imagine many algebraic expressions to represent such curves, but in applications, 
only a small number of different functions are encountered frequently. Here 
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we discuss four different functions; the Hill function, the hyperbolic tangent, 
the logistic function, and the Heaviside function. Which of these functions is 
selected for a given application may depend on the system under consideration, 
or on the personality and training of the investigator. We do not know of good 
theorems concerning the substitution of one function for another-but if you 
see a dynamical equation containing one sigmoidal function, then substitution 
of another sigmoidal function with the same steepness and upper and lower 
asymptotes often will give equivalent dynamics. 

THE HILL FUNCTION 

This function looks like the English name of its originator, A.V. Hill (see 
Figure A.S). The function 

I(x) = 
en + xn 

is often used to describe the cooperative binding of molecules to proteins, for 
example, the binding of oxygen to hemoglobin. Consequently, the Hill function 
is the sigmoidal function of choice for dynamics in biochemical networks. 

THE HYPERBOLIC TANGENT 

Anyone who really wants a fancy sigmoidal function will choose the 
hyperbolic tangent 

ePx _ e-Px 
I(x) = tanhf3x = P P • e x + e- x 

Since hyperbolic functions are omitted from most elementary calculus courses 
these days ("We ran out of time, and no one really uses these functions anyway!"), 

1 
Y 

0.8 

0.6 

0.4 

0.2 FigureA.S 
The Hill function 

0 2 4 6 8 x 10 
xn .th 

Y = 8n+xn Wi n = 3, 
() = 4. 
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-2 -1 2 
x 

Figure A.6 :rhe hyperbolic tangent function y = tanh f3x with fJ = 2. 

only those with pretensions of higher mathematical knowledge (mathematicians 
or physicists) will ever use these functions. The symmetry of the tanh function 

f (x) = - f ( -x) distinguishes it from the Hill and logistic functions, but this 
feature is not often exploited in applications (see Figure A.6). 

THE LOGISTIC FUNCTION 

The function 

1 
y= 

1 + be-kx 

arises as the solution of the logistic differential equation (Chapter 4). This 
function, which is depicted in Figure A. 7, is favored by physicists and engineering 

sorts, and as such it often appears in theoretical models of neural networks. 

-2 -1 o 2 3 x 4 

FigureA.7 
The logistic function 
y = l+b~-kx with b = 4, 
k = 2. 
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Figure A.8 The Heaviside function. 

THE HEAVISIDE FUNCTION 

The Heaviside function, 

f(x) = {: 
if x < 0, 

if x ~ 0, 

sometimes called the step function, is exploited in physics and engineering appli­
cations. The function is discontinuous at 0. The Heaviside function is the limiting 
function that arises when the slope of sigmoidal functions becomes infinitely steep 
(see Figure A.8). In models, the dynamics are often pretty much the same when 
one uses a very steep sigmoid function, or a Heaviside function. Using a Heaviside 
function instead of one of the other sigmoidal functions will sometimes turn an 
intractable nonlinear equation, whose properties can only be determined using 
numerical integration, into a piecewise linear equation that can be analytically 
studied. 

A.6 THE SINE AND COSINE FUNCTIONS 

In a right triangle, the sine of an angle is the ratio of the length of the 
opposite side divided by the length of the hypotenuse; the cosine is the ratio of 

the length of the adjacent side to the length of the hypotenuse. In dynamics, these 
trigonometric functions arise in a different context since variables may show 
fluctuations over time that are well described by sine or cosine functions. The 

equation describing a simple harmonic oscillator (e.g., a mass on a spring-see 
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FigureA.9 ThesinefunctionJ(x) = sin(wx)withw = 2. 

Chapter 5) 

has a sine or cosine as a solution. 
The graph of the sine function, y(t) = sin wt is shown in FigureA.9. There 

is a regular oscillation that repeats with a period, T = 2;, and the amplitude 
of the oscillation is k. The connection between exponential, sine, and cosine 
functions is expressed as 

eiwt = cos wt + i sin wt, 

where i = A. This relationship can be derived directly from the power series 
expansions of the exponential, sine, and cosine functions. 

A.7 THE GAUSSIAN (OR "NORMAL") DISTRIBUTION 

If one takes measurements of a single characteristic in a population of 
individuals, it often happens that the measured values cluster around some 
central value. The function that gives a commonly observed distribution of 
measurements is called the Gaussian or "normal" distribution, and is given 
by 

1 (x - f.L )2 ) 
Y = G(x) = ~ exp - 2 ' 

",2rra 2a 
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where J1, is the average (mean) value and a is a constant called the standard 
deviation. The graph of the Gaussian distribution is the familiar but nevertheless 
mystical bell-shaped curve (see Figure A.I0); the standard deviation a is propor­
tional to the width of the bell. To interpret the normal distribution in the statistical 
sense described above, we say that the probability that a measured value lies in a 
range between x and x + 8x is G(x)8x. 

A large fraction of conventional statistical methods is based on the assump­
tion that what is being measured is Gaussian-distributed. But why is this rather 
bizarre function so ubiquitous? The often-quoted reason is the "central limit the­
orem" that says, roughly, that the sum of many independent quantities will have 
a Gaussian distribution. 

One way to derive the Gaussian distribution is from a dynamical process 
called a random walk. A random walk can take place in any number of dimen­
sions, but for the moment just imagine a one-dimensional random walk along a 
line. Start at the origin and randomly take one step to the right or left. Then take 
a second step, but once again choose randomly whether to go to the left or right. 
Repeat this process N times, each time choosing a random direction. The exact 
probability that the random walker will be any given distance from the origin can 
be derived using the binomial distribution, and in the case when N is large, the 
resulting binomial distribution can be approximated by the Gaussian distribu­
tion. This is consistent with the central limit theorem because the position after 
N steps in a random walk is the sum of N random numbers. 

An important application of the Gaussian distribution is in the study of 
diffusion. The thermal motion of molecules leads individual particles to undergo 
erratic paths, first observed by Robert Brown when he examined tiny particles 
floating in water under a microscope. The irregular motion, sometimes called 
Brownian motion is a physical example of a random walk leads to a Gaussian 
distribution, see Dynamics inAction 7. A wonderful way to review your knowledge 
of some basic mechanical operations of calculus is to carry out computations 

y 

-1 2 3 4 5 
x 

FigureA.IO 
The Gaussian function 

_ 1 (X_~)2 
Y - ,fiii" exp - 2" 

with J.L = 2 and a = 1. 
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y 
0.5 

-0.5 

Figure A.ll The ellipse ~ + ~ = 1 with a = 2, b = 1. 

involving the gaussian distribution and diffusion. The problems at the end of this 
appendix offer many chances to do this. 

A.S THE ELLIPSE 

The ellipse, shown in Figure A.ll, is a friendly oval fellow satisfying the 
equation 

The special case when a = b is a circle. Note that in the above equation, we have 
not used the format y = f (x). This is because y is not a function of x; for values 
of x in the range -a < x < a, there are two possible values for y corresponding 
to the positive and negative square roots. 

One way the ellipse enters into dynamics is in phase-plane plots of 
differential equations (see Chapter 5). This is illustrated in the following example. 

o ExAMPLE A.3 

Consider a system in which the position as a function of time is y(t) = 

k sin wt. Show that the curve in which the velocity is plotted as a function of the 
position is an ellipse. 

Solution: Taking the derivative of y(t) we find v = ¥r = kw cos wt. 
From this we immediately find that y2 + k~~ = 1, which is the equation of the 
ellipse. o 
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y 20 
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\... FigureA.12 

"'"'\ The hyperbola 

-1 2 3 4 x 5 Y = a + x~b' In this case, 

-5 the singularity occurs at 
x = 1.5, where a = 5, 

-10 b = 1.5, and c = 0.5. 

A.9 THE HYPERBOLA 

The hyperbola 

c 
y=a+-­

x-b 

is an important function, but it has singular behavior (i.e., y ~ (0) as x ap­
proaches b. In many cases, though, constraints on x prevent the appearance of 
the singularity (see Figure A.12). A good example is in the study of enzyme kinet­
ics' where the Michaelis-Menten expression for the initial rate of transformation 
ofasubstrate, S, by an enzyme, E, is v = i:::+~~\, where [S] is the concentration 
of S, Vrnax is the maximum rate, and Km is constant called the Michaelis-Menten 
constant. Since Vrnax and Km are positive, and concentrations are positive, the 
annoying singularity is never encountered. Hikers might recognize hyperbolae 
as marking the appearance of mountain passes on contour maps. This geomet­
ric signature of mountain passes is likewise important in studies of dynamics in 
two-dimensional flows; see Chapter 5. 

,g!? EXERCISES 

The following integrals may be useful in the solution of the Exercise in AppendixA. 

100 xne-axdx = 
n! 1m 

xe-ax2 dx = ~ (I _ e-am2 ) 
an+! 2a 

100 
xe-ax2 dx = 

1 100 
x 2e-ax2 dx = ~~ 2a 4a a 

,g!? A.I Draw graphs of the following piecewise linear functions y = f(x) 

where 0 ::::: x ::::: 1. 
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a. I(x) = 2x, 0:::: x :::: 0.5, I(x) = 2 - 2x, 0.5 < x :::: 1; 

b. I(x) = 0.25 + 1.5x; 0:::: x :::: 0.5, I(x) = -0.25 + 0.5x, 0.5 < 

x :::: 1; 

c. I(x) = 2x(mod 1). 

The dynamics that are found when these piecewise linear functions are used 
as the right-hand side of one-dimensional finite-difference equations can be 
surprisingly complicated. 

~ A.2 Consider the two curves Y = x and y = AX(l - x). There is always a 
point of intersection of both curves at y = x = O. For what values of A is there 
a second point of intersection that lies in the range 

a. x < 0; 

b. 0 < x < 0.5; 

c. 0.5 < x < 1? 

For each of the above cases sketch the graph. 

~ A.3 Consider the function y = - x 3 + Ax, for all real values of A. Sketch 
this function for 

a. A < 0; 

b. A = 0; 

c. A > o. Be sure to identify all intercepts, maxima, minima, and inflection 
points. 

~ A.4 Consider the function 

I(x) = Cx2 (2 - x), 

where C is a positive constant. 

a. What are the maxima, minima, and inflection points for this function? 

b. Sketch the function for C = ~ for both positive and negative values 
ofx. 

~ A.5 Consider the functions 

Yl (t) = e-t + e-3t , 

Y2(t) = e-t _ e-3t , 

Consider t :::: o. For each function, 

a. Sketch the function; 
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b. Plot In Yl and In Y2 as a function of time. Are any regions of the graph 
approximately linear? 

~ A.6 Consider the Hill function, 

x ~ 0, 

where n is a real number greater than 2. 

a. Sketch this function. Be sure to determine the extremal and inflection 
points, if any, and indicate the behavior as x ~ 00. 

b. Determine the slope of the Hill function at the inflection point. 

c. The plot of 

as a function of In x is often called a Hill plot. Assuming that f (x) is 
given by the Hill function, interpret the Hill plot, and show how it can 
be used to determine the Hill coefficient, n. 

~ A.7 Figure A.l3 shows the binding of oxygen to hemoglobin. The fraction 
of hemoglobin saturated with oxygen is shown as a function of the percentage of 
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oxygen in the air being breathed. Fit this data to the Hill function to determine 
the values of the parameters giving the best fit to the data. 

iff? A.8 Consider the function 

()2 

f(x) = a ()2 + x 2 + b, x ~ 0, (A.2) 

where a, b, and () are positive real numbers. Sketch this function. Be sure to 
show any maxima, minima, and inflection points (these should be determined 
algebraically) . 

iff? A.9 In inducible enzyme synthesis in bacteria, the synthesis of a given 
enzyme depends on binding of repressor molecules to a region of the chromosome 
called the operator. The repressor molecules can bind either to the operator 
or to a molecule called the effector (or inducer). The enzyme synthetic rate is 
proportional to the fraction of free operators, a. Yagil and Yagil (1971) propose 
that the fraction of free operators can be written as 

where E is the effector concentration, Kl is a rate constant, andab(O < ab « 1) 
is approximately the fraction of free operators at zero effector concentration 
(n, ab, Kl> and E are positive). 

a. Show that ;~ ~ o. 
b. Sketch a as a function of E. Be sure to show the behavior when E = 0 

amd when E ~ 00. 

c. Show that log( l~a - ab)= n log E + log ~. 

d. Iflog( l~a - ab) is plotted as a function oflog E, sketch the resulting 
graph. Indicate any relevant features such as slopes and intercepts. 

iff? A.IO In respiration in man, the ventilation response function is given by 

where V is the ventilation, y is the partial pressure of CO2 , V m is the maximal 
ventilation, and () and n are parameters to be determined. When the partial 
pressure of CO2 is Yo , the slope of the ventilation response function is So , and 
the ventilation is Vo. 



a. Demonstrate that 

( Vm - Vo)lln e =Yo 
Vo 
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b. Compute nand e, assuming Vm = 48 L/min, Yo = 40 mmHg, Vo = 8 
L/min, and So = 1 L/min mmHg. 

~ A.II Show that the logistic function 

N(O)k 
N(t) = [k _ aN(O)]e-kt + aN(O) , 

where k, a, and N(O) are positive constants, is a solution of the differential 
equation 

~ A.I2 Show that 

yet) = k coswt, 

where k and ware constants, is a solution of the differential equation 

~ A.13 Sketch I(x) = 0.6 sin(Jrx) and I(x) = 0.6(sin(Jrx))2 forO:::: x :::: 

1. Determine all maxima, minima, and inflection points. 

~ A.I4 Consider a variable x that is described by a Gaussian distribution, 

1 ( -(x - JL)2 ) 
G(x) = r::c exp 2 . 

a y 2Jr 2a 

The mean value of x, called i, is given by the integral 

i: xG(x)dx. 
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The variance of x is given by the integral 

Evaluate the integrals to find the mean and the variance of x. 

~ A.IS If I place A molecules at the origin x = 0 at time t = 0 in a one­
dimensional system, the molecules will diffuse so that at time t, the average density 
of molecules at position x is 

A (_X2) 
P(x, t) = en; exp - . 

2'\17T Dt 4Dt 

a. Sketch P(x, t) for D = 10-5 cm2/sec and t = 1 sec. Use linear scales. 

b. Compute ap~:,t) . 

c. Compute D a2~;;,t) . This should be equal to ap~:,t) . 

d. Compute f~oo P(x, t)dx. 

~ A.I6 The number density P(r, t) for molecules diffusing from a point 
source introduced at t = 0 in n dimensions is 

A (_r2) 
P(r, t) = en; exp - , 

(2'\1 7T Dt)n 4Dt 

where A is the total number of molecules, D is the diffusion coefficient, t is the 
time, and r is the distance from the source. 

a. For n = 1,2,3, compute the time when the number density is a 
maximum. 

b. If neurotransmitters are introduced to a neural preparation using 
iontophoresis (passing an electrical current through a microelectrode 
containing ionic solution), the maximum response of a neuron occurs 
when the number density of the neurotransmitter at the receptor is a 
maximum. Assume diffusion in three dimensions with a diffusion co­
efficient of 10-5 cm2/sec. What is the distance from the micro electrode 
to the neuron if the maximal response occurs at t = 1.5 X 10-3 sec? 

~ A.I7 In a study of the time course of acetylcholine release, Katz and Miledi 
(1965) analyze time delays resulting from diffusion of acetylcholine to its receptor. 
Diffusion from an instantaneous point source is characterized by the curve shown 
in Figure A.14. 
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FigureA.14 
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Time 

20 D = 10-5 em2 sec-I, 

, = 0.01 em. 

This curve can be calculated from the equation 

Q (_,2) 
Concentration = 3 exp -- , 

8(rr Dt) 2 4Dt 

where, is the distance from the point source to the point at which the concen­
tration is measured (i.e., the receptor), Q is the quantity released, and D is the 
diffusion coefficient. 

a. Determine the time that the concentration is a maximum at the receptor 
(in terms of the parameters in the equation). 

b. What is the concentration at that time? 

c. Katz and Miledi state that the time until the concentration reaches one 
half of its maximum value is about 44 percent of the time needed to 
reach maximum value. Show that this is true algebraically. 

~ A.18 This problem is based on an article by Fatt and Katz (1951) that 
concerns neuromuscular transmission in frogs. If a charge qo is placed at time 
t = 0 at a point x = 0 on a nerve fiber, the membrane voltage V at time t at a 
point a distance x away from the charge is 

where 'l'm is the time constant of the membrane, A is the space constant of the 
membrane, and em is the capacitance of the membrane per unit length of the 
fiber. 
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a. Show that the time T when V is a maximum at a particular point x = R 

satisfies the equation 

b. Sketch the graph for ~: as a function of L . 
" Tm 

ff:? A.19 This question deals with the distribution of molecules along the 
length of a linear blue-green algae following release of molecules from either 

one source or two sources. A pulse of No molecules is released from a source at 
time t = o. The concentration N (r, t) of molecules at a distance r from the cell 
is 

No (-r2) N(r, t) = r=n: exp - . 
2v7rDt 4Dt 

a. At what time is the concentration of molecules at a distance L away 
from the source a maximum (express the time in terms of L and D)? 
Compute the time for L=2 cm and D = 2 X 10-5 cm2 / sec. What is 
the concentration at this time (within 10 percent)? 

b. If two cells act as sources, the concentration of molecules can be found by 
adding up the contribution from each source. If a cell is at a distance L 1 

from one source and L2 from a second source, write down the formula 
for the total contribution from both sources. 

c. Consider a cell equidistant from two sources 4 cm apart so that L 1 = 
L2 = 2 cm. Each source releases No molecules at t = o. At what time 
is the concentration at the cell a maximum (D = 2 x 10-5 cm2/sec)? 

What is the concentration at this time (within 10 percent)? 

d. Consider a cell 2 cm from one source and 4 cm from a second source. 

Both sources release No molecules at t = 0 (D = 2 x 10-5 cm/sec. 

The time when the concentration at this cell is a maximum is called tmax • 

Is tmax greater than, less than, or equal to the time computed in part c? 
Justify your answer (lengthy additional computations are not needed). 

ff:? A.20 Let 11 (x) be a Gaussian distribution with mean value 0 and standard 

deviation al> and let h (x) be a Gaussian distribution with mean value 0 and 

standard deviation a2. Compute 

P(x) = i: dx'/1(x - x')h(x'). 
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This integral is called the convolution integral. P(x) describes the probability 
distribution of the sum of two independent random variables, one chosen from 
distibution /! (-) and the other from distribution h (.). The results of this problem 
are used in many places, for example in the computation of the standard deviation 
of the distribution of synaptic potentials generated from the summation of several 
quanta (del Castillo and Katz, 1954). 

~ A.21 A cell at the left-hand border of a filamentous blue-green algae pro­
duces a pulse of 104 molecules at t = O. The molecules diffuse with a diffusion 
coefficient of D (cm2seC!) and decay at a rate y (seC!). The average number of 
molecules at time t in a cell oflength !::J..x whose center is a distance x away from 
the left-hand border is !::J..xP(x, t), where 

104 (X2 ) P(x, t) = -- exp - - - yt . 
./n Dt 4Dt 

a. Show that the time when the average number of molecules in a cell whose 
center is a distance x away from the left-hand border is a maximum is 
given by 

1 1 ( 4YX 2 ) ! t =--+- 1+-- . 
max 4y 4y D 

b. Consider a cellI 0- J-L long whose center is 50 J-L from the left-hand border. 
Assume D = 10-5 cm2 seC!, y = 10-4 seC! (IJ-L = 10-4 cm). For 
this cell compute tmax and the average number of molecules in the cell 
at tmax • 

~ A.22 Consider a system in which the position as a function of time is 
y(t) = k sin wt. Show that the curve in which y(t + r) is plotted as a function 
ofy(t - r) is an ellipse. 

~ A.23 A series of action potentials in a nerve cell is described by the Poisson 
process. According to this, the probability that the time interval between an event 
and the second following event lies between t and t + !::J..t is p(t)!::J..t, where 

t ~ 0, 

where R is a positive constant. 

a. Sketch p(t) as a function oft. Show all maxima, minima, and inflection 
points. 

b. Evaluate It' p(t)dt. What is the interpretation of this integral? 

c. Evaluate 1000 tp(t)dt. What is the interpretation of this integral? 
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of? A.24 This question deals with random walks in 2 dimensions. A drunk 
man takes n steps. Each step is exactly 1 foot long and each step is in a randomly 
chosen direction. The probability that he will be at a distance lying between R 

and dR, where R is in feet is given by 

n 

a. Evaluate the integral 

100 
P(R) dR. 

b. Evaluate the integral 

100 
R P(R) dR. 

What is your interpretation of this integral in terms of the random walk? 

c. Consider the situation after the man has taken 20000 steps. Sketch P (R). 

Be sure to indicate the value of the function and the slope of the function 
at R = 0, the value of the function at any maxima or minima, and the 
asymptotic behavior as R --+ 00. You do not need to calculate the 
inflection points. 

d. After 20000 steps, the man has almost walked a total of almost 4 
miles. However, do you expect to find him in a radius of 300 feet 
centered around his starting point? Explain and if possible justify with 
calculations. 



ApPENDIX B 

A Note on 
Computer 
Notation 

There is a very familiar notation for routine mathematical operations. For exam­
ple, everyone knows that a + b means "the sum of a and b," or that cd means 
"raise c to the d power;' or that e / f means "divide f into e." This notation is so 
common that it seems natural. It has in fact developed over hundreds of years. 

The notation that has developed for algorithms and computer programs 
has not had such a long time to develop and become standardized. There are 
many different approaches to writing down an algorithm. One approach is to use 
pseudocode, wherein each step in an algorithm is described by English-language 
terms mixed with mathematics notation. 

Another approach is to use a computer language such as FORTRAN or Pascal. 
The advantage of this approach over pseudocode is that the written form of the 
algorithm can easily be put on a computer. The disadvantage is that each computer 
language has its own quirks of syntax and notation that can be unfamiliar. 

The approach we are taking here is to use a standard computer language, C, 

to describe the algorithms for drawing fractals. However, we are only using those 
parts of the language that are more or less self-explanatory so that there is no need 

to read a C-Ianguage manual in order to understand the examples given here. For 
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the most part, the algorithms will be written in a typewriter font. Those parts 
of the algorithm that are of interest only to C programmers will be written in a 
different italic font: readers who are not interested in using C can safely ignore 
these italized parts of the algorithm. 

Here is the small amount of knowledge of the C language that you will need 
to have to understand the algorithms in this chapter. 

Variable assignment In order to give a variable, say a, a value, say 7, we 
write a statement 

a = 7; 

The semicolon (;) simply indicates the end of the statement, just as a period 
indicates the end of an English-language sentence. The statement a = b + 

c*dj says to give the variable a the value b plus c times d. 

Function evaluation The mathematical notation for a function is some­
thing like I(x) or I(x, y). In C, the notation is almost exactly the same, 
f(x); or f(x,y);, a difference being that C-Ianguage functions often have a 
large number of arguments, like f(a,b,c,d,e,f ,g,h,i);. 

Ifwe have a mathematical function I(x) = cos x, then I(n) is -1. 

A C-Ianguage function can work in just the same way: a statement like a = 

cos (3 .14159) ; puts the value -1 into the variable a. In addition, C-Ianguage 
functions can do things other than calculations, like drawing shapes on a 
computer display or printer. For example, we can have a statement 

drawLine(x1,yl,x2,y2); 

which draws aline on a display from the point (Xl, Yl) to the point (X2, Y2). 

Function definition Suppose we wanted to define a function, called 
drawSquare(xl,yl,x2,y2) that draws a square whose diagonal corners are 
the points (Xl, Yl) and (X2, Y2). In the C language, this function would be 
defined as follows: 

drawSquare(xl,yl,x2,y2) 

{ 

} 

double w1,y1,w2,y2; (Ignore this line.) 

drawLine(xl,yl,xl,y2); 

drawLine(xl,y2,x2,y2); 

drawLine(x2,y2,x2,yl); 

drawLine(x2,yl,xl,yl); 
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This function uses the function drawLine 0 four times to draw the four lines 
that make up the square. The sequence of statements that makes up the 
function is enclosed in a pair of curly braces { }. 

Conditionals The statement 

if( x >= 7 ) { 

a = b; 

} 

means: if the value of x is greater than or equal to 7, then give the variable 
a the value of the variable b, otherwise, don't do anything. Similarly, the 
series of statements 

if( x >= 7 ) { 

a" b; 

} 

else { 

a = Ci 

} 

means: if the value of x is greater than or equal to 7, set a to the value of b, 

otherwise set a to the value of c. 

One quirk of C notation is that the test for equality involves a double 
equal sign, e.g., 

if( a == 4 ) { 

/* do something when a equals 4 */ 

} 

Contrast this to the single equal sign ( .. ) used for assignment. 

Recursion Functions can contain themselves as one of their statements. 
For example, suppose we have a function defined as 

silly (x) 

{ 

} 

double (1;; 

print_out(x); 

if( x <= 10) 

silly(x+l); 

prints out the value of the variable x, and then executes itself with the value 
x + 1. If the statement silly(5); were part of a program, the result would 
be a printout that looks like 5 6 7 8 9 10. 
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Recursion is closely related to self-similarity. This is used extensively 
in Chapter 3 where the fractal-drawing programs are recursive and reflect 
directly the self-similarity of the objects the programs draw. 

Stuff you don't really need to know Just in case you are curious, 
the italized statements like double a; are instructions to the computer that 
say what type of variable a is-in this case a double-precision floating 
point number. So far as non-computer-programmers are concerned, all 
the variables used here are just numbers, and follow all the familiar rules 
for addition, multiplication, etc. 



Solutions 
to Selected 
Exercises 

CHAPTER 1 

~ 1.4 
a. See Figure S.l. 
b. There is a single fixed point at X, = 10. The slope evaluated at the fixed point is -0.2. 

Therefore, the fixed point is stable and is approached in an oscillatory fashion. 
c. This fixed point is approached as t --+ 00. 

~ 1.7 
a. There is a fixed point at X t = O. The slope evaluated at this fixed point is a. Therefore, 

this fixed point is stable for a < 1 and unstable for a > 1. The dynamics in the 
neighborhood of this fixed point are monotonic. There is a second fixed point at 
Xt = a;l. However, since X t 2': 0, this fixed point is found only for a > 1. The slope 
evaluated at this fixed point is ~. Therefore, this fixed point is always stable and is 
approached in a monotonic fashion. 

b. In this case you cannot determine stability for a = 1, f3 = 1 by only determining the 
slope evaluated at X t = O. However, by drawing a graph and using the cobweb method 
you can determine that XI = 0 is monotonically approached in the limit t --+ 00, and 
therefore X t = 0 is a stable fixed point. 

c. By algebraic iteration and induction, you can demonstrate that X t+n 

Therefore, as n --+ 00, we find that X t+n --+ 0, in accord with part (b). 

-2L... 
l+nXt . 
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(/? 1.9 

Xt+1 

30 

25 

20 

15 

5 10 15 20 25 30 
Xt 

2 4 6 8 10 Xt 

FigureS.l 
Graph for Exercise 1.4. 

FigureS.2 
Graph for Exercise 1.7, part b. 

a. This is the graph of a hyperbola. There are no maxima, minima, or inflection points. 
b. There is a single fixed point at Xt = 115 msec. 
c. The slope evaluated at this fixed point is -0.6. Therefore, this fixed point is stable and 

is approached in an oscillatory fashion. 
d. There is an oscillatory approach to the fixed point that is similar to "alternans" in 

cardiac electrophysiology. 

(/? 1.11 This problem looks a lot harder than it really is. 

a. Since I~Jl ~ 0, we have Nt+1 = Nter. Since r > 0, for 0 < No « 1 we have 
Nl > No. 

b. Now we find that 1~~2 ~ p,sothatNt+l = Nter(I-P).Sincep > landr > 0, 
Nl < No for No » 1. 

c. There are fixed points at Nt = 0 and Nt = ~. 
d. Courage in carrying through the algebra is all-that is needed. 

dg(Nt) = {[ -2prNt2 ] I} xe [r(l- -.!!!!L)J. 
dNt (1 + Nl)2 + xP 1 + N,2 

e. There is a minimum at Nt ~ 1.54 and a maximum at Nt ~ 0.65. 
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FigureS.3 
Graph for Exercise 1.9. 

f. The slope evaluated at N, = 0 is er • Since this is greater than 1, this fixed point 
is always unstable. For p = 2, the second fixed point is at N, = 1. The slope 
evaluated at this fixed point is ~ -0.2 so that this fixed point is stable and is 
approached in an oscillatory fashion. 

g. See Figure S.4. 

@? 1.12 
a. See Figure S.5. There is a minimum at X, = 0, a maximum at X, = ~, and an inflection 

point at x, = ~. The value of X,+! at the maximum is ~. 
b. There are fixed points at x, = 0, x, = ~, and x, = ~. 
c. The slope evaluated at x, = 0 is 0; this is a stable fixed point with a monotonic approach. 

The slope evaluated at x, = ~ is ~; this is an unstable fixed point with a monotonic 
departure from the neighborhood of the fixed point. The slope evaluated at x, = ~ is 
- 2; this is an unstable fixed point with an oscillatory departure from the neighborhood 
of the fixed point. 

Nt+1 

3 

2.5 

2 

1.5 

0.5 1.5 2 2.5 3 
Nt 

FigureS.4 
Graph for Exercise 1.11. 
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Xt 2 
FigureS.S 
Graph for Exercise 1.12. 

d. Starting at Xt = ~, the dynamics approach the fixed point at Xt = 0, since ~ < ~. 
Starting at Xt = 1, you are in a different attractor (all points stay in the interval between 
about 0.79 and ~ ). Therefore, you know that with the initial condition of Xt = 1 the 
system will not go to extinction. It takes further analysis to determine if the dyanamics 
are periodic or chaotic. This is an example of multistability, since there are 2 attractors. 

~ 1.17 
a. These are equations of parabolas. At the maximum CPt = ~, and CPt+1 = ~. At the 

minimum, CPt = ~ and r/>t+i = ~. (b) There are four fixed points. At the fixed points 
CPt = 0 and CPt = 1, the slope is 6; these fixed points are unstable with a monotonic 
departure from the neighborhood of the fixed point. At the fixed points CPt = fi and 
CPt = fz, the slope is -4; these fixed points are unstable with oscillatory departure 
from the neighborhood of the fixed points. (c) The cycle of period 2 is between the two 
extremal points, CPt = ~ and CPt = ~. Since the cycle goes through extremal values it 
is guaranteed to be stable. (Actually, it is "superstable" since the slope is zero). 

~ 1.19 
a. See Figure S.7. 
b. There are no fixed points. 
c. Starting at CPo = 0.65, there is a period 4 cycle 0.65 -+- 0.45 -+- 0.85 -+- 0.25 -+-

0.65 -+- •••• Starting at c/Jo = 0.95, there is a period 5 cycle 0.95 -+- 0.35 -+- 0.75 -+-

0.15 -+- 0.55 -+- 0.95 -+- •••• 

d. Neither of these cycles is stable since starting at an initial condition close to a point on 
either cycle will lead to a different cycle. In the theoretical model this behavior would 
only occur if the ratio between the two frequencies of the cardiac oscillators is a rational 
number and if there is no interaction between the oscillators. These conditions would 
never be realized in practice. 

~ 1.21 The dynamics are not chaotic but are quasiperiodic. 

~ 1.22 
d. At all points, the slope of the graph is greater than 1. Consequently, neighboring initial 

conditions will always diverge. Thus, there is sensitive dependence on initial conditions. 
Any graph of Xt+n versus Xt will also have a slope greater than 1, so all periodic cycles 
are unstable. (Remember, the slope of Xt+n versus Xt at any cycle XI> X2, ••• , Xn is given 
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tPt+1 

FigureS.6 
tPt Graph for Exercise 1.17. 

FigureS.7 
tPt Graph for Exercise 1.19. 

bv r!Ldd I ' r!Ldd I , ... , dr!L I ,which will be mR > 1. The dynamics are also bounded 
I XXI XX) xx" 

and deterministic, so all four elements of the definition of chaos are satisfied. 

CHAPTER! 

t!? 2.4 
a. 10 ~ 11 ~ 01 ~ 00 ~ 10 ~ ... 
b. 100 ~ 110 ~ III ~ 011 ~ 001 ~ 000 ~ 100 ~ ... 
c. For any value of n, there is a cycle of length 2n. The cycle passes through the fol-

lowing states: 100 ... 00 ~ 110 ... 00 ~ ... ~ 111. .. 10 ~ 111. .. 11 ~ 
011 ... 11 ~ 001. .. 11 ~ ... ~ 000 ... 01 ~ 000 ... 00 ~ 100 ... 00 ~ 
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~ 2.5 
b. The state in which all cells are 0 is a steady state. There are many different cycles in the 

network. For example, the state in which cells 1,3,5,6,7,8 are 1 is on a cycle of period 
6. There cannot be chaos since this is a system with a finite number of states, and the 
dynamics must eventually repeat. 

c. Without any work, we can say that the maximum cycle length must < 210. This is 
because there are 210 different states of the system, and we already know from above 
that there is a steady state and a short cycle. 

~ 2.7 
b. Any initial conditions in which at least one cell is 1 leads to a final state in which all the 

cells are 1. 
c. The number of ways you can choose 3 cells out of 25 is 253:224:123 • The denominator is 

necessary because the order in which you pick the different cells does not matter. In 
this situation, if you take into consideration configurations that are the same under 
the symmetry of the square, the number of different configurations is much smaller. 
This computation is practically useful since it shows the way to compute the odds of 
winning lotteries in which you have to select several integers in a given range. 

d. For an initial condition in which the three cells that are 1 are not adjacent to each other 
or the boundary, there is a transient of three iterations until the final state in which all 
cells are 1. Many other initial conditions also have a transient oflength three, but some 
initial conditions have a longer transient. 

~ 2.9 
a. We make the left side of Table S.1 just by writing down all the possible states in some 

convenient order. Then we use the transition information in the problem to match 
each entry with the succeeding state. 

b. X,+I = IDENTITY(y,). y'+1 = IDENTITY(Z,). Z,+I = INVERSE(X,). 

c. All the networks are frustrated networks with n = 3. For example, see Exercise 2.4, 
part (c) for another example. There are eight different networks of this sort and all 
have qualitatively similar dynamics. We can think about his by identifying each state 
with the corner of cube, as shown in Figure S.8. The truth table tells us the order in 

TableS.l 

xyz, XYZt+1 

000 001 

001 011 

010 101 

011 111 

100 000 

101 010 

110 100 

111 110 
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01 0f----11----~ 

.. -----ir---i101 

FigureS.8 
Graph for Exercise 2.9. 

which the corners are visited. To flip all three states in a cycle oflength two, the order 
must connect two diagonally opposed corners. In a cube, there are 4 such pairs. The 
remaining 6 corners (i.e., states) must be visited in an order that involves walking down 
an edge of the cube, without backtracking. Each edge connects corners that differ by 
one state. There are two such paths that avoid the two corners already consumed by 
the cycle of period two. Altogether, we can find 4 . 2 = 8 such networks. 

CHAPTER 4 

~ 4.3 
a. x(t) = x(0)eC1 • 

b. C = ~; hr-1 ~ 0.0345 hr-l. 
c. The density will increase to 8 times its initial size after 3 doublings. This takes 60 hr. 

The time to increase to 10 times the initial density is given by In~O ~ 66.74 hr. 

~ 4.4 14 

a. Calling y the ratio &r, we find that y(t) = 1.6 x 10-12e-al , where the time is 

expressed in years and ex = 5~io yr-l. 
b. The preserved sample has ~ the amount of Cl4 as the original sample. Therefore it was 

formed approximately 11440 (5720 x 2) years ago. 

~ 4.5 
a. Direct integration of the equation gives p(t) = p(O)e =f . 
b. Since Jooo p(O)e =f dt = -rp(O), we find p(O) = ~. 
c. The fraction of channels that open at s = 0 and close by time t is given by 

J; p(O)e f ds = -rp(O) = 1 - e =f . Therefore, the theoretical expression for the 
percentage shown in the graph is 100(1 - e =f ). 

d. By examining the graph, we find that about 50% of the channels have closed by 15 
msec so that -r ~ ~52 msec ~ 22 msec. Neurophysiologists carry out this sort of 
computation routinely. 

~ 4.7 This computation from a classical paper is based on the linear first order 
differential equation. 
a. Taking the natural logarithm of both sides of the expression for f3n we find that In f3n = 

In C1 + *. Therefore, in the graph of in f3n versus V the y-intercept is In C1 and the 
slope is t. We find that C 1 is approximately 0.11 mseC 1 and C 2 is approximately III 
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mv. The data in the original article, is based on data from several axons, whereas the 
data in this problem is based on data from only one axon. 

b. This is the equation for exponential decay with a shift in the origin. The solution is 

c. Substituting the solution above into Eq. 4.26, and equating coefficients of correspond­

ing terms leads to the following results: gkoo = (an"+fJn) 4 gk' gko = n~gk' and 
I 

Tn = an+fJn' 

~ 4.8 Although this problem uses partial derivatives, at each point in space there is an 
exponential approach to a homogeneneous solution, and the problem can be done using 
concepts in Chapter 4. 

b. Att = 0, we have C(x, 0) = Co [1 - ~ cos (¥ )], and att -+ 00, we have 
C(x,oo) = Co. 

d. Calling t! the time needed to go one-half way from the initial to the final 
concentration at each point, we find 

1 
C(x, t!) = "2 [C(x, 00) - C(x, 0)] + C(x, 0). 

Substituting the expressions found above, we determine t I = L 2 i~ 2 • Substitut­
ing the values in the text, we have t I = 7.0 X 105 sec. Thls give; a good idea for 
the time constant for homogenizatIon from an initial nonuniform distribution 
of an electrolyte in an aqueous solution in a 10 cm tube. 

~ 4.12 
a. This is the equation for exponential growth, ~; = k V, where V is the tumor volume 

and k is a constant. 
b. The solution of this equation is V (t) = V (O)ekt , where k = ~~; days-I ~ 5 x 10-3 

days-I. Since V = ~ 7Cr3 where r is the tumor radius, we find r(t) = r(O)e!if . 
c. From the above ifln r(t) is plotted as a function oft, the y-interceptis In r(O) and the 

slope is ~ x 10-3 days-I. 

~ 4.17 
a. There are fixed points atx = O,x = l,andx = -1~v'5 ~ 0.618. The last fixed point 

must exist from the graph, but can also be computed algebraically, once the other 2 
fixed points are known by factoring the original fourth order equation and using the 
quadratic formula. 

b. The slope evaluated at the fixed at x = 0 is -1. Since this is negative, the fixed point is 
stable. Similarly, the slope evaluated at the fixed point x = 1 is - i ' so this fixed point 
is also stable. The slope evaluated at the fixed point at x ~ 0.618 is ~ 0.42 which is 
greater than 0, so this fixed point is unstable. Notice that there is alternation of stability 
of the fixed points in this problem. 

c. All initial conditions between x = 0 and the fixed point at x ~ 0.618 approach the 
origin as t -+ 00, whereas all other initial conditions approach the fixed point at x = 1 
as t -+ 00. 



SOLUTIONS TO SELECTED EXERCISES 393 

tt? 4.20 
a. The amount of drug in the body following the last dose is given by (Do + 100)e-at mg, 

where a = ~2 hr-'. 
b. As an approximation, we can assume that after 10 days of the drug administration, the 

level of drug is the same just before each new dose is given: (Do + 100)e-4a = Do. Since 
e-4a = ~,we find that Do = 100 mg. In choosing timing for drug administration, 
the half-life must be taken into account. 

tt? 4.21 
c. c, = In A - In Wo; C2 = Wo; C3 = -1. 

CHAPTERS 

tt? 5.5 
a. See Figure S.9. 
b. See Figure S.10. 
c. From the sketch you should see that starting from an initial condition of r(O) = ro and 

/-L(O) = 0, /-L first increases and then decreases, whereas r monotonically decreases. In 
the limit t --+- 00 both approach O. Call tmax the time when /-L is a maximum. From the 
graph, we have /-L(tmax) = ~ r(tmax). 

FigureS.9 
Graph for Exercise 5.5. 

r 

Figure S.10 Diagram for Exercise 5.5, part b. The thin line shows the r-isocline, 
and the thick line shows the /-L- isocline. 
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tJ2p. !!1!. d. tfi'Z + (kl + k2) dt + klk2/L = O. 
e. r(t) = "'oe-ktt • lI.(t) = ...!J..!lL e-ktt - ..!l!!L e-kzt • From the above result by taking 

, r- kz-kt kz-kt ' 
the derivative of /L with respect to time, and setting equal to 0, we determine that 
k2e-kztmax = kle-kttmax. Substituting the analytic expressions for /L(t) and r(t) at tmax , 

we once again obtain /L(tmax) = ~ r(tmax ). This example shows how a graphical 
analysis of a linear second order differential equation can provide information about 
the dynamics. The same information can be obtained from the analytical solution, but 
only after a bit of a struggle. 

~ 5.7 
,b (2)!!1. 0 a. di'i + a + y dl + ay = . 

b. The characteristic equation is )...2 + (2a + y)A + ay = O. Solving this quadratic 
equation we find 

-(2a + y) + J4a2 + y2 
Al = 

2 

When y » a, J4a2 + y ~ y and taking the positive sign we compute Al ~ -a, 
and taking the negative sign, we find that A2 ~ -y. 

c. The solution is y(t) = cleAtt + c2eAz1 • Using the initial conditions y(O) = 0 and 
dy/dt(O) = aN,we find CI +C2 = OandAlcl +A2C2 = aN,givingcI = A~~kz and 
C2 = - ,aN. • For y » a, we have Al - A2 ~ y, so that y(t) ~ aN e-at - L e-yt • 

At-AZ y y 
d. Taking the derivative of y and setting it equal to 0, we find that y is a maximum 

at t ~ -In 10-3 hr ~ 6.9 hr. Substituting this value for the expression for y(t), 
the maximum value of y is approximately 10-3 N - only 1/1000 of the drug dose. 
Although this is a hypothetical example, an important problem in chemotherapy is to 
get a sufficient quantity of drug to the target organ. 

e. Since y » a most of the destruction of x for short times comes about by a process of 
exponential decay so that x(t) ~ x(O)e- yt • Therefore, the time when x has fallen to 
half its initial value is well approximated by t! ~ ~ 2 ~ 0.69 hr. 

~ 5.11 
a. See Figure S.1l. 

dZy !!1. 
c. di'i + (kl + k2 + k3) dt + kl (k2 + k3)y = o. 
d. The eigenvalues are Al = a + f3 and A2 = a - f3 where a = -(kt+:Z+k3) and f3 = 

J(kt+kZ~k3)L4ktkZ • The solution of the differential equation is y(t) = cleAtt + C2eAzt 
where C - ! + kt -kz -k3 and C _ ! _ kt -krk3 

1-2 4{J 2-2 4{J' 
e. (i) If kl = 0, then there are no transitions from SI to S2' For this case we find y(t) = 

e-(kt+k3)t. (ii) If k3 = 0, there will never be any population of SI and y(t) = e-kzt • 

The special cases here also follow from the general formulae in part (d). This provides 
a partial check on the computations. 

~ 5.13 
a. Since the solution is a sum of three exponentials it can be generated from a third order 

ordinary differetial equation. 
b. Fort> 180min,thesolutionoftheequationisapproximatelyc(t) = x(180)e-~ 

since the other 2 terms are negligible by this time. The half-life for this exponential decay 
is approximately In 2 x 65.7 min ~ 45 min. Therefore, at 225 min the concentration 
will be approximately half of what it was at 180 min. 
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x 

Figure S.l1 Diagram for Exercise 5.11, part a. Flow in the x, y plane. The x­
isocline is the thin line, and the y-isocline is the thick line. 

c. The time constant of 65.7 min is associated with elimination of lidocaine from the 
plasma. This could be associated with several different physiological processes such as 
degradation in the liver or by circulating enzymes, or excretion in the kidneys. 

~ 5.16 
a. Therearethreesteadystates:s = 0, 1= 0; s = 1, 1= 0; s = ~,l = ~. 
b. The only steady state that does not have one of the variables equal to zero, at s 

~ , I = ~,is a stable focus. 
c. See Figure S.12. 
d. Notice that from the equations, if the initial value of any variable is 0, then it is 0 for all 

future times. We therefore find: conditions (i) and (ii) approach the origin as t -+ 00; 

condition (iii) leads to a state in which s = 1, I = 0 at t -+ 00; condition (iv) leads 
to s = ~,l = ~ as t -+ 00. 

~ 5.19 
a. There are three steady states: (x· = 0, y. = 0), (x· = 1, y. = 1) and (x· = 4, y. = 

4). 
b. We start by linearizing the original equations: 

dx - = f(x, y) = y - x 
dt 

dy 5x2 

dt = g(x, y) = 4 + x2 - y 
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s 

in order to find 

A = :~ I(x.,y.) 

c= ag I 
ax (x',y') 

Figure S.12 
Diagram for Exercise 5.16. 
Flow in the s, 1 plane. The 
s-isoclines are the thin 
lines, the I-isoclines are 
the thick lines 

B = af I 
ay (x',y') 

D = ag I 
oy (x',y') 

At x' = 0, y' = 0, we find A = -1, B = 1, C = 0, and D = -1. The eigenvalues 
are therefore -1, -1 so this is a stable node. (We can do the same analysis using linear 
algebra. The characteristic equation is 

/-10-)., 1 /-0 
-1 -)., 

This is equivalent to the quadratic equation).,2 + 2)" + 1 = 0.) 
At x' = 1, y' = 1, we linearize to find A = -1, B = 1, C = ~,and 

D = -1. The eigenvalues are therefore -afV. One of these is positive and the 
other is negative, so this is a saddle point. 

At x' = 4, y' = 4, we find A = -1, B = 1, C = ~,and D = -1. The 

eigenvalues are therefore -afT. Both of these are negative real numbers so this is a 
stable node. 

c. See Figure 5.13. 
d. Depending on the initial condition the state asymptotically approaches either the steady 

state at the origin or the steady state at x = 4, Y = 4. Since there are two stable steady 
states in the same equation, this type of mechanism could be a model for differentiation. 

~ 5.21 
a. There is a steady state at Xl = Jz, X2 = 1. 



x 
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FigureS.13 
Diagram for Exercise 5.19. 
Flow in the x, y plane. 
The x -isocline is the thin 
line, the y-isocline is the 
thick curve. 

b. Linearizing, we find A = -k, B = - ~, C = 1, and D = -k. The eigenvalues are 
therefore -k ± i ~ . Independent of the value of n, the eigenvalues are imaginary with 
a negative real part. Therefore, the steady state is always a stable focus. 

c. See Figure S.14. 

~ 5.23 
a. There are three steady states: y = 0, x = 0; y = 0, x = 1; Y = 0, x = -1. 
b. The steady state at x = 0, y = 0 is a saddle point, whereas the other two steady states 

are stable foci. 
c. See Figure S.15. 

FigureS.14 
Diagram for Exercise 5.21. 
Flow in the Xl> X2 plane 
for n = 3, K2 = 1/2. 
The Xl-isocline is the thin 
curve. The x2-isocline is 
the thick line. 
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x 

FigureS.15 
Diagram for Exercise 5.15. 
Flow in the x, y plane. 
The x-isocline is the thin 
line. The y-isocline is the 
thick curve. 

d. An initial condition x(O) = 0, y(O) > 0 approaches the stable focus at y = 0, x = 1 
in the limit t -* 00. 

~ 5.25 
a. See Figure S.16. 

b. There are three steady states: x = -[if, y = 0; x = 0, y = 0; and x = 2, Y = t. 
c. See Figure S.16. 
d. Linearizing the equation at x = 1, Y = 1, we find A = ~, B = 1, C = 0, and 

D = -1. The eigenvalues are therefore ~ and -1 so this is a saddle point. 

Figure S.16 
Diagram for Exercise 5.16. 
Flow in the x, y plane. 
The x-isocline is the thin 
curve. The y-isocline is 
the thick curve. 
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Atx = -j!i, Y = O,wehaveA = - 1/, B = l,e = O,andD = -1. The 

eigenvalues are therefore - 1/ and -1, so this is a stable node. 
At x = 2, Y = ~,A = - ¥, B = 1, e = ~,and D = -1. The eigenvalues 

_ 25 ±.j( 25 )2_ 3' 

are therefore T 2T T. Both of these are negative real numbers so the steady 
state is a stable node. 

Depending on the initial condition the state asymptotically approaches either the 

steady state at x = -g, y = 0, or the steady state at x = 2, y = ~. Many models 
in neurobiology assocIate different stable steady states with different "memories': but 
this equation does not model a realistic situation. 

APPENDIX A 

~ A.6 
c. If the function f (x) is described by the Hill function, then the Hill plot is a straight 

line with slope n and with y-intercept -n In 9. 

~ A.16 
a. For a point a distance r away from the point source, the number density is a maximum at 

time t = 2~~' where n is the number of dimensions and D is the diffusion coefficient. 
This is an important result since it gives you an easy way to estimate the time scale for 
diffusion. 

b. The distance from the microelectrode to the neuron is 3 x 10-4 cm. 

~ A.24 
a. This integral is equal to 1. It must be since it is the probability the man is somewhere. 
b. This integral is the average displacement from the origin. It is equal to ~ . 
c. From the formula in (b), the average displacement displacement is about 125 feet. 

Therefore, the man is likely to be in a circle of a radius of 300 feet centered around his 
starting point. For an exact computation, you know that the total probability that the 
man is in a circle of radius K after n steps is 

lK P(R)dR = 1 - e-!SJ:- R:: 0.99 

Notice that the dispacement increases as the square root of the number of steps. 
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interpretation, 296 
and linear dynamics, 295 
oscillations, 296 
and the power spectrum, 344 
and surrogate data, 344 
white noise, 297 

autoregressive model, 336 
averaging, 286 

bacterial growth, fractal, 138 
bagels, see donuts 
Baker, G.L., 41 
Barnsley, M.F., 121, 141 
basin of attraction, 20 

of cycles, 23 
definition, 20 
fractal boundaries, 132 
multiple, 132 

Bass, Thomas, 41 
Bassingthwaighte, I.B., 141 
Belair, I., 48 
Belousov-Zhabotinsky reaction, 85, 89, 

95, 103 
Bendat, I.S., 348 
Berger, R.D., 188 
bias, in measurements, 281 
bifurcation 

in blood cell populations, 186 
definition, 29 
in mutual inhibition, 236 
see also period-doubling bifurcation 

bifurcation diagram, 30-31 
binding 

cooperative, 365 
corepressor, 76 

biochemistry, and Boolean functions, 73 
black box, 179 
Blaxter, K.L., 261 
blood cell dynamics, 183 
blowflies, population dynamics of, 186 
Bode plot, 200 
Boo1e, George, 58 
Boolean functions 

and biochemistry, 73 
definition, 58 
number of, 66 
and sigmoidal functions, 73 
single input, 59 

two inputs, 66 
Boolean networks, 58-73, 77-79 

and gene control, 77 
lambda bacteriophage, 64 

Boolean variables, definition, 58 
bootstrapping, 343 
bounded, definition, 27 

and stationarity, 314 
Box, G.E.P., 293, 348 
box-counting dimension, 115 
Boyle's law, 361 
Bray, W.c., 88 
Bray reaction, 88 
bronchi, and self-similarity, 105 
Brown, Robert, 126, 141,369 
Brownian motion, 126, 369 
Brusselator, 270 
Bub, G., 258 
bucket brigade, 60 
Bullough, W.S., 18 
butterfly effect, 250 

calcium waves, 90, 95 
Caleresu, F.P., 182, 183, 188 
cancer 

and exponential growth, 160, 188 
of the lung, 188 
and metastasis, 231 

Cantor set, 110, 135 
and the tent map, 131 

carbon dating, 190 
cardiac arrhythmias, 35 

and cellular automata, 86 
fibrillation, 86 
and spiral waves, 89 
tachycardia, 86 

cardiac oscillations, and limit cycles, 241 
Casdagli, M., 349 
cell cycle, and cycles in Boolean networks, 

78-79 
cell membranes, and ion channels, 158 
cellular automata, 79-88 

Boolean, 80 
definition, 79 
and diffusion, 84 
and evolution, 92-95 
and excitable media, 84-88 
and fractals, 124-125 
game of Life, 82 



model of gene networks, 77-79 
numbering of rules, 80 
and sea shells, 82 
used as physical models, 84 

central limit theorem, Gaussian 
distribution, 369 

chain rule, 23 
chalones, 18 
Chahinian, A.P., 188 
chaos 

alternatives, 347 
characterization of, 314-338 
definition, 27-29 
detection of, 338-346 
in differential equations, 172 
in finite-difference equations, 11,27 
first modern usage, 28 
in heart cells, 37 
in Henon map, 311 
in Ikeda map, 116,311 
in Lorenz equations, 250, 311 
in observed data, 347 
period-doubling route to, 29-33 
and periodic stimulation, 37 
in quadratic map, 30, 301 
in Rossler equation, 251 
sensitive dependence, 28, 333 
in the tent map, 32 
and time delayed feedback, 183 
and time series, 309 
and unstable cycles, 33 

characteristic equation, see eigenvalues 
characteristic values, 215 
chemical kinetics, reversible reactions, 

154 
Chen, C.T., 188 
Chess, G.E, 182, 183, 188 
Chou, T.C., 37 
C language, 381-384 
Clarke, J., 118, 141 
Clay, J., 304 
climate, prediction, 330 
cobweb method, 6 

quadratic map, 8 
quasiperiodicity, 34 

Cochran, w.G., 289, 348 
Cohen, R.J., 188,349 
compartmental model, of drugs, 262 
complex numbers, 135, 144,216-217 
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computer program 
to build a tree, 106 
to draw Cantor set, 110 
to draw Serpinski gasket, III 

connectivity, of a network, 56 
conservation of energy, 212 
contradiction, 66 
convex polyhedron, 254 
convolution, 179 
convolution kernel, see impulse response 
Conway, John, 82 
Cooper, E., 190, 191 
correlation coefficient 

definition, 292 
an example, 294 
and nonlinear dynamics, 303 

correlation dimension, 318 
and attractors, 321 
an example, 322 
1/ f noise, 322 

correlation integral, 316 
and dimension, 319 
scaling, 319 
and white noise, 322 

correlations, linear, 291 
cosine function, 367 
Cotton, EA., 89 
coupled differential equations, 

equivalence to higher-order 
equations, 219 

coupling of subsystems, 312 
cows, grazing and population, 164 
era protein, 64 
Crutchfield, J., 41, 92, 93, 94, 95 
cubic function, 362-363 

in a model for ovulation, 170 
in van der Pol equation, 242 

Cvitanovic, P., 41 
cycle length, in Kauffman networks, 79 
cycles 

in Boolean networks, 59, 63, 65, 71, 
72,77,78,83 

in finite-difference equations, 20 
numerical integration, 23 
stability in differential equations, 

213 
stability of, 20, 33, 240 

damped pendulum, 217 
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D' Ari, R., 72, 95 
Darwin, C., 91 
Das, R., 92, 93, 96 
data-implicit model, 325 
Davidenko, J.M., 89, 90, 95 
decay 

exponential, 4, 147, 150 
linear, 149 

degree, of a vertex, 257 
delay-differential equations, 183 

in population models, 188 
del Castillo, J., 379 
De Lisi, C., 221, 222, 223 
de Silva, 268, 269 
determinants, 225 
deterministic dynamics, 28, 301, 324 
Devaney, R.1., 41 
diatoms, 282 
differential equations 

definitions, 148 
high dimensions, 248-253 
numerical integration, 172, 205, 

244,248 
one-dimensional, 147-183 
time-delay, 183-188 
two-dimensional, 209-248 
see also chaos, initial conditions, 

stability of fixed points, 
stability of cycles 

diffusion, 126,369 
and cellular automata, 84 

diffusion equation, 194,376 
diffusion limited aggregation, 139 
digestion, in ruminants, 261 
dimension, 111-116 

box-counting, 115-116 
calculation of correlation 

dimension, 318-324 
calculation of, using scaling, 

113-114 
definition of, 113 
embedding, 309 
of fractals, 106, 114 
of self-similar objects, 113 

discrete time, 2 
donuts, and the Poincare index theorem, 

259 
dots, not so random, 239 
drug kinetics, 199 

drugs, concentration in blood, 175 
Duffing equation, 273 
dynamical noise, 281 
dynamics 

aperiodic, 11, 30 
in blood cell populations, 186 
chaotic, see chaos 
and fractals, 121 
graphical representation in Boolean 

networks, 69 
near fixed points, 14 
periodic, 10, 30 
quasiperiodic, 33 

E. coli 
exponential growth, 160 
and fractal growth, 138 
gene regulation, 76 
and lambda bacteriophage, 64 

Earth's orbit, 331 
Eckmann, J.-P., 349 
Edelstein-Keshet, 1., 95, 260, 267, 271 
Eden, M., 138, 141 
Eden model, 137-138 
Edgar, G.A., 409 
edge, of a polyhedron, 254 
edge of chaos, 95 
eigenvalue equation, see eigenvalues 
eigenvalues, 215, 225 

in coupled first-order linear 
equations, 220 

and focus, 232 
high-dimensional differential 

equations, 251 
in linear differential equations, 252 
and node, 233 
and saddle point, 233 

electrical circuit, equation for, 261 
electrocardiogram, 38 
ellipse, 369 

and harmonic oscillator, 212 
Emami-Naeni, A., 188 
embedding 

time lag, 309 
time series, 309 

embedding dimension, scaling region, 
323 

embedding lag, choice of, 322 
energy, conservation of, 212 



enzyme, control of activity, 74, 75 
Ermentrout, B., 95 
Eubank, S., 348 
Euler method, 172, 205, 244, 248 
Euler-Poincare characteristic, 257 
Euler theorem, 254 
evolution, 91 

and cellular automata, 92-94 
and computation, 91-94, 95 

excitable media 
Belousov-Zhabotinsky reaction, 85 
cellular automata models of, 86 
and computer projects, 101-102 
and the heart, 86 
and spiral waves, 86 

excitable tissue, 158 
exon, 74 
exponential decay, 4, 150-154,361 

autocorrelation function, 295 
exponential growth, 4, 150-154 

and AIDS, 196 
and decay, 150 
differential equation for, 151 
fitting data, 152 
impossibility of continuing, 159 

exponential time constant, 160 
extrapolative prediction, 326 

face, of a polyhedron, 254 
Family, E, 141 
Farmer, D., 348, 349 
Fatt, P., 377 
feedback 

blood cell production, 185 
mixed,183 
time delayed and chaos, 183 

feedback inhibition, 272 
Feigenbaum, M.J., 29, 41, 52 
Feigenbaum's number, 30, 52 
fibrillation, 86, 89 
finite-difference equations, 1-40 

compared to differential equations, 
172 

first differencing, 314 
first-order differential equations, 

147-183 
coupled,219 

Fitzhugh-Nagumo equation, 245-248, 
273,276 
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fixed pointe s) 
in Boolean networks, 59, 77, 78 
in cellular automata, 83, 93 
and cycles, 22 
in finite-difference equations, 12-17 
index of, 257 
and isoclines, 227 
multiple, 164 
in one-dimensional differential 

equations, 149, 166, 168-169 
in two-dimensional differential 

equations, 226, 230-233, 236 
flow field, in differential equations, 213 
flurazepam, 268 
focus,232,237,240,258,259 
Folkman, J., 196 
forest fires, as nonlinear waves, 85 
Fourier transform, 298 

and surrogate data, 343 
fractal basin boundaries, 132-135 
Fractal game, 121-124 

and computer projects, 143-144 
fractal geometry, 106 
fractal growth 

diffusion limited aggregation, 139 
Eden model, 137-138 

fractals, 114 
and cellular automata, 125 
dimension of, 114 
dust, 132, 137 
and dynamics, 121-137 
and finite-difference equations, 129 
generation by random moves, 

121-124 
Koch snowflake, 112 
Mandelbrot set, 135 
random, 118 
Serpinski gasket, 112, 114, 123-125 

Frame, M., 41 
Franklin, G.E, 188 

frustration, in closed loops, 61 
function(s) 

Boolean, 58 
cosine, 367 
cubic, 362 
ellipse, 212, 369 
Gaussian, 283, 368 
graph of a, 360 
Heaviside, 366 
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function(s) (cont.) 

hyperbola, 370 
hyperbolic tangent, 365 
linear, 361 
parabola, and decay, 157 
parabolic, 362 
quadratic, 362 
sigmoidal, 364 
sine, 180,367 
straight line, 361 

fungal growth, fractal, 139 

Gatewood, L.c., 261 
Gathaye, A.M., 95 
Gause, G.E, 195 
Gaussian distribution, 283, 368-369, 375 

and noise, 283 
and random walk, 283 

Gaussian noise, 283 
Gelb, A., 348 
gene, 74 
gene networks, 80 
gene regulation, 76 
genetic algorithm, 91 
genotype, 91 
genus, of a surface, 256 
geometric mean, 334 
geometrical techniques 

difference equations, 6-7 
one-dimensional differential 

equations, 166-168 
two-dimensional differential 

equations, 226-230 
Gerhardt, M., 95 
Glantz, S.A., 260, 262, 267, 268 
Glass, 1., 40, 43, 48, 49, 183, 185,207, 

238,260,349 
Gleick, J., 41 
global stability of fixed points, 12 
glucose, interaction with insulin, 261 
Gold, B., 348 
Gollub, J.P., 41 
Gompertz growth, 163-164 
Grassberger, P., 321, 348, 349 
Grodins, ES., 188 
growth 

in bacteria colony, 162 
and cancer, 160 
and E. coli, 160 

exponential, 4, 147, 150 
Gompertz, 163, 164 
linear, 149 
log phase, 161 
logistic, 160-163 
Malthusian, 8 
Verhulst, 160-163 
in yeast, 194 
see also fractal growth 

growth control, chalone mechanism, 18 
Guckenheimer, J., 260 
Guevara, M.R., 38, 39,40,241 
Guillemin, V., 259, 260 
Guns 'n' Roses, 117 
Gurney, W.S.c., 186, 187, 188 

half-life, 152 
estimation, 157 

Hao, B.L., 41 
harmonic oscillator, 209 

differential equation for, 367 
and time series, 306 

Harper, J., 254 
heart cells, chaos in, 37-40 
heart rate 

response to sinusoid inputs, 
182-183 

self-similarity in, 120-121 
Heaviside function, 364, 366 
Henon map, 311 
Hill function, 18,365-366,373 

and biochemistry, 365 
Hirsch, M.W., 260 
Hochberg, M., 196 
Hodgkin, A.L., 192,245,247 
Hodgkin-Huxley equations, 192,245, 

247 
Holden, A.V., 41 
Holland, 1., 91, 95 
Holmes, P., 260 
Hooke's law, 210 
Hraber, P., 92, 95 
Hunter, N., 330, 331, 349 
Huxley, A.E, 192,245,247 
hyperbola, 24, 370 

and decay, 157 
hyperbolic tangent, as sigmoidal 

function, 364 



ice age, 330 
Ikeda map, 115, 116, 311 
imaginary numbers, 216 
impulse response model, infinite, 336 
impulse response function, 177-179,294 

and the transfer function, 299 
independence, of random numbers, 289 
index, of a fixed point, 257 
index theorem, 253-259 
inducer, molecular binding, 75 
infinite impulse response model, 336 
inflection points, 360 
inhibition 

allosteric, 75 
Boolean model, 75 

initial conditions 
in a Boolean network, 58 
in cellular automata, 92-94 
in finite-difference equations, 3, 6, 7 
in one-dimensional differential 

equations, 150, 152, 155, 156, 
164-165,168,170 

sensitive dependence on, 28, 
333-335 

in two-dimensional differential 
equations, 211, 217, 221, 224 

input/output analysis, 298 
insulin, interaction with glucose, 261 
integrating factor, 204 
integration, differential equations, 151 

Internet, 156 
intron,75 
ion channels, 158, 190, 191,265 
irrational numbers, 34 
Isidori, A., 348 
Israel, L., 188 
isocline, 227 

iteration, 3 
cobweb method, 6 
numerical, 7 

Jacob, F., 75, 94 
Jenkins, G.M., 293, 348 

jet lag, 38 
Julesz, B., 260 

Kailath, T., 348 

Kaplan, D.T., 349 
Katz, B., 376, 377, 379 

Kauffman networks, 77-79,102 
Kauffman,S., 77, 78, 79,95,102 
Kennel, M.B., 349 
kinetic energy, 212 
Klatter, J., 141 
Klein, G., 164 
Koch snowflake, 112 
Kovacc, I., 260 

lag 
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in autocorrelation function, 296 
use in reconstruction of trajectories, 

309 
Laird, A., 163, 164, 188 
lambda bacteriophage, 64 

differential equation model for, 235 
logical analysis, 64-65, 95 

lambda repressor, 64 
Lambert, L., 95 
Laurence, E.B., 18 
leukemia, 185 
Levy, Paul, 129 
Levywalks, 129, 141 
Lewin, R., 95 
Li, T.-Y., 28, 41 
lidocaine, kinetics in blood plasma, 268 
Liebovitch, L.S., 141 
Life, game of, 82 

and computer projects, 102 
limit cycles, 240-243 

and cardiac oscillations, 241 
linear correlations, 291 
linear equation, in finite-difference 

equations, 3 
linear growth and decay, 149 
linear model, 336 
linear prediction, 337 
linear superposition, 298 
linear systems, with sine wave input, 180 

linearization, see stability of fixed points 
Liotta, L., 221, 222, 223 
local stability, 12 

of cycles, 21, 25, 241 
of fixed points, 12, 168,230 

logical analysis, lambda bacteriophage, 
95 

logical mode, for locomotion, 70 

logical model 
of gene networks, 77 
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logical model (cant.) 
for lambda bacteriophage, 64 

logistic function, 366 
logistic growth, 160-162 
logistic map, see quadratic map 
Lookman, T., 354 
lookup table, 68 
loops, in Boolean networks, 60 
Lorenz, E.N., 41, 249, 260 
Lorenz equation, 249-250, 276, 310, 311 
Lotka, A.J., 188 
Lotka-Volterra equation, 227-230, 233, 

269,275 
low-pass filter, 200 
Lucilia cuprina, growth dynamics, 186 
Lyapunovexponent 

example, 335 
and time series, 334 

Mackey, M.e., 41,183,185,207,349 
Malthusian growth, 8 
Mandelbrot, B., 136, 141 
Mandelbrot set, 135-137 

and computer projects, 144-145 
manifold, 254 
marginal costs, 200-202 
Marr, D., 260 
Martinez-Mekler, G.e., 134 
mass on a spring, see harmonic oscillator 
matrix equations, 225, 252 
Matsuura, S., 138, 139 
maxima, 360 
Ma~R.,41, 164, 188,349 
Meakin, P., 140 
mean, 283, 286, 375 

geometric, 334 
uncertainty of, 288 

measurement, 280 
error, 281 
noise, 281 

metastasis, 221-224 
Metropolis, N., 52 
Michaelis-Menten kinetics, 371 
Miledi, R., 376, 377 
Milhorn, H.T., 188 
Milkanovich theory of ice ages, 330 
minima, 360 
Mitchell, M., 92, 93, 94, 95, 96 
mitosis, 18 

Miyazima, S., 138, 139 
mod 1, definition, 33 
Model One, 285 
Model Two, 289 
Model Three, 294 
Model Four, 301 
Model Five, 311 
Model Six, 336 
model order, 338 
modelling, and time series, 280 
modelling data, 280 
models, data implicit, 325 
modulus, definition, 33 
molecular binding, 75 
monkeys, typing, 339 
Monod, J., 75, 94 
Moon, EC., 41 
Mozart, W.A., 117 
multistability, 20 

in Boolean networks, 59 
in cow grazing, 166 
in lambda bacteriophage, 236 
in ordinary differential equations, 

166 
in sine map, 134 

Murray, J.D., 260 
music, and self-similarity, 117 
mutual inhibition, 235-236 

NAND, 67 
Nelson, E., 141 
nerve cell dynamics, 245-248, 304-306 
network 

definition, 56 
see also Boolean networks, Kauffman 

networks 
Newton's second law of motion, 210 
Nicholson, A.J., 186, 188 
Noble, D., 191, 192 
node, 232-233, 236, 237, 258,259 

of a network, 56 
noise, 280, 283 

dynamical, 281 
as fluctuations around mean, 287 
measurement, 281 
l/f, see l/f noise 
white, 283, 342 

nonlinear equations 
finite-difference equations, 8 



linearization of, 231 
nonlinear predictability, an example, 332 
nonlinear waves, 85 
nonlinearity, alternatives to chaos, 347 
nonstationarity,347 
NOR,67 
normal distribution, see Gaussian 

distribution 
null hypothesis, 341-346 
numerical artifact, 33 
numerical integration 

Euler method, 172, 205, 244, 248 
numerical iteration, 7, 17 

Ohm's law, 361 
1/ f noise, 118, 289 

correlation dimension, 322 
mean of, 289 
in music, 118 

operator, of genes, 75 
Oppenheim, A.V., 348 
optimal linear model, 336 
oR,66,67 
ordinary differential equation, definition, 

149 
oscillations 

autocorrelation function, 296 
in heart tissue, 241 

Ostrowsky, N., 141 
ovulation, 170 
oxygen saturation curve, 373 

Packard, N.H., 92, 95, 349 
parabola, 362 

and decay, 157 
and quadratic map, 9 

parasystole, 49 
quasiperiodicity in, 35 

Pasternack, J.S., 43 
patch clamp, 158-159 
Peak, D.,41 
Peebles, P.Z., 348 
Peitgen, H.-O., 141 
Perez, R., 35, 260 
period, of a cycle 

in Boolean networks, 61 
in finite-difference equations, 20 
of harmonic oscillator, 211 

period-doubling bifurcations, 29-32 
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in cardiac electrophysiology, 44 
Feigenbaum's number, 30 
in the sine map, 36 

periodic stimulation 
of heart cells, 37-40 
of nerve cells, 304--306 

Phang, J.M., 264 
pharmacokinetics, 152 
phase 

of an oscillation, 37 
resetting, 37, 241 

phase plane, 211, 226--230 
for the harmonic oscillator, 212, 370 
reconstruction from data, 306 

phase randomization, 343 
phase shift, 181,298 
phase space, 310 
phenotype, 91 
phytoplankton, 282 
Piersol, A.G., 348 
Poincare, H., 28, 41, 241, 254 
Poincare index theorem, 253-259 
Poincare return map, 304 
Pollack, A., 259, 260 
polyhedra, 254 
Pope, Alexander, 342 
population dynamics, of blowflies, 186 
populations 

blood cells, 183 
cows, 164 
Lotka -Volterra dynamics of, 228 
predator-prey, 226 

Powell, J.D., 188 
power law distribution, 128 
power spectrum, 298-301 

and the autocorrelation function, 
300 

an example, 300 
and surrogate data, 344 
white noise, 299 

predator-prey differential equations, 
226--230 

predictability, 325 
an example, 328 

prediction, extrapolative, 326 
prediction error, 326 
preimage, 131 
Press, W.H., 248, 298, 354 
prey, population dynamics, 226--230 
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Procaccia, I., 118, 141, 321, 349 
Proctor, J., 223 

quadratic formula, 215 
quadratic function, 362 
quadratic map 

chaos in, 30 
and computer projects, 51-52 
cycles in, 25 
definition, 8 
dynamics of, 9 
and time series analysis, 301-303 

quasiperiodicity, 33-35 
cardiac arrhythmias, 35 

Rabiner, L.R., 348 
radioactive decay, 147, 153 
random Boolean networks, 77-79 

and computer projects, 101, 102 
random fractals, 118 
random noise, 283 
random walk, 126-129 

and Gaussian distribution, 283, 
368-369 

rate constant, chemical, 154 
rational numbers, 34 
recombination, 91 
recurrence plots, 315-318 
recursion, 110 

depth of, II 0 
recursive, computer programs, 107 
refractory time 

definition, 84 
in excitable media, 84 

repressor, molecular binding, 75 
return map, 304 
return plots, 303 
Revesz, L., 164 
Richter, P.H., 141 
Rinzel, J., 246 
Rossler, 0., 250-251, 260 
Rossler equation, 251 
Ruelle, D., 349 
Runge-Kutta method, 248 

saddle point, 233, 236, 237, 240, 258, 259 
Sakman, B., 158 
sample mean, 287 
Sander, L.M., l39, 141 

Santa Cruz Collective, 41 
Santa Fe Institute, 95 
Saupe, D., 141 
scale factor, 106 
Schafer, R.W., 348 
Schizosaccharomyces kephir, growth in, 

194-195 
Schuster, H.G., 118, 141 
Scripps Institute of Oceanography, 282 
self-similarity 

in biology and nature, 105 
definition, 105 
in finite-difference equations, 120 
generated randomly, 120 
in heart rhythms, 120 
in music, 117 
scale factor, 106 
statistical, 116 
in temporal signals, 118 
in time, 117 

sensitive dependence on initial 
conditions, 28, 333-335 

Serpinski gasket, 112, 114 
and cellular automata, 124-125 
in the Fractal game, 122-123 

Shakespeare, William, 339 
Shlesinger, M.E, 141 
Shrier, A., 40, 190, 191,304 
Sidorowich, J.S., 349 
sigmoidal functions, 364-366 

and Boolean functions, 73 
in ecology, 165 
Heaviside, 366 
hyperbolic tangent, 364 

signal processing, 279 
similarity, statistical, 116 
Simmons, G.E, 260 
Simson, M.B., 45 
sine function, 367-368 

and exponential function, 368 
and harmonic oscillation, 211 
as input, 180, 182 

sine map, 35-36 
and computer projects, 52-53 
and fractal basin boundaries, l33 

sinoatrial node, 89 
sketching curves, 360 
sleep rhythm, 35 
Smale, S., 260 



Snedecor, G.W., 289, 348 
Solomon, T.H., 141 
spike, see impulse response 
spiral waves 

Belousov-Zhabotinsky reaction, 85, 
95 

in chemical and biological systems, 
88-90,95 

and excitable media, 88-90, 95 
spring constant, see harmonic oscillator 
spruce budworm, 202 
squid giant axon, 192,304 
stability, local versus global, 12 
stability of cycles 

in finite-difference equations, 20--25 
in two-dimensional differential 

equations, 240--243 
stability of fixed points 

in finite-difference equations, 
14-17, 173 

in one-dimensional differential 
equations, 168-169 

in two-dimensional differential 
equations, 230--233 

in ordinary differential equations in 
high dimensions, 251-253 

standard deviation, 283, 286, 288 
standard error of the mean, 288, 289 

an example, 289 
Stanley, H.E., 141 
state 

of a Boolean network, 58 
in finite-difference equations, 2 
in one-dimensional differential 

equation, 174 
state space, reconstruction from data, 

310 
stationarity, 314 
statistical self-similarity, 116 
steady state 

in finite-difference equations, 12 
see also fixed point 

straight line, equation for, 361 
strings, in Boolean networks, 59 
Sugihara, G., 349 
superposition 

convolution, 178 
and linearity, 175 

superstability, definition, 51 

surrogate data, 325, 343 
Swinney, H., 141 
system identification, 181 
Szekely, G., 70 

tachycardia, 86 
Takens, F., 321, 349 
tautology, 66 
Taylor series 
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function of one variable, 48 
function of two variables, 230 
and linearization, 48, 168, 230 

tent map, 32,130--132 
Theiler, J., 349, 354 
Thieffry, D., 65, 95 
Thomas, R., 65, 72, 95 
time constant, exponential, 159 
time delays, and chaos, 183 
time lag embedding, 309 
time series, 279 

reconstruction of chaotic dynamics, 
309 

topologically equivalent, 254 
topology, 254 
torus, 256 
trajectory, 211, 307 

reconstruction from data, 309 
transfer function, 299 
transient( s) 

in Boolean networks, 60 
in differential equations, 177 
in finite-difference equations, 17,30 

trees, self-similarity in, 106 
trial solution, 214 
truth table, 68 
tryptophan, 76 
Tsien, R.W., 191, 192 
tumor growth, 196 

exponential, 154 
and Gompertz equation, 163 

two-compartment model, 222 
Tyson, J., 272 

vagus nerve, 182 
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